JPS63161683A - Optoelectric converter - Google Patents

Optoelectric converter

Info

Publication number
JPS63161683A
JPS63161683A JP61311205A JP31120586A JPS63161683A JP S63161683 A JPS63161683 A JP S63161683A JP 61311205 A JP61311205 A JP 61311205A JP 31120586 A JP31120586 A JP 31120586A JP S63161683 A JPS63161683 A JP S63161683A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
voltage
conversion device
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61311205A
Other languages
Japanese (ja)
Other versions
JPH0628310B2 (en
Inventor
Katsunori Hatanaka
勝則 畑中
Toshihiro Saiga
敏宏 雑賀
Noriyuki Umibe
紀之 海部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61311205A priority Critical patent/JPH0628310B2/en
Priority to US07/117,957 priority patent/US4886977A/en
Priority to DE3751739T priority patent/DE3751739T2/en
Priority to EP87116614A priority patent/EP0267591B1/en
Priority to EP93113275A priority patent/EP0576040B1/en
Priority to DE3752337T priority patent/DE3752337T2/en
Publication of JPS63161683A publication Critical patent/JPS63161683A/en
Publication of JPH0628310B2 publication Critical patent/JPH0628310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high S/N ratio which is the same as the ratio of a static operation by connecting 2nd electrode in common with 3rd electrode. CONSTITUTION:A sensor power source VS is connected to a drain electrode D and a gate electrode G is connected in common with a source electrode S. A storage capacitor C is connected to the source electrode S and further a load resistor RL is connected to the source electrode S through a transfer switch SW. When the transfer switch S is switched from ON to OFF, a photocurrent iS is applied to the capacitor C and the charging of the capacitor C is started. Along with the progress of the charging, voltage VC increases. On the other hand, as the gate electrode G is connected in common with the source electrode S, the voltage >=VGS is always zero. Therefore, a transient photocurrent is not applied when the transfer switch SW is ON.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、バーコードリーグ、ファクシミリ、デジタル
複写a等に用いられる光電変換装置に係り、特に、半導
体層に絶縁層を介してゲート電極を設けて構成されるf
1i膜トランジスタ(以下TPTと言う)型の光電変換
装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a photoelectric conversion device used in barcode leagues, facsimile machines, digital copying equipment, etc. f provided and configured
The present invention relates to a 1i film transistor (hereinafter referred to as TPT) type photoelectric conversion device.

(従来の技術) 初めに、TFT型の光センサーの構成例として、モ面図
を第1図に、第1図のx−x ’断面図を第2図に示す
0図において、lはガラス等の基板、2はゲート電極、
3は絶縁層、4は光導電性の半導体層、6および7はそ
れぞれソース、ドレイン電極、5は半導体層4と、ソー
ス、ドレイン電極6,7とオーミック接触するためのn
°層である。
(Prior Art) First, as a configuration example of a TFT type optical sensor, in FIG. etc., 2 is a gate electrode,
3 is an insulating layer, 4 is a photoconductive semiconductor layer, 6 and 7 are source and drain electrodes, respectively, and 5 is an n layer for making ohmic contact with the semiconductor layer 4 and the source and drain electrodes 6 and 7.
° It is a layer.

TFT型センサーはゲート電極にバイアス電圧を印加す
ることにより絶縁層界面の影響を制御し、暗電流を抑制
できるため、光電変換出力の光量依存特性(以下γと呼
ぶ)が1に近い良好な特性を持つ、また、再現性も良く
、ロット内及びロー2ト間のバラツキが少ないという特
徴も有している。
By applying a bias voltage to the gate electrode, TFT type sensors can control the influence of the insulating layer interface and suppress dark current, so the light intensity dependent characteristic (hereinafter referred to as γ) of the photoelectric conversion output is a good characteristic close to 1. It also has the characteristics of good reproducibility and little variation within lots and between rows.

(発明が解決しようとする問題点) これらの特性は、静的な(DC電圧的な)駆動条件では
好ましい結果を示すが、通常イメージセンサ−等に用い
るような動的な動作、即ち、電荷蓄積モードで用いた場
合には問題点があった。以下、その問題点について述べ
る。
(Problems to be Solved by the Invention) These characteristics show favorable results under static (DC voltage) driving conditions, but under dynamic operation such as that normally used in image sensors, that is, charge There were problems when used in storage mode. The problems will be discussed below.

