JPS6316172A - Operation control method for reversible pump-turbine - Google Patents

Operation control method for reversible pump-turbine

Info

Publication number
JPS6316172A
JPS6316172A JP61158979A JP15897986A JPS6316172A JP S6316172 A JPS6316172 A JP S6316172A JP 61158979 A JP61158979 A JP 61158979A JP 15897986 A JP15897986 A JP 15897986A JP S6316172 A JPS6316172 A JP S6316172A
Authority
JP
Japan
Prior art keywords
turbine
pump
variable
operating range
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158979A
Other languages
Japanese (ja)
Inventor
Yukio Yonetani
米谷 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61158979A priority Critical patent/JPS6316172A/en
Publication of JPS6316172A publication Critical patent/JPS6316172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To expand an operating range, by finding a variable to be expressed in the specified relational expression from the net pump head and rotational speed of a reversible pump-turbine and, when this variable goes beyond both upper and lower limit values of the operating range, changing a direction of prerotation. CONSTITUTION:A prerotation generator 6 is installed in an end at the side of a runner 3 of a suction pipe elbow 2. This generator 6 is driven by output of an arithmetic unit 11. The rotational speed detected by a rotational speed detector 9 is inputted into the arithmetic unit 11 together with the net pump head H detected by a net pump head detector 10 and thereby a variable H/N<2> is calculated. When this variable H/N<2> is more than the upper limit value of an operating range, prerotation in the same direction as a rotational direction of the runner is generated, but when the variable H/N<2> is less than the lower limit value of the operating range, the prerotation in the opposite direction is generated the other way. Accordingly, if exceeding the operating range of a reversible pump-turbine, its performance is maintainable.

Description

【発明の詳細な説明】 (発明の目的〕 (産業上の利用分野) 本発明はポンプ水車の運転制御方法に係り、特にポンプ
水車の運転範囲を拡大するようにしたポンプ水車の運転
制御方法に関する。
[Detailed Description of the Invention] (Objective of the Invention) (Industrial Application Field) The present invention relates to a method of controlling the operation of a pump-turbine, and particularly relates to a method of controlling the operation of a pump-turbine that expands the operating range of the pump-turbine. .

(従来の技術) 一般に、ポンプ水車の運転範囲は全揚程をH1回転速度
をNとすると変数H/N2の範囲として表わししかもこ
の変数1−1 / N 2の範囲はポンプ水車の設計時
点で定まってしまう。これは以下の理由による。
(Prior art) In general, the operating range of a pump-turbine is expressed as the range of the variable H/N2, where the total head is H1 and the rotational speed is N. Moreover, the range of this variable 1-1/N2 is determined at the time of designing the pump-turbine. It ends up. This is due to the following reasons.

第5図はランナ羽根21の入口の速度三角形図、第6図
は回転速度を一定にした場合のポンプ特性図を示し、通
常ポンプ水車は周速U。のランナ羽根21に絶対速度■
。の水が相対速度W。、ランナ羽根21の入口角度βと
一致した流入角β。で流入するように設δ1されている
。ところが、全揚程ト1が高くなると揚水量Qが少なく
なるので水の絶対速度が■1と小さくなり、その結果相
対速度W でランナ羽根21に流入する水の流入角β1
が上記入口角βより小さくなり、ランナ羽根21の裏側
に剥離が生じポンプ水車の効率が低下すると共に騒音、
撮動が発生してキセごチージョン壊食が生ずることがあ
る。反対に、全揚程Hが低くなると揚水faQが増加し
水の絶対速度が■2と大ぎくなるので、相対速度W2で
ランナ羽根21に流入する水の流入角β2が上記人口角
βより大きくなり、ランナ羽根21の表側に剥離が生ず
ることがある。また、回転速度Nは逆流域を除いて揚水
WQとほぼ正比例するので、回転速度Nが上界すると上
記揚水ff1Qが増加した場合と同様にランナ羽根21
の表側に剥離が生じ、回転速度Nが下降りると上記揚水
量Qが減少した場合と同様にランナ羽根21の裏側に剥
離が生ずることがある。
FIG. 5 shows a velocity triangle diagram at the inlet of the runner blade 21, and FIG. 6 shows a pump characteristic diagram when the rotational speed is constant. Normally, the pump water wheel has a circumferential speed U. The absolute speed of the runner blade 21 is
. water has a relative velocity W. , an inlet angle β that coincides with the inlet angle β of the runner vane 21. δ1 is set so that the inflow occurs at .delta.1. However, as the total lift height T1 increases, the pumped water amount Q decreases, so the absolute speed of water becomes small to ■1, and as a result, the inflow angle β1 of water flowing into the runner blade 21 at a relative speed W
becomes smaller than the above-mentioned inlet angle β, and peeling occurs on the back side of the runner blade 21, reducing the efficiency of the pump-turbine and causing noise.
Shooting may occur and cause erosion. On the other hand, when the total head H decreases, the pumped water faQ increases and the absolute velocity of the water becomes large to ■2, so the inflow angle β2 of the water flowing into the runner blade 21 at the relative velocity W2 becomes larger than the above-mentioned population angle β. , peeling may occur on the front side of the runner blade 21. In addition, since the rotational speed N is almost directly proportional to the pumped water WQ except in the reverse region, when the rotational speed N reaches an upper limit, the runner blade 21
When the rotational speed N decreases, peeling may occur on the back side of the runner blade 21, similar to when the pumped water amount Q decreases.

