JPS63163154A - Analysis of metal ion type - Google Patents

Analysis of metal ion type

Info

Publication number
JPS63163154A
JPS63163154A JP31494486A JP31494486A JPS63163154A JP S63163154 A JPS63163154 A JP S63163154A JP 31494486 A JP31494486 A JP 31494486A JP 31494486 A JP31494486 A JP 31494486A JP S63163154 A JPS63163154 A JP S63163154A
Authority
JP
Japan
Prior art keywords
concentration
metal ion
analysis
density
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31494486A
Other languages
Japanese (ja)
Inventor
Masaharu Saisuu
斎数 正晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31494486A priority Critical patent/JPS63163154A/en
Publication of JPS63163154A publication Critical patent/JPS63163154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable analysis of the density as well as type of ions, by measuring the density of metal elements in a treatment liquid by a multiple element simulta neous analysis to determine the type of ions by a correlation formula concerning density between types of ions and elements correlated thereto. CONSTITUTION:A treatment liquid 2 in a chromium plating or chromate treating tank 1 is sampled to analyze the density of necessary element with a multiple element analyzer 3. Analysis values thus obtained are inputted into a calculator 4 to determine the density of metal ions using a correlation formula previously stored concerning density between types of metal ions (e.g. Cr<3+>) to be measured and elements correlated thereto.

Description

【発明の詳細な説明】 〈産業[二の利用分野〉 本発明は、クロムめっきまたはクロメート処理を行うに
際してのそわらの処理液中の金属イオン形態を分析する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industry [Second Field of Application] The present invention relates to a method for analyzing the form of metal ions in a treatment solution for chromium plating or chromate treatment.

〈先行核j4tとその問題点〉 クロムめっきまたはクロメート処理を行うに際しては、
その処理液中の各構成金属イオンの濃度バランスか特に
重要視されていることから、処理液組成を直接測定して
、その測定値に基づいて、消費された金属イオンの星を
算出し、その補充を行なうことが・般に行われている。
<Advanced nucleus j4t and its problems> When performing chromium plating or chromate treatment,
Since the concentration balance of each component metal ion in the processing solution is particularly important, the composition of the processing solution is directly measured, and based on the measured value, the star of consumed metal ions is calculated. Replenishment is a common practice.

近年、製品の高級化(合金化、多層化)に伴ない、例え
ばクロムめっきにおけるめっき液中の全成分を迅速に測
定する心霊性が高まり、多元素同時分析法である蛍光X
線分析法、または発光分光分析法を用いた分析装置が導
入され始めている。これらの多元素同時分析法は、瞬時
にしてめっき液中の全成分の濃度を測定できるという利
点があるが、その反面、[:、34、Cr6+などの金
属イオン形態の別が分析できず、C「の総量しか測定す
ることができないため、結局、トータル元素量管理しか
できないという欠点がある。
In recent years, as products have become more sophisticated (alloyed, multi-layered), the spirituality of rapidly measuring all components in a plating solution in chrome plating, for example, has increased, and fluorescence
Analyzers using line analysis or emission spectrometry are beginning to be introduced. These multi-element simultaneous analysis methods have the advantage of being able to instantly measure the concentration of all components in the plating solution, but on the other hand, they cannot analyze the different forms of metal ions such as [:, 34, Cr6+, etc.]. Since only the total amount of C can be measured, there is a drawback that only the total amount of elements can be managed.

このような金属イオンの形態分析を行なうことはめっき
付着効率、めっき液の劣化判断等の管理面で1n要であ
り、従来は吸光光度計、中和滴定などによって測定して
いた。しかし、これらの方法では、めっき液中の各金属
成分毎に分析するため同時分析を行うためには複数の装
置か必要であり、また測定に要する時間も測定成分の種
類に比例して長くなるいう欠点がある。
Such morphological analysis of metal ions is necessary in terms of management such as plating adhesion efficiency and deterioration judgment of plating solution, and conventionally, measurements have been carried out using an absorptiometer, neutralization titration, or the like. However, these methods require multiple devices to perform simultaneous analysis because each metal component in the plating solution is analyzed, and the time required for measurement increases in proportion to the type of component to be measured. There is a drawback.

〈発明の目的〉 本発明の目的は、卜述した従来技術の欠点を解消し、多
元素同時分析法により処理液中の必要な各元素の濃度を
測定するとともに、金属イオン形態の分析をも可能とす
る金属イオン形態の分析法を提供することにある。
<Objective of the Invention> The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to measure the concentration of each necessary element in a processing liquid by a multi-element simultaneous analysis method, and to also analyze the form of metal ions. The purpose of this invention is to provide a method for analyzing metal ion forms that makes it possible.

