JPS63163272A - Method for measuring acidic material in protein solution - Google Patents

Method for measuring acidic material in protein solution

Info

Publication number
JPS63163272A
JPS63163272A JP61310904A JP31090486A JPS63163272A JP S63163272 A JPS63163272 A JP S63163272A JP 61310904 A JP61310904 A JP 61310904A JP 31090486 A JP31090486 A JP 31090486A JP S63163272 A JPS63163272 A JP S63163272A
Authority
JP
Japan
Prior art keywords
protein
column
measured
acidic
acidic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61310904A
Other languages
Japanese (ja)
Inventor
Yoshihide Sawada
沢田 芳秀
Kazutoshi Yamazaki
和俊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP61310904A priority Critical patent/JPS63163272A/en
Publication of JPS63163272A publication Critical patent/JPS63163272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To measure an acidic material to be measured with high accuracy by adding a positive charge material to a sample soln. contg. the acidic material to be measured and protein to form iron pairs and removing a protein component in a column. CONSTITUTION:The positive charge material is added to the sample soln. contg. the acidic material to be measured and the protein to form the ion pairs. The ion pairs are formed by adding alkylamine and tetraalkyl ammonium salt as the positive charge material to, for example, homovanillic acid, vanyllyl mandelic acid, etc., which are the acidic material to be measured. The sample soln. 1 contg. the ion pairs is passed through a selector valve 4 and the protein component is removed from an outlet F of the valve 4 without adsorbing the same in a protein removing column 5. An eluate 6 is then passed through the valve 4 and the adsorbed ion pairs are removed in the column 5 and are separated in a column 8, by which the acidic material to be measured is analyzed. Since the protein component is removed, the analysis of the acidic material to be measured with high accuracy without being affected by the protein component is permitted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蛋白成分を含有する溶液中の酸性物質の測定方
法、さらに詳しくは、逆相系の液体クロマトグラフィー
法により、血清などに含有される酸性の被測定物質を、
混在している蛋白成分の妨害をうけることなく精度よく
測定する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for measuring acidic substances in a solution containing protein components, more specifically, a method for measuring acidic substances contained in serum etc. using a reversed-phase liquid chromatography method. The acidic substance to be measured is
This invention relates to a method for accurately measuring without being interfered with by mixed protein components.

(従来の技術) 血清などに含まれる各種ホルモン、カテコールアミン類
、各種薬剤などの非蛋白性微量成分を液体クロマトグラ
フィー法、特に高速液体クロマトグラフィー法によって
測定し、病理学的な研究や診断に利用することが広く行
われている。血清などの生体試料中には一般にアルブミ
ンなどの蛋白成分が含まれているため、この蛋白成分の
影響により1分析績度や分析カラム機能が低下したり。
(Prior technology) Non-protein trace components such as various hormones, catecholamines, and various drugs contained in serum are measured by liquid chromatography, especially high-performance liquid chromatography, and used for pathological research and diagnosis. It is widely practiced. Biological samples such as serum generally contain protein components such as albumin, and the influence of these protein components can reduce the performance of an analysis or the function of an analytical column.

該分析カラムの寿命が短くなったりする。そのため、非
蛋白成分の測定においては、あらかじめ過塩素酸処理な
どの除蛋白操作により蛋白成分を除いた試料を用いるの
が普通である。しかし、このような方法では除蛋白操作
に何段階もの操作を必要としかつ長時間を要するため、
被測定物質の損失や分解が生じる。さらに上記除蛋白操
作は、熟練した技術を必要とするうえ、測定者間あるい
は測定時のバラツキが大きい。このように、従来の除蛋
白操作は繁雑であるうえ被測定物質の回収率が悪く、再
現性に乏しい。
The life of the analytical column may be shortened. Therefore, when measuring non-protein components, it is common to use a sample from which protein components have been removed by a protein removal operation such as perchloric acid treatment. However, this method requires multiple steps and a long time for protein removal.
Loss or decomposition of the substance to be measured occurs. Furthermore, the above-mentioned protein removal operation requires a skilled technique and is subject to large variations between measurers or during measurement. As described above, conventional protein removal operations are complicated, have a low recovery rate of the analyte, and have poor reproducibility.

これに対して、特開昭58−223061号公報には。On the other hand, Japanese Patent Application Laid-Open No. 58-223061.

