JPS63162702A - Resin for optics - Google Patents

Resin for optics

Info

Publication number
JPS63162702A
JPS63162702A JP30868486A JP30868486A JPS63162702A JP S63162702 A JPS63162702 A JP S63162702A JP 30868486 A JP30868486 A JP 30868486A JP 30868486 A JP30868486 A JP 30868486A JP S63162702 A JPS63162702 A JP S63162702A
Authority
JP
Japan
Prior art keywords
group
resin
substituted
formula
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30868486A
Other languages
Japanese (ja)
Inventor
Seishiro Taneichi
種市 正四郎
Hisashi Tazawa
田澤 壽
Heiroku Suganuma
菅沼 平六
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30868486A priority Critical patent/JPS63162702A/en
Publication of JPS63162702A publication Critical patent/JPS63162702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide a resin for optics containing specific structural units which is superior in mechanical and optical properties, melt-flow characteristics and thermal decomposition resistance when melt-molded. CONSTITUTION:A radical-polymerizable monomer of formula I [wherein X is H, halogen or methyl; and Y is a (halogen-substituted) carboxylic ester group, (substituted) phenyl, nitrile or (N-substituted) amide] is polymerized in the presence of a chain transfer agent of formula II (wherein R is 1-18C prim-, sec- or tert-alkylene) to produce a resin for optics containing 0.07-2wt% structural units of formula III.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光学用樹脂、詳しくは重合体の機械物性、光学
特性や溶融流動特性に優れ、溶融成型加工時の耐熱分解
性に優れた光学用樹脂に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to optical resins, specifically, optical resins that have excellent mechanical properties, optical properties, and melt flow characteristics of polymers, and have excellent thermal decomposition resistance during melt molding processing. Regarding resin for use.

〈従来の技術〉 一般にポリメタクリル酸メチルやポリスチレンに代表さ
れるラジカル重合性光学用樹脂は、透明性に優れている
他に、軽量で加工性および大量生産性に優れている点か
ら近年光ファイバ、光学ディスク、光学レンズ等への需
要が拡大しつつある。
<Prior art> Radically polymerizable optical resins, typically represented by polymethyl methacrylate and polystyrene, have been used in optical fibers in recent years due to their excellent transparency, light weight, and excellent processability and mass productivity. Demand for optical discs, optical lenses, etc. is increasing.

これらのラジカル重合性光学用樹脂のIIJ N方法と
しては、溶液重合もしくは塊状重合にて樹脂を得た後溶
融割出成型する方法が一般的である。
The IIJN method for producing these radically polymerizable optical resins is generally to obtain the resin by solution polymerization or bulk polymerization and then melt index molding.

しかし、従来の光学用樹脂では溶融射出成型時の加熱重
量保持率に代表される耐熱分解性が十分でない。そのた
め成型品の機械強度や透光性等の物性値の十分なものが
1qられず、更には、割出成型機シリンダ及び金型に熱
分解物が堆積しやすいため、成型品の加工寸法、精度も
劣るという問題があった。
However, conventional optical resins do not have sufficient thermal decomposition resistance, typified by heating weight retention during melt injection molding. As a result, the molded product does not have sufficient physical properties such as mechanical strength and translucency, and furthermore, pyrolysis products tend to accumulate on the index molding machine cylinder and mold, so the processing dimensions of the molded product, There was also the problem of poor accuracy.

これらの改善としては非2置換型ビニル七ノマどの凡手
合法が提案されているが、その際には、機械強度や熱変
型温度の低下が問題となる。更には、重合過程中に連鎖
移動定数の大きい物質を共存させ、停止反応時のポリマ
分子末端二重結合を減少させる方法も提案されているが
、ポリマ分子末端の二重結合の減少だけでは十分に高い
耐熱分解性は得られない。
To improve these, common techniques such as non-disubstituted vinyl hexanomers have been proposed, but in this case, problems arise such as a decrease in mechanical strength and thermal deformation temperature. Furthermore, a method has been proposed in which a substance with a large chain transfer constant coexists during the polymerization process to reduce the double bonds at the end of the polymer molecule during the termination reaction, but it is not enough to reduce the double bonds at the end of the polymer molecule. High heat decomposition resistance cannot be obtained.