第3図はTFT型センサーを用いた蓄積モードの読出し
回路を示す。ドレイン電極にはセンサー電源VSが接続
され、ゲート電極にはバイアス電源v8が接続される。
FIG. 3 shows an accumulation mode readout circuit using a TFT type sensor. A sensor power supply VS is connected to the drain electrode, and a bias power supply v8 is connected to the gate electrode.

ソース電極には蓄積コンデンサーCが接続される。蓄積
コンデンサーCに蓄えられた電荷は、転送スイッチSW
により負荷抵抗RL に放電される。
A storage capacitor C is connected to the source electrode. The charge stored in the storage capacitor C is transferred to the transfer switch SW.
is discharged to the load resistance RL.

この回路における動作波形を第4図に示す、転送スイッ
チSWは蓄積時間Ts同周期0N10FFが緑り返され
る。即ち、転送スイッチSWがOFF状態のとき、セン
サー光電流jsは蓄積コンデンサーCに充電され、転送
スイッチSWがON状態になると蓄積コンデンサーCの
蓄積電荷は負荷抵抗Rしに放電され、出力として読み出
される。
The operating waveforms in this circuit are shown in FIG. 4. The transfer switch SW is turned green at the same period 0N10FF for the storage time Ts. That is, when the transfer switch SW is in the OFF state, the sensor photocurrent js is charged in the storage capacitor C, and when the transfer switch SW is in the ON state, the accumulated charge in the storage capacitor C is discharged through the load resistance R and read out as an output. .

ここで、蓄積コンデンサーCの両端の電圧VCに注目す
ると、電圧VCはisの積分値でVs>>Vcの条件下
では、 VC=f  is  dtzis @tとなり、電圧V
Cは時間tに対し、はぼ直線的に上昇する。このときの
電圧VCの様子を第4図の破線で示す。
Here, if we pay attention to the voltage VC across the storage capacitor C, the voltage VC is the integral value of is, and under the condition of Vs>>Vc, VC=f is dtzis @t, and the voltage V
C increases almost linearly with respect to time t. The state of the voltage VC at this time is shown by the broken line in FIG.

しかしながら、実際に第3図の回路で駆動したところ電
圧VCは第4図の実線で示したような歪んだ波形となっ
た。この原因は転送SWがONuた時に電圧VCが零電
位に急峻に変化し、ゲートバイアス電位Δv1.が相対
的に浅くなりソース、ドレイン間に過渡的な電流ia 
 (第4図の斜線で示された電流)が流れるためである
。この過渡電流による影響でこの回路による光電変換装
置の出力の光量依存性は第5図に示したように、γ=0
.4〜0.5となり、静的な特性測定から計算されたγ
=1と大きくずれてしまい、S/N比が低下してしまう
However, when actually driven using the circuit shown in FIG. 3, the voltage VC had a distorted waveform as shown by the solid line in FIG. The reason for this is that when the transfer SW is turned on, the voltage VC suddenly changes to zero potential, and the gate bias potential Δv1. becomes relatively shallow, causing a transient current ia between the source and drain.
This is because (the current indicated by diagonal lines in FIG. 4) flows. Due to the influence of this transient current, the light intensity dependence of the output of the photoelectric conversion device using this circuit becomes γ = 0, as shown in Figure 5.
.. 4 to 0.5, and γ calculated from static characteristic measurements.
= 1, and the S/N ratio decreases.

本発明は、前述した動的動作における問題点を解決し、
TFT型センサーの特徴を十分に行かした光電変換装置
を提供することにある。
The present invention solves the above-mentioned problems in dynamic operation,
An object of the present invention is to provide a photoelectric conversion device that fully utilizes the features of a TFT type sensor.

さらに、本発明のもう一つの目的は、センサ一部と同一
基板」二に容易に作ることができる駆動回路を提案し、
TFT型センサーの特徴である高S/N比とバラツキ分
布の低減を生かし、低コスト、高歩留りの光電変換装置
を提供することにある。
Furthermore, another object of the present invention is to propose a drive circuit that can be easily made on the same substrate as part of the sensor.
Our objective is to provide a low-cost, high-yield photoelectric conversion device by taking advantage of the high S/N ratio and reduced variation distribution, which are the characteristics of TFT sensors.