このため、ポンプ水車の運転範囲をランチ羽根21の入
口に剥離が発生しない範囲に設計しなければならず、必
然的に上記変数H/N2の範囲も定まってしまうのであ
る。
For this reason, the operating range of the pump-turbine must be designed within a range in which separation does not occur at the inlet of the launch vane 21, and the range of the variable H/N2 is also inevitably determined.

ところで、近イ[ポンプ水車を備えた揚水発電所のFM
動的な運用と電力系統の機動的な運用のために、揚水運
転中のポンプ水車において軸入力を広い節理で効率良く
調節することが求められており、こうしたポンプ水車の
軸入力を調節する方法として、回転速度を変化させたり
、吸い込み側管路を通過づる水流に予旋回を与えること
が考えられている。
By the way, in recent years [FM of a pumped storage power plant equipped with a pump-turbine]
For dynamic operation and agile operation of power systems, it is required to efficiently adjust the shaft input of pump-turbines during pumping operation with wide joints, and a method for adjusting the shaft input of such pump-turbines is required. As a solution, it is being considered to change the rotational speed or give a pre-swirl to the water flow passing through the suction side pipe.

(発明が解決しようとする問題点) しかしながら、上述のにうにポンプ水車の運転範囲であ
る変数H/ N ”の範囲が定まっているの  ・で、
この範囲以上に全揚程の変化が大きいとポンプ水車の性
能が維持できず、またポンプ水車の軸入力の調節を回転
速度の変化で行なう場合変数H/N2の範囲を越えて回
転速度を変化させることは機器の安全上危険である。こ
のため、全揚程が定まると自ずと制御可能な回転速度の
範囲が定まるので、この回転速度のほぼ3乗に比例する
軸入力の調節範囲が定まってしまい、揚水運転中のポン
プ水車の軸入力を広い範囲で調節することができないと
いう問題があった。
(Problem to be solved by the invention) However, as mentioned above, the range of the variable H/N'', which is the operating range of the pump-turbine, is fixed.
If the change in the total head exceeds this range, the performance of the pump-turbine cannot be maintained, and if the shaft input of the pump-turbine is adjusted by changing the rotation speed, the rotation speed will change beyond the range of the variable H/N2. This is a safety hazard for the equipment. For this reason, when the total head is determined, the controllable rotational speed range is automatically determined, and the shaft input adjustment range is determined to be approximately proportional to the cube of this rotational speed. There was a problem in that it could not be adjusted over a wide range.