〈発明が解決しようとする問題点〉 本発明者らはかかる従来の状況に鑑み、溶融射出成型時
の加熱重量保持率に代表される耐熱分解性の優れた光学
用樹脂を開発するべく鋭意検討した結末、本発明におり
るラジカル重合性光学用樹脂の熱分解はポリマ分子末端
からの七ツマ解離により進行し、その際にはポリマ末端
分子の原子間結合解離エネルギーを高める構造体を導入
することによって耐熱分解性を著しく向上させ得ること
を児いだし本発明に至った。
<Problems to be Solved by the Invention> In view of the conventional situation, the present inventors have conducted intensive studies to develop an optical resin that has excellent thermal decomposition resistance as represented by heating weight retention during melt injection molding. As a result, thermal decomposition of the radically polymerizable optical resin according to the present invention proceeds by dissociation from the terminal end of the polymer molecule, and at this time, a structure is introduced that increases the dissociation energy between the atoms of the terminal molecule of the polymer. The inventors have discovered that the thermal decomposition resistance can be significantly improved by doing this, and have thus arrived at the present invention.

本発明の目的はかかる従来品の欠点である溶融射出成型
時の加熱重量保持率に代表される耐熱分解性を向上させ
たラジカル重合性光学用樹脂を提供するにある。
The object of the present invention is to provide a radically polymerizable optical resin that has improved thermal decomposition resistance, typified by heating weight retention during melt injection molding, which is a disadvantage of conventional products.

く問題点を解決するための手段〉 本発明は次の構成を有する。Means to solve problems〉 The present invention has the following configuration.

下記(I)式で表わされる構造単位を0.07〜2重量
%含有することを特徴とする光学用樹脂。
An optical resin characterized by containing 0.07 to 2% by weight of a structural unit represented by the following formula (I).

Y             Y ((■)式中 Rは炭素数1から18までの第1級、第
2級、第3級アルキレン基を、Xは水素原子、ハロゲン
原子、メチル基のいずれかを、Yは炭素数1から18ま
でのカルボン酸エステル基もしくはハロゲン置換力゛ル
ボン酸エステル基、フェニル基もしくは置換フェニル基
、ニトリル基、アミド基もしくはN@換アミド基のいず
れかをそれぞれ表わす) 以下本発明の構成を詳しく説明する。
Y Y ((■) In the formula, R is a primary, secondary, or tertiary alkylene group having 1 to 18 carbon atoms, X is a hydrogen atom, a halogen atom, or a methyl group, and Y is a carbon The structure of the present invention is as follows will be explained in detail.

本発明において光学用樹脂とは、ポリメタクリル酸メチ
ル、ポリスチレン等に代表されるラジカル活性種によっ
て重合成長反応を進行させるビニル付加重合体であり、
かつ光ファイバ、光ディスクに代表される光の透過また
は反射によって機能を発現する樹脂を意味する。
In the present invention, the optical resin is a vinyl addition polymer that undergoes a polymerization growth reaction using radically active species, such as polymethyl methacrylate and polystyrene.
It also means a resin that functions by transmitting or reflecting light, such as in optical fibers and optical disks.

本発明における光学用樹脂は下記(I)式の構造単位を
有する。
The optical resin in the present invention has a structural unit of the following formula (I).

(1)式において、Rは炭素数1から18までの第1級
、第2級、第3級アルキレン基を表わし、具体例として
メチレン基、エチレン基、プロピレン基を例示すること
ができるが特に限定されるものではない。
In formula (1), R represents a primary, secondary, or tertiary alkylene group having 1 to 18 carbon atoms, and specific examples include methylene, ethylene, and propylene groups, but in particular It is not limited.