〈発明の構成〉 このような目的は以下の本発明によって達成される。<Structure of the invention> These objects are achieved by the following invention.

即ち1本発明は、クロムめっきまたはクロメート処理時
に金属イオンの形態を分析するに際し、多元素同時分析
法により処理液中の必要な各元素濃度を測定するととも
に、 測定ずへき金属イオン形態と、この金属イオン形態と相
関のある元素の濃度との関係から求められる相関式をr
め計算機に入力し、 +iif記元素の濃度の測定値を前記相関式に代入する
ことにより、前記金属イオン形態を演算して求めること
を特徴とする金属イオン形態の分析法を提供するもので
ある。
That is, 1. When analyzing the form of metal ions during chromium plating or chromate treatment, the required concentration of each element in the treatment solution is measured by a simultaneous multi-element analysis method, and the form of the metal ions to be measured and this The correlation equation obtained from the relationship between the metal ion form and the concentration of the correlated element is expressed as r
The present invention provides an analysis method for a metal ion form, characterized in that the metal ion form is calculated and determined by inputting it into a calculator and substituting the measured value of the concentration of the +iif element into the correlation equation. .

以ド、本発明の金属イオン形態の分析法について詳細に
説明する。
Hereinafter, the method for analyzing the metal ion form of the present invention will be explained in detail.

本発明は、次のような原理に基づくものである。The present invention is based on the following principle.

J、1本的には、クロムめっきにおけるめっき液または
クロメート処理液(以下これらを総称して「処理液」と
いう)を仕立てた時は、その処理液中のイオン形態は、
1種の状態、即ちCr6+の形で存在すると考えられる
J. Basically, when a plating solution or chromate treatment solution (hereinafter collectively referred to as "treatment solution") for chrome plating is prepared, the ion form in the treatment solution is
It is believed to exist in one state, namely the form of Cr6+.

しかし、処理液が使用されるに従い、酸化逼元反応など
の品種反応が進み、その結果、イオンの形態が変化する
。ここで、電子という1つのmに注1−1すれば、処理
液中の電子の総h1には変化はなく、異種元素間開[で
電子のやりとりがあるだけである(他の元素の状態を変
えている)。そこで、本発明者らは、管理(測定)した
い金属イオンに対し、その形態を変化させる要因となっ
ている元素を見つけ、この元素の濃度を測定することに
より、前記管理したい金属イオンの濃度を間接的に知る
ことが可能であると考えられた。
However, as the treatment liquid is used, various reactions such as oxidation and hydrogenation reactions progress, resulting in changes in the form of the ions. Here, if we note 1-1 to one m called electron, there is no change in the total h1 of electrons in the processing solution, there is only an exchange of electrons between different elements (states of other elements ). Therefore, the present inventors discovered the element that causes the shape of the metal ion to be controlled (measured), and by measuring the concentration of this element, the concentration of the metal ion to be controlled can be determined. It was thought that it was possible to know indirectly.

本発明は、クロムめっきまたはクロメート処理を行うに
際し、 1) 多元素同時分析法により処理液中の必要な各元素
濃度を測定しつつ、 2) 測定すべき金属イオン形態と、この金属イオン形
態と相関のある元素の濃度との関係をrめ求め、 3) この関係を数式化して計算機に入力しておき、 4) この数式に、前記多元素同時分析法により測定し
た航記金属イオン形態と相関のある元素の濃度の測定値
を代入し、演算して、 5)測定すべき金属イオン形態を間接的に求めるbので
ある。
The present invention, when performing chromium plating or chromate treatment, 1) measures the necessary concentration of each element in the treatment solution using a multi-element simultaneous analysis method, and 2) determines the metal ion form to be measured and this metal ion form. 3) Convert this relationship into a mathematical formula and input it into a computer. 4) Incorporate the metal ion morphology measured by the multi-element simultaneous analysis method into this formula. By substituting the measured values of the concentrations of correlated elements and performing calculations, 5) indirectly determine the metal ion form to be measured.

多元素同時分析法には蛍光X線分析法、発光分光分析法
等がありこれらを実施する多元素同時分析装置には蛍光
X線分析装置、ICP発光分光分析装置等がある。 本
発明の金属イオンの分析法を実施するための装置の好適
例を第1図に示す。
Multi-element simultaneous analysis methods include fluorescent X-ray analysis, emission spectrometry, etc., and multi-element simultaneous analysis devices that carry out these methods include fluorescent X-ray analyzers, ICP emission spectrometers, and the like. A preferred example of an apparatus for carrying out the metal ion analysis method of the present invention is shown in FIG.