蛋白成分および非蛋白性の被測定物質を含む試料液を除
蛋白刃ラムに通して非蛍白成分のみを吸着させ蛋白成分
を通過除去したのち、吸着した非蛋白成分を溶離させて
これを分析カラムに導く方法が開示されている。この方
法によれば、上記除蛋白操作を必要とせず、試料中の被
測定物質が直接測定されるため短時間で再現性のよい測
定がなされる。
A sample solution containing protein components and non-protein substances to be measured is passed through a protein removal blade ram to adsorb only the non-fluorescent components and remove the protein components, and then the adsorbed non-protein components are eluted and analyzed. A method for introducing the column is disclosed. According to this method, the substance to be measured in the sample is directly measured without the need for the above-mentioned protein removal operation, so that the measurement can be performed in a short time and with good reproducibility.

しかし、上記公報に開示された方法を採用しても、被測
定物質が酸性物質、つまり解離して陰電荷を有するバニ
リルマンデル酸やホモバニリン酸(いずれもカテコール
アミン類の代謝物質である)のような物質である場合に
は、該物質は上記逆相系の充填剤とは疎水性相互作用す
ることなく (つまり、充填剤に吸着されずに)蛋白成
分とともにカラム外へ除去される。酸性物質を吸着する
ために陰イオン交換型充填剤を充填したカラムを使用す
ると、#J、性物質物質収率は比較的良好であるが。
However, even if the method disclosed in the above publication is adopted, the substance to be measured is an acidic substance, that is, a substance such as vanillylmandelic acid or homovanillic acid (both of which are metabolites of catecholamines) that dissociates and has a negative charge. In this case, the substance is removed from the column together with the protein component without hydrophobic interaction with the reversed-phase packing material (that is, without being adsorbed by the packing material). When a column packed with anion exchange type packing material is used to adsorb acidic substances, #J, the yield of acidic substances is relatively good.

蛋白成分が非特異的に吸着されるため除蛋白刃ラムの用
をなさず、さらには分析カラムの劣化を促進させるとい
う欠点がある。
Since protein components are non-specifically adsorbed, the protein removal blade ram is rendered useless, and furthermore, it has the disadvantage of accelerating the deterioration of the analytical column.

(発明が解決しようとする問題点) 本発明は上記従来の欠点を解決するものであり。(Problem that the invention attempts to solve) The present invention solves the above-mentioned conventional drawbacks.

その目的とするところは、酸性の被測定物質および蛍白
成分を含有する試料中の該被測定物質を繁雑な除蛋白操
作を行うことなく直接測定する方法を提供することにあ
る。本発明の他の目的は、除蛋白刃ラムを備えた逆相系
の高速液体クロマトグラフィーにより上記酸性の被測定
物質を精度良く測定する方法を提供することにある。
The purpose is to provide a method for directly measuring an acidic analyte in a sample containing an analyte and a fluorescent component without performing a complicated protein removal operation. Another object of the present invention is to provide a method for accurately measuring the above-mentioned acidic analyte by reverse-phase high-performance liquid chromatography equipped with a protein removal blade ram.

(問題点を解決するための手段) 本発明の蛋白溶液中の酸性物質の測定法は、(a)酸性
の被測定物質および蛋白成分を含有する試料溶液に陽性
電荷物質を添加し、該酸性被測定物質と該陽性電荷物質
とのイオン対を形成させる工程。
(Means for Solving the Problems) The method for measuring acidic substances in protein solutions of the present invention includes (a) adding a positively charged substance to a sample solution containing an acidic analyte substance and a protein component; A step of forming an ion pair between the substance to be measured and the positively charged substance.

(bllビイオン対含む試料溶液を除蛋白刃ラムに供給
し該カラムに該イオン対を吸着させるとともに蛋白成分
を吸着させることなく該カラムを通過させることにより
蛋白成分を除(工程、(C)該除蛋白カラムに溶離液を
供給し該カラムの充填剤に吸着されている該イオン対を
脱着させる工程、およびtdl脱着した該イオン対を分
析カラムに導いてこれを分析する工程を包含し、そのこ
とにより上記目的が達成される。
(Step (C) Removal of protein components by supplying a sample solution containing bioion pairs to a protein removal blade ram, allowing the column to adsorb the ion pairs, and passing through the column without adsorbing protein components. The method includes a step of supplying an eluent to a protein removal column to desorb the ion pair adsorbed on the packing material of the column, and a step of guiding the tdl-desorbed ion pair to an analytical column and analyzing it. This achieves the above objective.