又、Xは水素原子、ハロゲン原子、メチル基のいずれか
を表わし、水素原子、フッ素原子、メチル基が好適でお
るが、特に限定されない。
Further, X represents any one of a hydrogen atom, a halogen atom, and a methyl group, and is not particularly limited, although a hydrogen atom, a fluorine atom, and a methyl group are preferable.

更にYは炭素数1から18までのカルボン酸エステル基
もしくはハロゲン置換カルボン酸エステル基、フェニル
基もしくは置換フェニル基、ニトリル基、アミド基もし
くはN置換アミド基のいずれかを表わし、具体例として
カルボン酸メチルエステル基、カルボン酸シクロヘキシ
ルエステルカルボン酸ノルマルボルニルエステル ン酸トリフルオロエチルエステル基、カルボン酸テトラ
フルオロプロピルエステル基、フェニル基、オルソメチ
ルフェニル基、オルソフルオロフェニル基、パラメチル
フェニル基、パラフルオロフェニル基、パラクロロフェ
ニル基、ニトリル基、アミド基、Nジメチルアミド基、
Nジフェニルアミド基等を挙げることができ、中でもカ
ルボン酸メチル基、カルボン酸トリフルオロエチル基、
フェニル基が好適である。
Further, Y represents a carboxylic acid ester group having 1 to 18 carbon atoms or a halogen-substituted carboxylic acid ester group, a phenyl group or a substituted phenyl group, a nitrile group, an amide group, or an N-substituted amide group. Methyl ester group, carboxylic acid cyclohexyl ester carboxylic acid n-bornyl ester acid trifluoroethyl ester group, carboxylic acid tetrafluoropropyl ester group, phenyl group, orthomethylphenyl group, orthofluorophenyl group, paramethylphenyl group, parafluoro Phenyl group, parachlorophenyl group, nitrile group, amide group, N dimethylamide group,
Examples include N diphenylamide group, among which methyl carboxylate group, trifluoroethyl carboxylate group,
A phenyl group is preferred.

本発明において前記(I)式で表わされる構造単位は光
学用樹脂中0.07〜2重量%含有される。前記(I)
式で表わされる構造単位が0.07重量%未満の時には
溶融射出成型時の該樹脂の溶融流動性が悪くなると共に
加熱重量保持率に代表される耐熱分解性の向上はあまり
望めない。又2重量%を上廻った際には耐熱分解性は向
上するものの該樹脂を溶融射出成型した後の成型品の機
械強度が劣ってくる。
In the present invention, the structural unit represented by formula (I) is contained in the optical resin in an amount of 0.07 to 2% by weight. Said (I)
If the content of the structural unit represented by the formula is less than 0.07% by weight, the melt flowability of the resin during melt injection molding will be poor, and no significant improvement in thermal decomposition resistance as typified by heating weight retention can be expected. If the amount exceeds 2% by weight, the thermal decomposition resistance will improve, but the mechanical strength of the molded product after melt injection molding the resin will deteriorate.

これにより、(I>式で表わされる構造単位は該光学用
樹脂に対して0.07〜2重量%、更に好ましくは0.
15〜0.7重量%が好適である。
Thereby, the structural unit represented by the formula (I> is 0.07 to 2% by weight, more preferably 0.07 to 2% by weight, based on the optical resin.
15 to 0.7% by weight is preferred.

本発明の光学用樹脂の製造方法については特に限定はな
く常法によって製造できる。すなわち、下記(n)式の
ラジカル重合性上ツマを下記(III)式の連鎖移動剤
共存下に重合反応させることによって製造することがで
きる。
The method for producing the optical resin of the present invention is not particularly limited and can be produced by any conventional method. That is, it can be produced by polymerizing a radically polymerizable polymer of the following formula (n) in the presence of a chain transfer agent of the following formula (III).