そこで、本発明の目的は、上述した従来技術が有する問
題点を解消し、設計段階で定まるポンプ水車の運転範囲
の下限値および下限値を越えてポンプ水車の性能を維持
し、揚水運転中のポンプ水車の軸入力の調節範囲を拡大
して発電所の機動的な運用を可能にするようにしたポン
プ水車の運転制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, maintain the performance of a pump-turbine at and beyond the lower limit of the operating range of the pump-turbine determined at the design stage, and maintain the performance of the pump-turbine during pumping operation. An object of the present invention is to provide a method for controlling the operation of a pump-turbine by expanding the adjustment range of the shaft input of the pump-turbine to enable flexible operation of a power plant.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明はポンプ水車の全揚
程Hと回転速度Nから変数H/ N 2を求め、この変
数1−1 / N 2が予め定められたポンプ水車の運
転範囲の上限値以上の時はランナの回転方向と同一方向
の予旋回を発生させ、上記変数H/N2が上記運転範囲
の下限値以下の時はランナの回転方向と逆方向の予旋回
を発生させるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention calculates a variable H/N2 from the total head H and rotational speed N of the pump-turbine, and calculates the variable H/N2 from the total head H and rotational speed N of the pump-turbine. When the above-mentioned variable H/N2 is above the upper limit of the operation range of the pump-turbine, a pre-swing is generated in the same direction as the runner's rotation direction, and when the variable H/N2 is below the lower limit of the above-mentioned operation range, it is generated in the same direction as the runner's rotation direction. It is designed to generate a pre-turn in the opposite direction.

(作 用) ポンプ水車の運転範囲の上限値以上の時、水はランナ羽
根21の人口角βより小さな流入角β1でランナ羽根2
1に流入するので、予旋回発生装置6を作動させて吸い
込み側の水流にランナ3の回転方向と同一方向の予旋回
を発生させ、ランナ羽根21に流入する水がランナ羽根
21に沿うようにする。また、ポンプ水車の運転範囲の
下限値以下の時、水はランナ羽根21の入口角βより大
きな流入角β2で流入するので、吸い込み側の水流にラ
ンナ3の回転方向と逆方向の予旋回を発生させ、ランナ
羽根21に沿って流入するようにする。しかして、ポン
プ水車の運転範囲の上限値および下限値を越えても水流
は剥離することなくランチ羽根21に沿って流入するの
で、運転範囲を拡大することができ、この運転範囲の拡
大によるポンプ水車の軸入力の調節範囲の拡大により発
電所のは動的む運用が可能になる。
(Function) When the operating range of the pump-turbine exceeds the upper limit, water flows to the runner blade 2 at an inflow angle β1 smaller than the artificial angle β of the runner blade 21.
1, the pre-swirl generator 6 is activated to generate a pre-swirl in the water flow on the suction side in the same direction as the rotational direction of the runner 3, so that the water flowing into the runner blades 21 follows the runner blades 21. do. In addition, when the operating range of the pump turbine is below the lower limit, water flows in at an inflow angle β2 larger than the inlet angle β of the runner blade 21, so the water flow on the suction side is given a pre-swirl in the direction opposite to the rotational direction of the runner 3. The water is generated and flows along the runner blades 21. Therefore, even if the upper and lower limits of the operating range of the pump turbine are exceeded, the water flow does not separate and flows along the launch vanes 21, so the operating range can be expanded, and this expansion of the operating range allows the pump By expanding the adjustment range of the shaft input of the water turbine, dynamic operation of the power plant becomes possible.

(実施例) 以下、本発明によるポンプ水車の運転制御方法の一実施
例を第1図乃至第4図を参照して説明する。
(Example) Hereinafter, an example of the method for controlling the operation of a pump-turbine according to the present invention will be described with reference to FIGS. 1 to 4.