(問題点を解決するための手段) 本発明の光電変換装置は、光導電層と、該光導電層と同
一平面上に対向して設けられた第1及び第2の電極と、
前記光導電層に絶縁層を介して設けられた第3の電極と
で光電変換部が構成され、前記第1の電極に電源電圧を
印加して、第2の電極から光電変換出力を得るようにし
たものにおいて、前記第2の電極が第3の電極に共通に
接続されていることを特徴としている。
(Means for Solving the Problems) The photoelectric conversion device of the present invention includes a photoconductive layer, first and second electrodes provided facing the photoconductive layer on the same plane,
A photoelectric conversion section is configured with a third electrode provided on the photoconductive layer via an insulating layer, and a power supply voltage is applied to the first electrode to obtain a photoelectric conversion output from the second electrode. The second electrode is commonly connected to a third electrode.

本発明の光電変換装置においては、前述した過渡電流が
流れないためγがほぼ1に近<、 S/N比が高く、か
つ再現性の優れたものを得ることができる。また、同一
基板上に駆動回路が光電変換部と共に同時形成できるの
で低コスト、高性能な充電変換装置が実現できる。
In the photoelectric conversion device of the present invention, since the aforementioned transient current does not flow, it is possible to obtain a device in which γ is approximately close to 1, the S/N ratio is high, and the reproducibility is excellent. Furthermore, since the drive circuit and the photoelectric conversion section can be formed simultaneously on the same substrate, a low-cost, high-performance charging conversion device can be realized.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

し実施例11 本発明による光電変換装置の実施例の等価回路を第6図
に示す。
Embodiment 11 An equivalent circuit of an embodiment of a photoelectric conversion device according to the present invention is shown in FIG.

ドレイン電極りにはセンサー電源Vsが接続され、ゲー
ト電極Gはソース電極Sと共通に接続されている。また
、ソース電極Sには蓄積コンデンサー〇が接続され、さ
らに転送スイッチSWを介して負荷抵抗R1が接続され
ている。
A sensor power supply Vs is connected to the drain electrode, and the gate electrode G is commonly connected to the source electrode S. Further, a storage capacitor 〇 is connected to the source electrode S, and a load resistor R1 is further connected to the source electrode S via a transfer switch SW.

次に、第6図の等価回路を有する光電変換装置の動作に
ついて説明する。
Next, the operation of the photoelectric conversion device having the equivalent circuit shown in FIG. 6 will be explained.

転送スイッチSWがONからOFFに切替わると、光電
電流isは蓄積コンデンサー〇に流れ込み、充電が開始
される。蓄積コンデンサーCの充電が進むにつれ、電圧
VCは上昇する。
When the transfer switch SW is switched from ON to OFF, the photoelectric current is flows into the storage capacitor 〇, and charging starts. As storage capacitor C continues to charge, voltage VC increases.

一方、ゲート電極Gはソース電極Sが共通に接続されて
いるため、ゲート・ソース間電圧ΔV−JSは常に零電
位となる。従って、前述した転送スイッチSWがONの
際の過渡的な光電流は流れない。
On the other hand, since the gate electrode G and the source electrode S are commonly connected, the gate-source voltage ΔV-JS is always at zero potential. Therefore, the transient photocurrent that occurs when the transfer switch SW is turned on does not flow.

[実施例2] 第7図に、第6図に示した光電変換装置をnxm個アレ
ー状に配置して構成したラインセンサー型の光電変換装
置の等価回路を示す。
[Example 2] FIG. 7 shows an equivalent circuit of a line sensor type photoelectric conversion device constructed by arranging nxm photoelectric conversion devices shown in FIG. 6 in an array.

図中、Sl”5nxsはTFT型の光電変換部、CSt
 ”C5nxsは蓄積コンデンサー、Ul〜UnXIは
リセット用TFT、T+〜TnXlは転送用TPTであ
る。
In the figure, Sl"5nxs is a TFT type photoelectric conversion unit, CSt
``C5nxs is a storage capacitor, Ul to UnXI are reset TFTs, and T+ to TnXl are transfer TPTs.