CH2=C・・・・・・(II) ((■)式中 Xは水素原子、ハロゲン原子、メチル基
のいずれかを、Yはカルボン酸エステル基もしくはハロ
ゲン置換カルボン酸エステル基、フェニル基もしくは置
換フェニル基、ニトリル基、アミド基もしくはN置換ア
ミド基のいずれかをそれぞれ表わす) H3−R−3H・・・・・・(III)((■)式中 
Rは炭素数1から18までの第1級、第2級、第3級ア
ルキレン基を表わす)以下実施例をもって本発明の効果
を更に詳しく述べる。
CH2=C...(II) ((■) In the formula, each represents a substituted phenyl group, a nitrile group, an amide group, or an N-substituted amide group)
(R represents a primary, secondary, or tertiary alkylene group having 1 to 18 carbon atoms) The effects of the present invention will be described in more detail with reference to Examples below.

〈実施例〉 実施例1 メタクリル酸メチルを酸素含有量が0.1pl)m以下
である窒素にてバブル処理した後、ラジカル開始剤とし
て2.2′アゾビスオクタン1.5×10’ mol 
/フィードメタクリル酸メチル1molと、連鎖移動剤
としてジメルカプトエタン1.9x 1Q−3mol 
/フィードメタクリル酸メチル1molとを混合させて
、重合温度135℃の完全混合反応域に連続供給した。
<Examples> Example 1 After bubbling methyl methacrylate with nitrogen having an oxygen content of 0.1 pl) m or less, 1.5 x 10' mol of 2.2' azobisoctane was added as a radical initiator.
/feed methyl methacrylate 1 mol and dimercaptoethane 1.9x 1Q-3 mol as chain transfer agent
/feed methyl methacrylate (1 mol) and continuously supplied to a complete mixing reaction zone at a polymerization temperature of 135°C.

反応域での滞留時間を3.5時間として重合実施した俊
、脱モノマ型押し出し機にて未反応上ツマを除去し、光
学用樹脂を得た。jqられた樹脂を分析したところ残存
モノマ率0.12%、重量平均分子量90000で、(
I>式にて表わされる構造単位の樹脂中に含有される比
率は、0.324重量%であった。更に引き続き該光学
用樹脂を260℃の一定温度下で空気中又は窒素中で1
20分間放置しその間の重量保持率の時間推移を調べた
ところ、第1表に示すとおり窒素中では120分間全く
重量減少が認られず極めて耐熱分解性の優れたものでめ
った。
Polymerization was carried out with a residence time in the reaction zone of 3.5 hours, and unreacted particles were removed using a monomer removal type extruder to obtain an optical resin. Analysis of the jqed resin revealed that the residual monomer rate was 0.12% and the weight average molecular weight was 90,000.
The ratio of the structural unit represented by the formula I> contained in the resin was 0.324% by weight. Furthermore, the optical resin was heated for 1 hour in air or nitrogen at a constant temperature of 260°C.
When the product was allowed to stand for 20 minutes and the change in weight retention over time was investigated, as shown in Table 1, no weight loss was observed for 120 minutes in nitrogen, indicating that it had excellent heat decomposition resistance.

実施例2 連鎖移動剤としてジメルカプトヘキサンを用いた以外は
実施例1と全く同様の方法により光学用樹脂を製造する
と共に加熱11保持率の時間推移を調べた。第1表に示
すとおり窒素中、空気中においても、はとんど熱分解の
認められないものであった。
Example 2 An optical resin was produced in exactly the same manner as in Example 1 except that dimercaptohexane was used as a chain transfer agent, and the time course of the heating 11 retention rate was investigated. As shown in Table 1, almost no thermal decomposition was observed in nitrogen or air.