本発明方法により測定しうる酸性の物質には。Acidic substances that can be measured by the method of the present invention include:

解離して陰性の電荷を有し得る通常の陰イオン性物質の
いずれもが包含される。代表的な例としては、ホモバニ
リン酸、バニリルマンデル酸、アスピリン、サリチル酸
などが挙げられる。これらは。
Any of the common anionic substances that can dissociate and have a negative charge are included. Representative examples include homovanillic acid, vanillylmandelic acid, aspirin, salicylic acid, and the like. these are.

例えば生体成分としてまたは外部から投与されて血液中
や尿中に存在する物質である。
For example, it is a substance that is present in blood or urine as a biological component or administered from the outside.

上記被測定物質を測定するために添加される陽性電荷物
質の種類は特に制限されないが9通常。
The type of positively charged substance added to measure the above-mentioned substance to be measured is not particularly limited, but is usually 9.

アルキルアミン、テトラアルキルアンモニウム塩などが
好適に利用され得る。上記各化合物のアルキル基は、そ
の炭素数が16以下、i、i1常15以下であることが
好ましい。アルキル基の炭素数が20を越えると疎水性
が高くなるため、この物質が添加される試料溶液や除蛋
白液(緩衝液などを主成分とし有機溶媒をほとんど含有
しない)に溶解しない。
Alkylamines, tetraalkylammonium salts, and the like can be suitably used. The alkyl group of each of the above compounds preferably has 16 or less carbon atoms, and i and i1 preferably have 15 or less carbon atoms. When the number of carbon atoms in the alkyl group exceeds 20, it becomes highly hydrophobic, and therefore does not dissolve in the sample solution to which this substance is added or in the deproteinization solution (which contains a buffer as the main component and contains almost no organic solvent).

上記陽電荷物質としては、臭化セチルトリメチルアンモ
ニウム、臭化テトラヘプチルアンモニウムなどが挙げら
れる。
Examples of the positively charged substance include cetyltrimethylammonium bromide and tetraheptylammonium bromide.

本発明方法は1例えば、第1図(^)および(B)に示
す装置により具体化される。この装置は、接続端A−F
を有する六方バルブ4に、除蛋白刃ラム5が接続端B−
Eを介して接続されている。除蛋白液収容槽11中の除
蛋白液1が定流量ポンプ2によって試料導入装置3およ
び接続端A−Bを経て除蛋白刃ラム5に送られ、そこか
ら接続端E。
The method of the invention is embodied, for example, by the apparatus shown in FIGS. 1(^) and 1(B). This device connects terminals A-F.
A protein removing blade ram 5 is connected to a six-way valve 4 having a connecting end B-
It is connected via E. The protein removal solution 1 in the protein removal solution storage tank 11 is sent by the constant flow pump 2 to the protein removal blade ram 5 via the sample introduction device 3 and the connection end A-B, and from there to the connection end E.

Fを通り系外に排出される。除蛋白刃ラム5に充填され
る充填剤は、一定の条件9例えば水あるいはある特定の
pHの緩衝液中では非蛋白成分を吸着し、蛋白成分を吸
着しない。そして他の条件9例えば上記と異なったpH
の緩衝液や有機溶媒を含有する緩衝液中では、カラムに
吸着した上記非蛋白成分を溶離する性質を存する。非蛋
白成分の吸着性は、後述の分析カラム8に充填される充
填剤よりも低く設定される。除蛋白カラム5の充填剤と
しては5通常の逆相クロマトグラフィー用の充填剤、特
に親水性の高い充填剤が用いられる。例えば、水酸基、
カルボキシル基、エーテル基などの親水性の基をその表
面に有する高分子系ゲルが用いられる。その素材として
は3例えばテトラメチロールメタントリアクリレートや
n−エチレングリコールジメタクリレート(nは2〜4
)の単独重合体、もしくはこれらと他の単量体との共重
合体でなる粒子が挙げられる。特に懸濁重合によって得
られる粒径10〜20μm程度の微粒子を用いることが
好ましい。
It passes through F and is discharged out of the system. The filler filled in the protein removal blade ram 5 adsorbs non-protein components and does not adsorb protein components under certain conditions 9, such as water or a buffer solution of a certain pH. and other conditions 9, e.g. a different pH than above.
In a buffer solution containing an organic solvent or a buffer solution containing an organic solvent, it has the property of eluting the above-mentioned non-protein components adsorbed on the column. The adsorptivity of non-protein components is set lower than that of the packing material packed in the analysis column 8, which will be described later. As the packing material for the protein removal column 5, a typical packing material for reversed phase chromatography, particularly a highly hydrophilic packing material, is used. For example, hydroxyl group,
A polymer gel having hydrophilic groups such as carboxyl groups and ether groups on its surface is used. Examples of materials include 3, for example, tetramethylolmethane triacrylate and n-ethylene glycol dimethacrylate (n is 2 to 4
) or copolymers of these and other monomers. In particular, it is preferable to use fine particles with a particle size of about 10 to 20 μm obtained by suspension polymerization.