上記の素子群はn個づつmブロックに分けられ、m+1
本のゲート線とn本の信号線とにマトリックス接続され
ている。11はゲート線VGI〜VG*、l に電圧を
順次印加するためのドライへ一部、12は信号線S l
” S nの信号電圧を取り出すための信号処理部であ
る。また、Vsはセンサーバイアス、VRはM積コンデ
ンサーのリセット電圧、CL、l〜C[。は負荷コンデ
ンサーである。
The above element group is divided into m blocks of n elements each, m+1
It is matrix-connected to four gate lines and n signal lines. 11 is a part of the dryer for sequentially applying voltage to the gate lines VGI to VG*, l; 12 is a signal line S l
"S is a signal processing unit for extracting the signal voltage of n. Also, Vs is the sensor bias, VR is the reset voltage of the M product capacitor, and CL, l to C[. are the load capacitors.

この回路ではリセット用TFTUが設けられ、蓄積コン
デンサー〇sの電荷を転送後、残りの電荷を完全にリセ
ットできるようになっている。また、リセッ)TFTU
のゲート電極は次のブロックの転送用TFTTのゲート
電極と共通に接続されている。ドライバ一部11の電圧
パルスのシフトにより、次のブロックの信号が転送され
ると同時に前ブロックのリセットを行うことができる。
This circuit is provided with a reset TFTU, so that after transferring the charge from the storage capacitor 〇s, the remaining charge can be completely reset. Also, reset) TFTU
The gate electrode of the block is commonly connected to the gate electrode of the transfer TFTT of the next block. By shifting the voltage pulses of the driver portion 11, the previous block can be reset at the same time as the next block's signals are transferred.

上記の回路は、同一基板上にすべて構成することができ
る。特に、光導電性半導体材料としてグロー放電法によ
るa−、Si:HIIUを用いることにより、TFT型
光電変換部、蓄積コンデンサー、転送およびリセッ)T
PT、配線部等を下電極、5iNH絶縁層、a−St:
H層、n゛層、上電極の積層構成により同時プロセスで
実現できる。
The above circuits can all be configured on the same substrate. In particular, by using a-, Si:HIIU produced by glow discharge method as a photoconductive semiconductor material, TFT-type photoelectric conversion units, storage capacitors, transfer and reset) T
PT, wiring part, etc. as lower electrode, 5iNH insulating layer, a-St:
This can be achieved by simultaneous processes using a laminated structure of the H layer, the n' layer, and the upper electrode.

本発明の光電変換装置はこのような同一基板、同時プロ
セスによるラインセンサー型の光電変換装置に好適に適
用できる。以下、この種のプロセスによる光電変換装置
のパターン例について説明する。
The photoelectric conversion device of the present invention can be suitably applied to such a line sensor type photoelectric conversion device using the same substrate and simultaneous processes. Hereinafter, an example of a pattern of a photoelectric conversion device using this type of process will be described.

第8図に第7図の回路の1ビット分の構成、(ターン図
を示す、ただし、図が煩雑になるのを避けるため上下配
線パターンとコンタクトホール部のみ示す。
FIG. 8 shows the configuration of one bit of the circuit of FIG. 7 (turn diagram); however, to avoid complicating the diagram, only the upper and lower wiring patterns and contact hole portions are shown.

図中13は信号線マトリックス部、14は光電変換部、
15はゲート・ソース接続用コンタクトホール、16は
蓄積コンデンサー、17は転送用TPT、18はリセッ
ト用TPT、19はゲート駆動線の配線部である。尚、
この例では結像用レンズを用いず、に原稿をセンサ一部
に直接重着させて読み取る所謂レンズレスの構成を採用
している。そのため、原稿を照明するための窓20を設
け、さらにセンサ一部の下ゲート電極は不透明な材料で
形成し、遮光膜を兼ねている。転送およびリセット用T
PT17.18はそれぞれ2個鏡面対称の位置に配置し
ている。これは下電極パターンと上電極パターンの合せ
精度が基板の長手方向に変化した場合にTFTのゲート
・ソース間容量がこのペアーのTPTにより補償し、変
化しないようにするためである。このゲート・ソース間
容量の長手方向の変化は信号出力のオフセット成分とし
て表れる。上記パターンを用いることによりこのオフセ
、 ト成分は除去できる。負荷コンデンサーC口(i=
1〜n)は第8図には示されていないが、その容量は信
号マトリックス部13で生じる信号線S、−Sn間の浮
遊容量に対し。
In the figure, 13 is a signal line matrix section, 14 is a photoelectric conversion section,
15 is a contact hole for connecting the gate and source, 16 is a storage capacitor, 17 is a transfer TPT, 18 is a reset TPT, and 19 is a gate drive line wiring section. still,
In this example, a so-called lens-less configuration is adopted in which an image-forming lens is not used, and the document is read by directly superimposing it on a part of the sensor. Therefore, a window 20 is provided for illuminating the original, and the lower gate electrode of a portion of the sensor is formed of an opaque material and also serves as a light shielding film. T for transfer and reset
Two PTs 17 and 18 are arranged in mirror-symmetrical positions. This is to prevent the gate-source capacitance of the TFT from changing by compensating for this pair of TPTs when the alignment accuracy of the lower electrode pattern and the upper electrode pattern changes in the longitudinal direction of the substrate. This change in the gate-source capacitance in the longitudinal direction appears as an offset component of the signal output. By using the above pattern, this offset component can be removed. Load capacitor C port (i=
1 to n) are not shown in FIG. 8, but their capacitances are relative to the stray capacitance between the signal lines S and -Sn that occurs in the signal matrix section 13.