第1図は本発明による制御方法を実施する立て軸フラン
シス形ポンプ水車を示したもので、ポンプ運転する場合
、水流は吸出し管路1、吸出し管エルボ2を経てランナ
3内に導かれ、ランナ3から回転エネルギを与えられて
ランナ3の外周流路部に配列されるガイドベーン4を通
過し、さらに外周部の渦巻きケーシング5を経て図示し
ない上池に揚水される。1段出し管エルボ2のランナ3
側端部には開閉ゲー1へ等公知の予旋回発生装置6が取
付けられ、ランナ3の主軸7には建家内に据え付けられ
た発電電aJ機8が連結されている。また、発電゛電動
機8には回転速度検出器9が接続され、この回転速度検
出器って検知された回転速度信号が全揚程検出器10で
検知された全揚程信号とともに演算装置11に入力され
て変数11 /’ N 2が計算され、この計算結果に
より予旋回発生装置6に予旋回の発生の有無、予旋回の
方向および強さ等の駆動信号が出力されるようになって
いる。
FIG. 1 shows a vertical shaft Francis type pump-turbine that implements the control method according to the present invention. When operating the pump, the water flow is guided into the runner 3 via the suction pipe 1 and the suction pipe elbow 2, and 3, the water passes through guide vanes 4 arranged in the outer circumferential flow path of the runner 3, and is further pumped to an upper pond (not shown) through a spiral casing 5 on the outer circumference. Runner 3 of single stage pipe elbow 2
A known pre-swing generator 6 such as the opening/closing game 1 is attached to the side end, and a generator aJ machine 8 installed in the building is connected to the main shaft 7 of the runner 3. Further, a rotational speed detector 9 is connected to the generator/motor 8, and a rotational speed signal detected by the rotational speed detector is inputted to the arithmetic unit 11 together with a total head signal detected by the total head detector 10. A variable 11 /' N 2 is calculated, and based on this calculation result, a drive signal is output to the pre-turn generating device 6, indicating whether or not a pre-turn has occurred, and the direction and strength of the pre-turn.

上記フランシス形ポンプ水車を揚水運転する場合、まず
吸出し管エルボ2に設けられた予旋回発生装置6を全1
111にし、揚水起動して上池と下池間の水位に見合っ
た揚程におけるポンプ運転に移行させる。この場合、揚
程での効率が最も良い状態で揚水量が最大になるように
ガイドベーン4の開度を設定づる。
When operating the Francis type pump-turbine mentioned above, first, the pre-swirl generator 6 installed in the suction pipe elbow 2 is
111 to start pumping and shift to pump operation at a pumping height commensurate with the water level between the upper and lower ponds. In this case, the opening degree of the guide vane 4 is set so that the efficiency at the pumping height is the best and the amount of pumped water is maximized.

しかして、ポンプ水車の運転範囲はその設計時点で予め
定められその運転範囲は第2図に示したようにXで示さ
れるので、この運転範囲X内は予旋回を与えず上記演算
装置11で得られる変数H/N2の計算結果が上記運転
範囲Xの上下値×1以上の時にランナ3の回転方向と同
一方向の予旋回すなわち第2図中正の予旋回を与え、し
かもこの予旋回が変数11 / N 2の増大に従って
予め定められた比率で増大するように予旋回発生装置6
を作動させる。反対に、演算装置11の変数ト1/N2
の計算結果が上記運転範囲×の下限値×2以下の時に第
2図に示したようなランナ3の回転方向と反対方向の負
の予旋回を与え、この予旋回が変数H/ N 2の減少
に従って所定の比率で減少するように予旋回発生装置6
を作動させる。
Therefore, the operating range of the pump-turbine is predetermined at the time of its design, and the operating range is indicated by X as shown in FIG. When the calculated result of the variable H/N2 is greater than or equal to the upper and lower values of the operating range 11/N2 to increase at a predetermined ratio as the pre-turn generator 6 increases.
Activate. On the contrary, the variable T1/N2 of the arithmetic unit 11
When the calculation result is less than or equal to the lower limit value of the above operating range x 2, a negative pre-turn is given in the direction opposite to the rotational direction of the runner 3 as shown in Fig. 2, and this pre-turn is the result of the variable H/N2. The pre-swing generator 6 is configured to decrease at a predetermined ratio as the rotation decreases.
Activate.