比較例1 連鎖移動剤をチオグリコール酸2エチルヘキシルとした
以外は実施例1と全く同様の方法により、光学用樹脂を
得た。得られた樹脂中の残存上ツマ率は0.11%、重
量平均分子量は85000であった。更に実施例1と同
様の方法により該樹脂の空気中、窒素中での加熱重量保
持率を調べたところ、第1表のとおり、空気中30分に
て約半量が分解するものであった。
Comparative Example 1 An optical resin was obtained in the same manner as in Example 1 except that the chain transfer agent was 2-ethylhexyl thioglycolate. The residual residual content in the resulting resin was 0.11%, and the weight average molecular weight was 85,000. Furthermore, when the heating weight retention rate of the resin in air and nitrogen was examined in the same manner as in Example 1, as shown in Table 1, about half of the resin was decomposed in 30 minutes in air.

比較例2 連鎖移動剤としてノルマルドデシルメルカプタンを使用
した以外は実施例1と全く同様の方法により光学用樹脂
を製造し、後実施例1と同様の方法による加熱減量保持
率の時間推移を調べた。窒素中においては94.1%の
重量保持率と耐熱分解性はほぼ良好なものの空気中にお
ける重量保持率は77.3%とかなり熱分解の進んだも
のであった。
Comparative Example 2 An optical resin was produced in exactly the same manner as in Example 1 except that n-dodecyl mercaptan was used as a chain transfer agent, and then the change in heating loss retention rate over time was investigated in the same manner as in Example 1. . Although the weight retention rate in nitrogen was 94.1% and the thermal decomposition resistance was almost good, the weight retention rate in air was 77.3%, indicating that thermal decomposition had progressed considerably.

比較例3 連鎖移動剤としてのジメルカプトエタンを2、5X 1
0−’mol /フィート)1り’)’))Lfmメチ
ル1m0Iとした以外は、実施例1と同様の方法により
光学用樹脂を製造した。得られた樹脂の残存上ツマ率0
.35%、重量平均分子1550000、(I>式で表
わされる構造単位の該樹脂中において含有される比率は
0.053重量%でめった。
Comparative Example 3 Dimercaptoethane as a chain transfer agent was 2.5X 1
An optical resin was produced in the same manner as in Example 1, except that 1 m0I of Lfm methyl was used. Residual slug rate of the obtained resin is 0
.. 35%, the weight average molecular weight was 1,550,000, and the proportion of the structural unit represented by the formula (I>) in the resin was 0.053% by weight.

加熱重量保持率の時間推移は第1表に示すとおり、空気
中にて20.8%とほとんど耐熱分解性のないものであ
った。
As shown in Table 1, the heating weight retention rate over time was 20.8% in air, showing almost no heat decomposition resistance.

〈発明の効果〉 本発明の光学用樹脂の効果をまとめると次の通りである
<Effects of the Invention> The effects of the optical resin of the present invention are summarized as follows.

■削出成型時の加熱重量保持率に代表される耐熱分解性
は、極めて優れている。
■Thermal decomposition resistance, represented by heating weight retention during extrusion molding, is extremely excellent.

■耐熱分解性に優れているため、熱分解物の生成がほと
んどなく成型品の透明性や機械強度に優れると共にシリ
ンダや金型も繰り返し使用できる。
■Because it has excellent thermal decomposition resistance, it produces almost no thermal decomposition products, resulting in molded products with excellent transparency and mechanical strength, and cylinders and molds can be used repeatedly.