試料としては2例えば上記酸性の被測定物質を含む、除
蛋白処理の行われていない血清試料が用いられる。除蛋
白液としては、水や各種緩衝液が使用され得、特に水も
しくは有機溶媒を含有しない低濃度緩衝液が好適である
。有機溶媒が含有されると試料中の蛋白成分が凝集して
沈澱を生じるおそれがある。
As the sample, for example, a serum sample containing the above-mentioned acidic substance to be measured and which has not been subjected to protein removal treatment is used. As the protein removal solution, water and various buffer solutions can be used, and low concentration buffer solutions containing no water or organic solvents are particularly suitable. If an organic solvent is contained, protein components in the sample may aggregate to form a precipitate.

上記試料は、試料導入装置3より系内に導入される。こ
のとき、上記陽電荷物質が、あらかじめ試料および/ま
たは除蛋白液に加えられる。その量は被測定物質の種類
や含有平により異なるが。
The sample is introduced into the system from the sample introduction device 3. At this time, the positively charged substance is added to the sample and/or the protein removal solution in advance. The amount varies depending on the type and content of the substance to be measured.

被測定物質に対して過剰量で存在することが必要であり
2例えば除蛋白液中に10〜800μg/−の割合で含
有される。この陽性電荷物質は、試料中の酸性の被測定
物質(解離して陰電荷を有する)と結合してイオン対を
形成する。そのため被測定物質の極性は低下する。さら
に上記陽性電荷物質はアルキル基や芳香族基を有するた
め、形成されたイオン対は疎水性の度合が高くなる。こ
のようなイオン対を含む試料溶液は、定流量ポンプ2に
より除蛋白液とともに移送されて除蛋白刃ラム5に達す
る。イオン対を形成した被測定物質は、上記のように疎
水性が高くなっているため、除蛋白カラム5の充填剤に
吸着する。陽性電荷物質分子の疎水部分が大きいほど1
例えば、アルキル鎖が長い程、該イオン対の除蛋白カラ
ム5に対する吸着性の度合は高くなる。試料中の蛍白成
分は吸着されずカラム5を通過し、六方バルブ4の接続
端E・Fを経て系外に排出される。
It is necessary to be present in an excess amount relative to the substance to be measured, and for example, it is contained in a protein removal solution at a ratio of 10 to 800 μg/-. This positively charged substance combines with the acidic analyte (which dissociates and has a negative charge) in the sample to form an ion pair. Therefore, the polarity of the substance to be measured decreases. Furthermore, since the positively charged substance has an alkyl group or an aromatic group, the formed ion pair has a high degree of hydrophobicity. The sample solution containing such ion pairs is transported together with the protein removal solution by the constant flow pump 2 and reaches the protein removal blade ram 5 . The substance to be measured that has formed an ion pair has high hydrophobicity as described above, and therefore is adsorbed to the packing material of the protein removal column 5. The larger the hydrophobic part of the positively charged substance molecule, the more
For example, the longer the alkyl chain, the higher the degree of adsorption of the ion pair to the protein removal column 5. The fluorescent component in the sample is not adsorbed and passes through the column 5, and is discharged to the outside of the system via the connection ends E and F of the six-way valve 4.