このように予旋回発生装置6の作シ」を制御すると、ポ
ンプ水車の運転範囲の上限値×1以上の時は、第3図に
示したようにランナ羽根21に流入する水の絶対速度が
■1から■3に変化し、その結果実際にランナ羽根21
に流入する水の相対速度の方向はW からW3に変化し
、流入角もβ3とランチ羽根21の入口角度麿βと一致
するので、水がランナ羽根21に沿って流入するように
なり、従来ランナ羽根入口で発生していた水流の剥離を
防ぐことができる。また、ポンプ水車の運転範囲の下限
値×2以下の時は、予旋回発生装置6の作動により第4
図に示したように水の絶対速度が■2からv4に変化し
、相対速度w4、流入角β4でランナ羽根21に沿って
流入するので、同様にランナ羽根入口の水流の剥離を防
ぐことかできる。これにより、多め定められた運転範囲
Xを越えてもポンプ水車の性能を維持することかでき、
この運1p7i範囲のX′への拡大によりポンプ水車の
軸入力の調節範囲を拡大することができ、発電所の機v
J的な運用を実施することができる。
By controlling the operation of the pre-swirl generator 6 in this way, when the operation range of the pump turbine is greater than the upper limit x 1, the absolute velocity of the water flowing into the runner blades 21 is as shown in FIG. ■Changes from 1 to ■3, and as a result, the runner blade 21 actually
The direction of the relative velocity of the water flowing into the runner changes from W to W3, and the inflow angle also coincides with β3 and the inlet angle β of the launch blade 21, so water flows in along the runner blade 21, unlike the conventional It is possible to prevent separation of water flow that occurs at the runner blade inlet. In addition, when the operating range of the pump-turbine is lower than the lower limit x 2, the pre-swirl generator 6 is activated.
As shown in the figure, the absolute velocity of water changes from ■2 to v4, and the water flows in along the runner blade 21 at a relative velocity w4 and an inflow angle β4, so it is possible to similarly prevent separation of the water flow at the runner blade inlet. can. This makes it possible to maintain the performance of the pump-turbine even if it exceeds the predetermined operating range X.
By expanding the range of operation 1p7i to
J-like operations can be implemented.

(発明の効果〕 以上の説明から明らかなように、本発明は、ポンプ水車
の全揚程Hと回転速度Nから変数H/N  を求め、こ
の変数1−1 / N 2が予め定められたポンプ水車
の運転範囲の上限値以上の時はランナの回転方向と同一
方向の予旋回を発生させ、上記変数+l / N 2が
上記運転範囲の下限値以下の時はランナの回転方向と連
方向の予旋回を発生させるようにしたので、設計段階で
定まるポンプ水車の運転範囲を越えてもポンプ水車の性
能を維持することができ、ポンプ水車の運転範囲を拡大
することができる。そしてこの運転範囲の拡大により揚
水運転中のポンプ水車の軸入力の調節範囲を拡大するこ
とができ、発電所のRIIIJl的な運用を実施するこ
とができる。
(Effects of the Invention) As is clear from the above explanation, the present invention calculates the variable H/N from the total head H and rotational speed N of the pump-turbine, and calculates the variable H/N from the pump-turbine's total head H and rotational speed N. When the upper limit of the operating range of the water turbine is exceeded, a pre-swing is generated in the same direction as the runner rotation direction, and when the above variable +l/N2 is below the lower limit of the above operating range, a pre-swivel is generated in the same direction as the runner rotation direction. Since pre-swirling is generated, the performance of the pump-turbine can be maintained even beyond the operating range of the pump-turbine determined at the design stage, and the operating range of the pump-turbine can be expanded. By expanding the range, it is possible to expand the adjustment range of the shaft input of the pump-turbine during pumping operation, and it is possible to implement RIIIJl-like operation of the power plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に」:るポンプ水車の運転制御方法を実
施するひて軸フランシス形ポンプ水車の概略構成図、第
2図は本発明により予旋回を発生させるポンプ水車の運
転範囲を示す図、第3図および第4図はポンプ水車の運
転範囲を越えた時のランナ羽根入口における速度三角形
図、第5図は従来のランナ羽根入口における速度三角形
図、第6図は回転速度を一定にした場合のポンプ水車の
特性図である。 2・・・吸出し管エルボ、3・・・ランナ、4・・・ガ
イドベーン、6・・・予旋回発生装置、8・・・発電型
!v1機、9・・・回転速度検出器、10・・・全揚程
検出器、11・・・演算装置、21・・・ランナ羽根、
X・・・設M段階の運転範囲、X′・・・拡大された運
転範囲。 出願人代理人  佐  藤  −iit厘 第1図 第2図 第6図
Fig. 1 is a schematic configuration diagram of a shaft Francis type pump-turbine that implements the pump-turbine operation control method according to the present invention, and Fig. 2 shows the operating range of the pump-turbine that generates pre-swirling according to the present invention. Figures 3 and 4 are velocity triangle diagrams at the runner blade inlet when the operating range of the pump-turbine is exceeded, Figure 5 is a velocity triangle diagram at the conventional runner blade inlet, and Figure 6 is a constant rotation speed. FIG. 3 is a characteristic diagram of a pump-turbine when 2... Suction pipe elbow, 3... Runner, 4... Guide vane, 6... Pre-swivel generator, 8... Power generation type! v1 machine, 9... Rotation speed detector, 10... Total lift detector, 11... Arithmetic device, 21... Runner blade,
X... Operating range of the design M stage, X'... Expanded operating range. Applicant's agent Mr. Sato-IIT Figure 1 Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 揚水発電所のポンプ水車の吹込み側管路に予旋回発生装
置を設け、ポンプ運転時に予旋回発生装置を作動させる
ようにしたポンプ水車の運転制御方法において、ポンプ
水車の全揚程Hと回転速度Nから変数H/N^2を求め
、この変数H/N^2が予め定められたポンプ水車の運
転範囲の上限値以上の時はランナの回転方向と同一方向
の予旋回を発生させ、上記変数H/N^2が上記運転範
囲の下限値以下の時はランナの回転方向と逆方向の予旋
回を発生させるようにしたことを特徴とするポンプ水車
の運転制御方法。
In a method for controlling the operation of a pump-turbine in which a pre-swirl generator is provided in the inlet pipe of a pump-turbine in a pump-storage power plant, and the pre-swirl generator is activated during pump operation, the total head H and rotational speed of the pump-turbine are determined. The variable H/N^2 is calculated from N, and when this variable H/N^2 is greater than the predetermined upper limit of the operating range of the pump-turbine, a pre-swing is generated in the same direction as the rotational direction of the runner, and the above A method for controlling the operation of a pump-turbine, characterized in that when the variable H/N^2 is less than the lower limit of the operation range, a pre-swing is generated in the direction opposite to the rotational direction of the runner.
JP61158979A 1986-07-07 1986-07-07 Operation control method for reversible pump-turbine Pending JPS6316172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158979A JPS6316172A (en) 1986-07-07 1986-07-07 Operation control method for reversible pump-turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158979A JPS6316172A (en) 1986-07-07 1986-07-07 Operation control method for reversible pump-turbine