同図に示すように、処理槽l内の処理液2をサンプリン
グして多元素同時分析装置3にて必要な各元素濃度を分
析する。これらの分析値は、データ処理が可能な計算機
4に随時入力される。
As shown in the figure, the processing liquid 2 in the processing tank 1 is sampled and the necessary concentration of each element is analyzed by the multi-element simultaneous analysis device 3. These analytical values are inputted into the computer 4 capable of data processing at any time.

一方、計算機4には、測定しようとする金属イオン形態
(例えば(:r3”)の濃度と、これと相関のある元素
X(例えばFe)の濃度との相関式がrめ入力されてい
る。
On the other hand, a correlation equation between the concentration of a metal ion form to be measured (for example (:r3'')) and the concentration of an element X (for example Fe) having a correlation therewith is input into the computer 4.

1】1算機4内では、前記多元素同時分析装置3により
分析された各元素の濃度のうち元素Xの濃度に関するデ
ータを相関式に代入し、演算して、測定しようとする1
?η記金属イオン形態の濃度を求める。
1) In the calculator 4, data regarding the concentration of element
? Determine the concentration of the metal ion form η.

処理液2の管理として、求めた金属イオン形態の濃度と
、その適正濃度とを比較し、その差を求め、これに相当
する量を処理槽l内へ補充するという作業をリアルタイ
ムに行うことも可能である。
To manage the processing solution 2, it is possible to compare the obtained concentration of the metal ion form with its appropriate concentration, find the difference, and replenish the corresponding amount into the processing tank 1 in real time. It is possible.

なお、本発明法においては、不溶性陽極、可溶性陽極の
いずれを用いてもよいが、不溶性陽極を用いて処理する
のが好ましい。
In the method of the present invention, either an insoluble anode or a soluble anode may be used, but it is preferable to use an insoluble anode.

以下、金属イオン形態の求め方について、クロメート処
理液中のCr3+とCr叶の金属イオン形態分析を行う
場合を例にとって説明する。
Hereinafter, how to obtain the metal ion form will be explained by taking as an example a case where metal ion form analysis of Cr3+ and Cr leaf in the chromate treatment solution is performed.

Cr3+は、F記式(1)に示す還元反応によって生成
すると考えられる。
Cr3+ is considered to be generated by the reduction reaction shown in F-formula (1).

Cr’i” + 3a−−+ Cr”       ・
・・−(1)また、処理液中ではト記反応に対して他の
元素の酸化反応が行なわれていると考えられる。そこで
、クロム酸30g/It、硫酸0.:l ginなる組
成の処理液について調査した結果、下記式(2)に示す
鉄の酸化反応がL記りロムの還元反応に対応しているこ
とが判明した。即ち、処理液中のFe3+濃度と(、r
”十濃度との間には、第2図のグラフに示す関係がある
Cr'i" + 3a--+ Cr"・
...-(1) Furthermore, in addition to the above reaction, it is thought that oxidation reactions of other elements are taking place in the treatment liquid. Therefore, chromic acid 30g/It, sulfuric acid 0. As a result of investigating a treatment liquid having a composition of :l gin, it was found that the oxidation reaction of iron shown in the following formula (2) corresponds to the reduction reaction of ROM (L). That is, the Fe3+ concentration in the treatment solution and (, r
``There is a relationship between the concentration and the concentration shown in the graph in Figure 2.

FQ    →   1・e3”  +  3cm  
             −・・・ (2)なお、多
元素同時分析法では、トータル元素量(T・Fcfi度
)しか測定することができないので。
FQ → 1・e3” + 3cm
-... (2) Note that in the multi-element simultaneous analysis method, only the total element content (T/Fcfi degree) can be measured.

処理液中におけるFe3+濃度とT−Fe濃度の関係を
調べた。
The relationship between Fe3+ concentration and T-Fe concentration in the treatment solution was investigated.

その結果を第3図のグラフに示す。同図に示すようにF
e3+濃度とT−Fe1度とは直線的な関係を示してお
り、このT−Fefi度を知ることによってpc3+4
度を知り、このFe3+濃度から第2図に示す関係にJ
、(づいてGc3+濃度を推定することができる。
The results are shown in the graph of FIG. As shown in the figure, F
There is a linear relationship between e3+ concentration and T-Fe1 degree, and by knowing this T-Fefi degree, pc3+4
From this Fe3+ concentration, the relationship shown in Figure 2 can be drawn from J
, (The Gc3+ concentration can then be estimated.