他方、溶離液槽61中の溶離液6は定流量ポンプ7によ
り5接続端りおよびCを経由して液体クロマトグラフィ
ーの分析カラム8へ送られる。次いで第1図(B)に示
すように、六方パルプ4を切り換えて接続端りを已に接
続すると、定流量ポンプ7により溶離液槽61中の溶離
液6が接続端りおよびEを経て除蛋白刃ラム5に供給さ
れる。溶離液がカラム5を通過することにより、吸着さ
れたイオン対が溶離され(脱着し)、溶離液と共に接続
端BおよびCを経て分析カラム8に達する。被測定物質
を含む上記イオン対は分析カラム8で分離され2分析カ
ラム8以降に設けられた図外の適宜な検出器により検出
される。分析カラム8に充填される充填剤は除蛋白刃ラ
ム5に用いられる充填剤よりも吸着性の高いものが使用
される。このような吸着性の高い充填剤を用いることに
より除蛋白刃ラムに吸着されていたイオン対を溶離液に
よって完全に脱着させ、これをそのまま分析カラムに流
しここで被測定物質を精度よ(分離し分析することがで
きる。
On the other hand, the eluent 6 in the eluent tank 61 is sent to the analytical column 8 of the liquid chromatography via the connection end 5 and C by the constant flow pump 7. Next, as shown in FIG. 1(B), when the hexagonal pulp 4 is switched and the connecting end is connected to the other side, the eluent 6 in the eluent tank 61 is removed by the constant flow pump 7 through the connecting end and E. It is supplied to the protein blade ram 5. As the eluent passes through the column 5, the adsorbed ion pairs are eluted (desorbed) and reach the analytical column 8 through the connecting ends B and C together with the eluent. The ion pair containing the substance to be measured is separated by the analytical column 8 and detected by an appropriate detector (not shown) provided after the second analytical column 8. The analytical column 8 is filled with a packing material having higher adsorption properties than the packing material used in the protein removal blade ram 5. By using such a highly adsorbent packing material, the ion pairs adsorbed on the protein removal blade ram are completely desorbed by the eluent, which is then directly passed through the analytical column where the analyte is accurately separated (separated). and can be analyzed.

(作用) 本発明方法では、酸性の被測定物質に対し逆電荷物質で
ある陽性電荷物質を添加することによりイオン対が形成
される。そのため、被測定物質の極性が低くなる。さら
に上記陽性電荷物質が有するアルキル基や芳香族基のた
め、該イオン対は疎水性の度合が高くなる。そのため、
逆相系のクロマトグラフィー用ゲルの充填された除蛋白
刃ラムに吸着することが可能となる。このように陰電荷
性物質である酸性の被測定物質が通常の非イオン性の非
蛋白成分と同様の性質を有するようになるため、除蛋白
刃ラムにおいて蛋白成分と効果的に分離される。蛋白成
分の除去された被測定物質は。
(Function) In the method of the present invention, ion pairs are formed by adding a positively charged substance, which is an oppositely charged substance, to an acidic analyte. Therefore, the polarity of the substance to be measured becomes low. Furthermore, because of the alkyl group or aromatic group that the positively charged substance has, the ion pair has a high degree of hydrophobicity. Therefore,
It becomes possible to adsorb protein to a protein removal blade ram filled with gel for reversed phase chromatography. In this way, the acidic analyte, which is a negatively charged substance, has properties similar to those of ordinary nonionic non-protein components, so that it is effectively separated from the protein components in the protein removal blade ram. The analyte from which protein components have been removed.

通常の高速液体クロマトグラフィーにおける方法と同様
に分析カラム8で分離され、測定される。
It is separated and measured using the analytical column 8 in the same manner as in ordinary high performance liquid chromatography.

このような方法においては、酸性物質が測定の途中で損
失したり変質したりすることなく精度よく短時間のうち
に容易に測定される。そのため、蛋白成分が含有される
試料中の酸性物質の一般的な測定方法として多方面で利
用され得る。
In such a method, the acidic substance is easily measured in a short period of time with high accuracy without loss or deterioration during the measurement. Therefore, it can be used in many ways as a general method for measuring acidic substances in samples containing protein components.

(実施例) 以下に本発明を実施例につき説明する。(Example) The invention will be explained below with reference to examples.

尖拒貫上 (八)除蛋白刃ラム充填剤ゲルの調製:4重量%のポリ
ビニルアルコール水溶液400m1にテトラエチレング
リコールジメタクリレー)40g、テトラメチロールメ
タントリアクリレートlog、メタクリル酸50g、 
 t−ルエン40gおよび−hンゾイルパーオキサイド
1.5gを加えた。400rpmで攪拌しながら80°
Cで10時間反応させた後、熱水およびアセトンで洗浄
し9粒子径20〜30μmの高分子球状多孔体を得た。
(8) Preparation of protein removal blade ram filler gel: 400ml of 4% by weight polyvinyl alcohol aqueous solution, 40g of tetraethylene glycol dimethacrylate, log of tetramethylolmethane triacrylate, 50g of methacrylic acid,
40 g of t-toluene and 1.5 g of -hnzoyl peroxide were added. 80° while stirring at 400 rpm
After reacting with C for 10 hours, the mixture was washed with hot water and acetone to obtain 9 spherical porous polymer particles each having a particle size of 20 to 30 μm.