■金型等に熱分解生成物がほとんど堆積しないため、加
工寸法精度に優れる。
■Excellent machining dimensional accuracy as almost no thermal decomposition products accumulate on the mold, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)下記( I )式で表わされる構造単位を0.07
〜2重量%含有することを特徴とする光学用樹脂。 ▲数式、化学式、表等があります▼・・・ ( I ) (( I )式中Rは炭素数1から18までの第1級、第
2級、第3級アルキレン基を、Xは水素原子、ハロゲン
原子、メチル基のいずれかを、Yは炭素数1から18ま
でのカルボン酸エステル基、もしくはハロゲン置換カル
ボン酸エステル基、フェニル基もしくは置換フェニル基
、ニトリル基、アミド基もしくはN置換アミド基のいず
れかをそれぞれ表わす)
(1) The structural unit represented by the following formula (I) is 0.07
An optical resin characterized by containing ~2% by weight. ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (I) ((I) In the formula, R is a primary, secondary, or tertiary alkylene group having 1 to 18 carbon atoms, and X is a hydrogen atom. , a halogen atom, or a methyl group, Y is a carboxylic ester group having 1 to 18 carbon atoms, or a halogen-substituted carboxylic ester group, a phenyl group or a substituted phenyl group, a nitrile group, an amide group, or an N-substituted amide group )
JP30868486A 1986-12-26 1986-12-26 Resin for optics Pending JPS63162702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30868486A JPS63162702A (en) 1986-12-26 1986-12-26 Resin for optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30868486A JPS63162702A (en) 1986-12-26 1986-12-26 Resin for optics

Publications (1)

Publication Number Publication Date
JPS63162702A true JPS63162702A (en) 1988-07-06

Family

ID=17984039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30868486A Pending JPS63162702A (en) 1986-12-26 1986-12-26 Resin for optics

Country Status (1)

Country Link
JP (1) JPS63162702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161266A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
JPWO2019093385A1 (en) * 2017-11-09 2020-11-19 株式会社クラレ Methacrylic copolymer and its molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161266A1 (en) * 2012-04-27 2013-10-31 株式会社クラレ (meth) acrylic resin composition
JPWO2013161266A1 (en) * 2012-04-27 2015-12-21 株式会社クラレ (Meth) acrylic resin composition
JPWO2019093385A1 (en) * 2017-11-09 2020-11-19 株式会社クラレ Methacrylic copolymer and its molded product

Similar Documents

Publication Publication Date Title
CA2249557A1 (en) Multi-stage process for producing heat resistant dimensionally stable polymethacrylate moulding compounds
CA2193131A1 (en) Thermoplastic molding compound
KR100350170B1 (en) Polymethacrylate molding materials with high heat deformation temperatures and high stability against thermal collapse
JPS62256805A (en) Polymethacrylate molding material thermoplastically procesable, its production and extrusion molded plate and sheet, injection molded parts, molded body and working material parts comprising said molding material
CA2042836C (en) Process for the continuous bulk production of acrylic polymers
GB2304721A (en) Production of styrenic polymers and articles therefrom
JPS63162702A (en) Resin for optics
CN116589664A (en) Synthesis method of polylactic acid grafted cycloolefin copolymer
JPS58455B2 (en) Method for manufacturing solvent-resistant acrylic resin
JPS6128513A (en) Optical resin and its production
JP2565697B2 (en) Method for producing transparent heat-resistant resin
CN114456302B (en) High-impact methyl methacrylate copolymer and preparation method and application thereof
US2399626A (en) Polymers
US3609129A (en) Method of polymerizing acrylonitrile in the presence of an alkali metal alcoholate of an {60 -hydroxyalkylamine
US2611765A (en) Interpolymers of alpha-acyloxyacrylonitriles
JPH0460127B2 (en)
US2615871A (en) Copolymers of vinylidene cyanide with alkyl methacrylates
CN114456303B (en) Methyl methacrylate terpolymer and preparation method and application thereof
CN116178601B (en) Cycloolefin copolymer, optical product and electronic device
CN114456328B (en) Preparation method of methyl methacrylate polymer, methyl methacrylate polymer and application thereof
JPS60170606A (en) Preparation of fluorine-containing polymer
CN1315888C (en) Polymer using methyl methacrylate as main component
JPS645049B2 (en)
JPH01266118A (en) Fluorinated acrylic copolymer
JPH01289815A (en) Transparent thermoplastic molding material which is stable to thermal deformation, its production, and its use