第2図および第3図の関係からCr3+の濃度yは下記
式(3)によって!jえられる。
From the relationship shown in Figures 2 and 3, the concentration y of Cr3+ is determined by the following formula (3)! I can get it.

y  = −7,89x2  +  4.93x  +
  0.16     ・・・・軸 (3)y:Cr3
+の濃度(g/IL) x: T−FCの濃度 (g/Jり このようにしてCr3+の濃度が求まれば、下記式(4
)より(Hr(i+の濃度も求まる。
y = -7,89x2 + 4.93x +
0.16 ...Axis (3) y: Cr3
+ concentration (g/IL) x: T-FC concentration (g/J) If the concentration of Cr3+ is found in this way, the following formula
), the concentration of (Hr(i+) can also be found.

Or’十濃度=’r−Cr濃度−cr3+n度  ・−
・−(4)なお、 T−Cr濃度は、多元素同時分析法
によりT−Fefi度と同時に求めることができる。
Or'10 concentration='r-Cr concentration-cr3+n degrees ・-
-(4) Note that the T-Cr concentration can be determined simultaneously with the T-Fefi degree by a multi-element simultaneous analysis method.

ト述したようにしてクロメート処理液中のC「3+濃度
および(:r6+濃度を分析することができる。
The C'3+ concentration and (:r6+ concentration) in the chromate treatment solution can be analyzed as described above.

また、ト述した本発明法による金属イオン形態(Cr3
+とに、Ii+)の分析結果の正確さを確めるために、
同 クロメート処理液について化学試験分析を行い、そ
の分析値と本発明法による分析イハの比較を行った。そ
の結果を下記表1に示す。
In addition, the metal ion form (Cr3
In order to confirm the accuracy of the analysis results of Ii+),
A chemical test analysis was conducted on the same chromate treatment solution, and the analytical values were compared with the analysis results obtained by the method of the present invention. The results are shown in Table 1 below.

表     1 L記表1に示すように、本発明法による分析値は、その
積度が極めて高いことがわかる。
Table 1 L As shown in Table 1, it can be seen that the analysis values obtained by the method of the present invention have an extremely high degree of integration.

〈発明の効果〉 本発明の金属イオンJf3 !!3の分析法によれば、
多元素同時分析法により処理液中の必要な谷元素濃度を
分析するとともに、従来の多元素同時分析法では不可能
であった金属イオン形態の分析をも可能とし、これによ
り弔−の分析装置にて金属イオン形態をも含めた処理液
中の全成分(または必要な全成分)を瞬時にして分析す
ることができるようになった。
<Effect of the invention> Metal ion Jf3 of the present invention! ! According to the analysis method of 3.
The multi-element simultaneous analysis method not only analyzes the necessary concentration of elements in the processing liquid, but also enables the analysis of metal ion forms, which was impossible with the conventional multi-element simultaneous analysis method. It has become possible to instantly analyze all components (or all necessary components) in the processing solution, including metal ion forms.

その結果、処理液劣化の判断が容易に可能となり、また
処理液が適正濃度から外れた場合の補充すべき金属イオ
ン形態の川を正確かつ即時に求め、これを補充して、均
一なりロムめっきまたクロメート処理(付着けの安定性
等)を図ることができる等、処理液の管理を高精度で行
うことができる。
As a result, it becomes possible to easily judge whether the processing solution has deteriorated, and when the processing solution deviates from the appropriate concentration, it is possible to accurately and immediately determine the river of metal ion forms that should be replenished, and to replenish it to achieve uniform ROM plating. In addition, it is possible to perform chromate treatment (stability of adhesion, etc.), and to manage the treatment liquid with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の金属イオンの分析法を実施するため
の装置の好適例を示す説明図である。 第2図は、処理液中のFc3+濃度とCrs+の関係を
示すグラフである。 第3図は、処理液中のFe3+濃度とT・Pcの濃度の
関係を示すグラフである。 符号の説明 !・・・処理槽、2・・・処理液、 3・・・多元素同時分析装置、4・・・計算機FIG、
3 T−Fe濠窪(9/l)
FIG. 1 is an explanatory diagram showing a preferred example of an apparatus for carrying out the metal ion analysis method of the present invention. FIG. 2 is a graph showing the relationship between the Fc3+ concentration in the treatment liquid and Crs+. FIG. 3 is a graph showing the relationship between the Fe3+ concentration and the T.Pc concentration in the treatment liquid. Explanation of symbols! ... Processing tank, 2... Processing liquid, 3... Multi-element simultaneous analysis device, 4... Computer FIG,
3 T-Fe Horikubo (9/l)

Claims (1)