(B)酸性物質の測定:第1図に示す測定装置を用い血
清中のホモバニリン酸およびバニリルマンデル酸の測定
を行った。除蛋白刃ラム5としては(A)項で得られた
充填剤ゲルを内径4mm、長さ150龍のステンレス製
カラムに充填したものを使用した。分析カラム8として
は、 ODS系の逆相クロマトグラフィー用の市販のカ
ラム(バツクドカラムAM−312;山村化学社製;カ
ラムサイズ内径6龍。
(B) Measurement of acidic substances: Homovanillic acid and vanillylmandelic acid in serum were measured using the measuring device shown in FIG. As the protein removal blade ram 5, a column made of stainless steel with an inner diameter of 4 mm and a length of 150 mm was used, which was filled with the packing gel obtained in section (A). As the analytical column 8, a commercially available column for ODS-based reverse phase chromatography (backed column AM-312; manufactured by Yamamura Chemical Co., Ltd.; column size, inner diameter: 6 dragons) was used.

長さ150mm)を用いた。除蛋白液としては0.5m
mol/ l−の臭化テトラヘプチルアンモニウム水溶
液(イオン交換水使用)を、そして溶離液6としては、
 0.1Mリン酸緩衝液(pH3,0)とアセトニトリ
ルとの混合液(容量比90 : 10)を使用した。
150 mm in length) was used. 0.5m as protein removal solution
mol/l- of tetraheptyl ammonium bromide aqueous solution (using ion-exchanged water), and as the eluent 6,
A mixed solution of 0.1M phosphate buffer (pH 3.0) and acetonitrile (volume ratio 90:10) was used.

まず、第1図(八)に示すように、定流量ポンプ2によ
り除蛋白液1を0.6rn1/分の割合で六方バルブ4
の接続端A−Bを経て除蛋白刃ラム5に流しながら、試
料導入装置3から試料血清20μlを注入した。この試
料は、正常人男子血清中に標品のホモバニリン酸1.0
μgおよびバニリルマンデル酸0.7μgが添加された
ものである。試料注入8分後に、六方バルブ4を切り換
え第1図(B)に示すように接続した。ポンプ7により
、溶離液槽61中から溶離液6を1.0d/分の割合で
六方バルブ接続端D −E、除蛋白刃ラム5そして六方
バルブ接続端B−Cを経て液体クロマトグラフの分析カ
ラム8へ通した。上記溶離液の流通により被測定物質を
含むイオン対は溶離し2分析カラムにより分離されて、
検出器(図外)により検出される。
First, as shown in FIG. 1 (8), the protein removal solution 1 is pumped into the hexagonal valve 4 at a rate of 0.6rn1/min using the constant flow pump 2.
20 μl of sample serum was injected from the sample introduction device 3 while flowing into the protein removal blade ram 5 through the connecting end A-B of the sample. This sample contains 1.0% of standard homovanillic acid in normal male serum.
μg and 0.7 μg of vanillylmandelic acid were added. Eight minutes after sample injection, the six-way valve 4 was switched and connected as shown in FIG. 1(B). The pump 7 pumps the eluent 6 from the eluent tank 61 at a rate of 1.0 d/min through the six-way valve connecting end D-E, the protein removal blade ram 5, and the six-way valve connecting end B-C for liquid chromatograph analysis. Passed through column 8. Ion pairs containing the analyte are eluted by the flow of the eluent and separated by two analytical columns.
Detected by a detector (not shown).

検出器としては、吸光度計(UVIDEC100−Vl
  ;日本分光社製)を用い、 28011111にお
ける吸光強度の測定を行った。得られたクロマトグラム
を第2図(八)に示す。第2図(A)においてホモバニ
リン酸のaおよびバニリルマンデル酸のピークbが確認
される。ホモバニリン酸およびバニリルマンデル酸の回
収率は、それぞれ98%以とであった。
As a detector, an absorbance meter (UVIDEC100-Vl
; manufactured by JASCO Corporation), the absorption intensity of 28011111 was measured. The obtained chromatogram is shown in Figure 2 (8). In FIG. 2(A), peak a of homovanillic acid and peak b of vanillylmandelic acid are confirmed. The recovery rates of homovanillic acid and vanillylmandelic acid were each 98% or higher.