Publications (1)

Publication Number Publication Date
JPS6316172A true JPS6316172A (en) 1988-01-23

Family

ID=15683557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158979A Pending JPS6316172A (en) 1986-07-07 1986-07-07 Operation control method for reversible pump-turbine

Country Status (1)

Country Link
JP (1) JPS6316172A (en)

Similar Documents

Publication Publication Date Title
KR950033112A (en) Turbomachinery with variable angle fluid guide
JPS6158666B2 (en)
JPH02140406A (en) Method and device for low-temperature liquid expansion
JPH0144904B2 (en)
JP3898311B2 (en) Water wheel or pump water wheel
US3918828A (en) Flow control for compressors and pumps
JPS6316172A (en) Operation control method for reversible pump-turbine
JPS5941024B2 (en) Francis type runner
JP2006258095A (en) Water turbine, water turbine power generating device and method for operating water turbine power generating device
JPS61175271A (en) Method for controlling running of pump water wheel
JP3524948B2 (en) How to drive a turbine with a variable speed hydraulic machine
Cooper et al. Reduction of cavitation damage in a high-energy water injection pump
Singh et al. Hydrodynamic performance of a pump-turbine model in the
JP3497574B2 (en) Hydraulic machinery
JPH07305676A (en) Rotor machinery selectively operated as pump or turbine
JPH0742932B2 (en) Operation control device for pumped hydro
JPH10141201A (en) Operating method for variable speed hydraulic machinery
RU2016222C1 (en) Turbo-driven pump assembly
JPS62267597A (en) Centrifugal impeller
RU2173745C2 (en) Damless hydroelectric power station
Nonoshita et al. Water column separation in a straight draft tube
WO2023095158A1 (en) Diffuser augmented wind turbine with blockage mechanism and method thereof
JPS59213951A (en) Air intake method of hydraulic machine
JPS6050277A (en) Method of adjusting axial input of pump or pump water wheel
RU2118423C1 (en) Automatic hydraulic electric power station