【特許請求の範囲】[Claims] (1)クロムめっきまたはクロメート処理時に金属イオ
ンの形態を分析するに際し、 多元素同時分析法により処理液中の必要な各元素濃度を
測定するとともに、 測定すべき金属イオン形態と、この金属イオン形態と相
関のある元素の濃度との関係から求められる相関式を予
め計算機に入力し、 前記元素の濃度の測定値を前記相関式に代入することに
より、前記金属イオン形態を演算して求めることを特徴
とする金属イオン形態の分析法。
(1) When analyzing the form of metal ions during chromium plating or chromate treatment, the required concentration of each element in the treatment solution is measured using a multi-element simultaneous analysis method, and the form of the metal ion to be measured and the form of this metal ion are determined. The metal ion form can be calculated by inputting in advance into a computer a correlation equation obtained from the relationship between the concentration of the element and the concentration of the element that is correlated with Analysis method for characteristic metal ion forms.
JP31494486A 1986-12-25 1986-12-25 Analysis of metal ion type Pending JPS63163154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31494486A JPS63163154A (en) 1986-12-25 1986-12-25 Analysis of metal ion type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31494486A JPS63163154A (en) 1986-12-25 1986-12-25 Analysis of metal ion type

Publications (1)

Publication Number Publication Date
JPS63163154A true JPS63163154A (en) 1988-07-06

Family

ID=18059531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31494486A Pending JPS63163154A (en) 1986-12-25 1986-12-25 Analysis of metal ion type

Country Status (1)

Country Link
JP (1) JPS63163154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057184A (en) * 2001-08-10 2003-02-26 Toyota Motor Corp Method for quantitative determining of hexavalent chromium
JP2007139754A (en) * 2005-10-19 2007-06-07 Rigaku Industrial Co Fluorescence x-ray spectrometer, and program used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057184A (en) * 2001-08-10 2003-02-26 Toyota Motor Corp Method for quantitative determining of hexavalent chromium
JP2007139754A (en) * 2005-10-19 2007-06-07 Rigaku Industrial Co Fluorescence x-ray spectrometer, and program used therefor

Similar Documents

Publication Publication Date Title
Jagner Potentiometric stripping analysis. A review
Blair et al. Determination of binding selectivities in host-guest complexation by electrospray/quadrupole ion trap mass spectrometry
US6537822B1 (en) Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method
Ingman et al. Titration of mixtures of acids of nearly equal strengths
Malik et al. Quantification of nickel, cobalt, and manganese concentration using ultraviolet-visible spectroscopy
Baldo et al. Electrochemical preconcentration coupled with spectroscopic techniques for trace lead analysis in olive oils
Ostapczuk et al. Determination of cadmium, lead and copper in wine by potentiometric stripping analysis
US11994455B2 (en) Analyte quantitation using Raman spectroscopy
Alexander et al. Spectrophotometric determination of traces of nickel
Ozeki et al. Studies of Raman spectra and equilibria of isopolymolybdate ions in aqueous acidic solutions by factor analysis
Sajnóg et al. A new procedure for the determination of 21 macro-and trace elements in human fetal urine using an inductively coupled plasma mass spectrometry with dynamic reaction cell (ICP-DRC-MS) equipped with a micro-flow nebulizer
Bocca et al. Uncertainty evaluation in the analysis of biological samples by sector field inductively coupled plasma mass spectrometry. Part A: measurements of Be, Cd, Hg, Ir, Pb, Pd, Pt, Rh, Sb, U, Tl and W in human serum
JP2005520131A (en) Automatic in-process specific mass spectrometry method and apparatus for characterizing components
Barreiros et al. Quality assurance of X-ray spectrometry for chemical analysis
JPS63163154A (en) Analysis of metal ion type
Amanatidou et al. An easy uncertainty evaluation of the COD titrimetric analysis in correlation with quality control and validation data. Method applicability region
Shams et al. Simultaneous Determination of Copper and Bismuth by Anodic Stripping Voltammetry Using H‐Point Standard Addition Method with Simultaneous Addition of Analytes
CN106596877A (en) Method and reagent composition for measuring chemical oxygen consumption in water
Lanot et al. Optimization of ICP-MS internal standardization for 26 elements by factorial design experiment
Marks et al. Determination of Residual Chlorine in Metal Finishing Wastes
Viksna et al. Intercomparison between energy‐dispersive x‐ray fluorescence and stripping potentiometry for the determination of copper levels in human serum
JPH0817391A (en) Mass spectrum analysis
JPS6036686A (en) Process control method of electrolytic system for copper
Grabarić et al. Determination of small amounts of analytes in the presence of a large excess of one analyte from multi-analyte global signals of differential-pulse voltammetry and related techniques with the signal ratio resolution method
Malhotra Coulometry