4を較1 除蛋白液としてイオン交換水を用いたこと以外は実施例
1と同様である。得られたクロマトグラムを第2図(B
)に示す。第2図(B)において、ホモバニリン酸およ
びバニリルマンデル酸のピークは確認されない。
Comparison 4 with Example 1 Same as Example 1 except that ion-exchanged water was used as the protein removal solution. The obtained chromatogram is shown in Figure 2 (B
). In FIG. 2(B), the peaks of homovanillic acid and vanillylmandelic acid are not confirmed.

去斑炭1 試料としてアスピリン1.0μgおよびサリチル酸1.
0μgを含む正常男子血清20μlを用い、溶離液とし
ては0.1Mリン酸緩衝液(pl(2,5)−メタノー
ル混合液(容量比50 :50)を用い、測定波長を2
45nmとしたこと以外は実施例1と同様である。得ら
れたクロマトグラムを第3図(A)に示す。
Charcoal 1 Samples include 1.0 μg of aspirin and 1.0 μg of salicylic acid.
20 μl of normal male serum containing 0 μg was used, 0.1 M phosphate buffer (pl(2,5)-methanol mixture (volume ratio 50:50) was used as the eluent, and the measurement wavelength was set to 2.
The same as in Example 1 except that the thickness was 45 nm. The obtained chromatogram is shown in FIG. 3(A).

第3図(A)において、アスピリンCおよびサリチル酸
dのピークが確認される。アスピリンおよびサリチル酸
の回収率は、それぞれ95%以上であった。
In FIG. 3(A), the peaks of aspirin C and salicylic acid d are confirmed. The recoveries of aspirin and salicylic acid were each over 95%.

此膚u11 除蛋白液としてイオン交換水を用いたこと以外は実施例
2と同様である。得られたクロマトグラムを第3図(B
)に示す。第3図(B)において、アスピリン酸および
サリチル酸のピークは確認されない。
This example was the same as in Example 2 except that ion exchange water was used as the protein removal solution. The obtained chromatogram is shown in Figure 3 (B
). In FIG. 3(B), the peaks of aspiric acid and salicylic acid are not confirmed.

(発明の効果) 本発明方法によれば、このように、蛋白成分が共存する
試料(血清、尿など)において、酸性の被測定物質が、
該蛋白成分の影響を受けることなく高精度で測定される
。従来、高速液体クロマトグラフィーを利用して直接的
に測定することのできなかった酸性物質を正確に測定す
ることが可能となったため2本法により各種診断や病理
研究が効果的になされ得る。
(Effects of the Invention) According to the method of the present invention, in the sample (serum, urine, etc.) in which protein components coexist, the acidic analyte is
Measurements can be made with high precision without being affected by the protein components. Since it has become possible to accurately measure acidic substances that could not be directly measured using high-performance liquid chromatography, various diagnoses and pathological research can be carried out effectively using the two-pronged method.

4、ズ の#′″1゛なU 第1図(A)および(B)は本発明方法の実施に用いら
れる測定装置の一例を示す接続図;第2図(A)および
第3図(A)は本発明の実施例で得られたクロマトグラ
ム;第2図(B)および第3図(B)は。
4. Figures 1 (A) and (B) are connection diagrams showing an example of a measuring device used in carrying out the method of the present invention; Figures 2 (A) and 3 ( A) is a chromatogram obtained in an example of the present invention; FIG. 2(B) and FIG. 3(B) are.

本発明方法とは異なる除蛋白液を用いた例における第2
図(A)および第3図(A)に対応するクロマトグラム
である。
The second example in which a protein removal solution different from the method of the present invention was used.
FIG. 3 is a chromatogram corresponding to FIG. 3(A) and FIG. 3(A).

1・・・除蛋白液、3・・・試料導入装置、4・・・六
方バルブ、5・・・除蛋白刃ラム、6・・・溶離液、8
・・・分析カラム。
DESCRIPTION OF SYMBOLS 1... Protein removal solution, 3... Sample introduction device, 4... Hexagonal valve, 5... Protein removal blade ram, 6... Eluent, 8
...Analytical column.

第1図(A) 第1図(B) 第2図(A) 第2図(B) 第3図(A) 第3図(B)Figure 1 (A) Figure 1 (B) Figure 2 (A) Figure 2 (B) Figure 3 (A) Figure 3 (B)

Claims (1)

【特許請求の範囲】 1、(a)酸性の被測定物質および蛋白成分を含有する
試料溶液に陽性電荷物質を添加し、該酸性被測定物質と
該陽性電荷物質とのイオン対を形成させる工程、 (b)該イオン対を含む試料溶液を除蛋白カラムに供給
し該カラムに該イオン対を吸着させるとともに蛋白成分
を吸着させることなく該カラムを通過させることにより
蛋白成分を除く工程、(c)該除蛋白カラムに溶離液を
供給し該カラムの充填剤に吸着されている該イオン対を
脱着させる工程、および (d)脱着した該イオン対を分析カラムに導いてこれを
分析する工程、 を包含する蛋白溶液中の酸性物質の測定法。 2、前記陽性電荷物質が、テトラアルキルアンモニウム
塩および/またはアルキルアミンである特許請求の範囲
第1項に記載の測定法。
[Claims] 1. (a) A step of adding a positively charged substance to a sample solution containing an acidic analyte and a protein component to form an ion pair between the acidic analyte and the positively charged substance. , (b) a step of supplying a sample solution containing the ion pair to a protein removal column, allowing the column to adsorb the ion pair, and removing protein components by passing through the column without adsorbing protein components; (c) ) a step of supplying an eluent to the protein removal column to desorb the ion pair adsorbed on the packing material of the column; and (d) a step of guiding the desorbed ion pair to an analytical column and analyzing it. A method for measuring acidic substances in protein solutions containing. 2. The measuring method according to claim 1, wherein the positively charged substance is a tetraalkylammonium salt and/or an alkylamine.
JP61310904A 1986-12-26 1986-12-26 Method for measuring acidic material in protein solution Pending JPS63163272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310904A JPS63163272A (en) 1986-12-26 1986-12-26 Method for measuring acidic material in protein solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310904A JPS63163272A (en) 1986-12-26 1986-12-26 Method for measuring acidic material in protein solution

Publications (1)

Publication Number Publication Date
JPS63163272A true JPS63163272A (en) 1988-07-06

Family

ID=18010783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310904A Pending JPS63163272A (en) 1986-12-26 1986-12-26 Method for measuring acidic material in protein solution

Country Status (1)

Country Link
JP (1) JPS63163272A (en)

Similar Documents

Publication Publication Date Title
Benson Jr et al. Accelerated chromatographic analysis of amino acids in physiological fluids containing glutamine and asparagine
JP2750002B2 (en) Ion chromatography using frequent regeneration of batch suppressors.
Poole Principles and practice of solid-phase extraction
US5393673A (en) Method for particulate reagent sample treatment
Walton Genral Considerations
JP2782470B2 (en) Glycohemoglobin separation method and separation apparatus and separation column
US4975379A (en) Analysis of ions present at low concentrations in solutions containing other ions
Sadiq et al. Liquid chromatography
JP3561350B2 (en) Measurement method of glycated hemoglobin
JPS63163272A (en) Method for measuring acidic material in protein solution
JP4473999B2 (en) Column cleaning solution
JP2510302B2 (en) Method for measuring amines in biological fluids
JPS63159753A (en) Method for measuring ionic material in protein solution
Jandera et al. Comparison of various sorbents for the enrichment of samples of aliphatic amines using solid-phase extraction prior to the determination by HPLC with fluorimetric detection
Irth et al. Trace-level determination of 3′-azido-3′-deoxythymidine in human plasma by preconcentration on a silver (I)-thiol stationary phase with on-line reversed-phase high-performance liquid chromatography
JPS63163277A (en) Analysis of catecholamine
JPS63163276A (en) Method for measuring basic material in protein solution
CA1145737A (en) Filling composition for use in liquid chromatography
JPH0774799B2 (en) Method for measuring blood components
JP2830107B2 (en) Anion exchange resin
JPS58223061A (en) Assay of non-protein material
Stegehuis et al. Bioanalysis of the peptide de-enkephalin-γ-endorphin: On-line sample pretreatment using membrane dialysis and solid-phase isolation
JPS63169556A (en) Method for measuring homovanillic acid and/or vanillylmandelic acid
Szabo et al. High-performance liquid chromatography of proteins on stabilized polymer-diol-bonded silica-gel stationary phase
JP3628495B2 (en) Catecholamine analysis method and analyzer