10〜数100倍に設定される。もちろん負荷容量を用
いずに前記実施例の如く、負荷抵抗を用いて直接電流の
形で読み出してもよい。
It is set to 10 to several hundred times. Of course, it is also possible to directly read out the current in the form of a current using a load resistor, as in the embodiment described above, without using a load capacitor.

第9図に第8図のx−x ′断面図、第10図に第8図
のY−Y ”断面図を示す。
FIG. 9 shows a sectional view taken along line xx' in FIG. 8, and FIG. 10 shows a sectional view taken along line Y-Y'' in FIG.

図中、1はガラス等の基板、21は下電極で、第9図で
はセンサ一部のゲート電極、第1O図ではTPTのゲー
ト電極となっている。
In the figure, 1 is a substrate made of glass or the like, 21 is a lower electrode, which is a gate electrode of a part of the sensor in FIG. 9, and a gate electrode of a TPT in FIG. 1O.

3は絶縁層でS i NxH,S i 02等で形成さ
れている。
Reference numeral 3 denotes an insulating layer made of SiNxH, Si02, or the like.

4は光導電半導体層でα−3i:H等で形成されている
4 is a photoconductive semiconductor layer formed of α-3i:H or the like.

5は上電極とオーミック接合をとるためのn゛層、22
.23は上電極で第9図ではセンサ一部のソース電極、
第10図ではTPTのソース・ドレイン電極となってい
る。
5 is an n layer for making ohmic contact with the upper electrode; 22
.. 23 is the upper electrode, which in Fig. 9 is the source electrode of a part of the sensor;
In FIG. 10, these are the source and drain electrodes of TPT.

(発明の効果) 以上説明したように本発明によれば、TFT型光電変換
装置のゲート・ソース両電極を共通に接続したので、 (1)電流の蓄積動作において、過渡的な光電流が流れ
ないので、γ=1となり静的動作と同じ高いS/N比が
得られる。
(Effects of the Invention) As explained above, according to the present invention, both the gate and source electrodes of the TFT type photoelectric conversion device are commonly connected, so that (1) a transient photocurrent flows during the current accumulation operation; Therefore, γ=1, and the same high S/N ratio as in static operation can be obtained.

(2)TFT型センサ一部、転送およびリセット用TP
T、蓄積コンデンサー等がすべて同一基板上に同時プロ
セスで作製できるので、高S/N比でかつ低コストなラ
インセンサー型の光電変換装置が提供できる。
(2) Part of TFT type sensor, TP for transfer and reset
Since the T, storage capacitor, etc. can all be fabricated on the same substrate in a simultaneous process, a line sensor type photoelectric conversion device with a high S/N ratio and low cost can be provided.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電変換装置におけるセンサ一部の拡大
平面図、第2図は第1図中x−x′線における断面図、
第3図は従来の光電変換装置の等価回路、第4図は同じ
く動作タイミング図、第5図は同じ〈特性図、第6図は
本発明の実施例の等価回路図、第7図は本発明の他の実
施例の等価回路図、第8図は同じく一部の拡大パターン
図、第、9図は第8図中x−x ’線における断面図、
第1θ図は第8図中Y−Y ’線における断面図である
。 l・・・基板     2・・・ゲート電極3・・・絶
縁層    4・・・半導体層5・・・n・層 6.7.21.22.23・・・電極 第1図 第2図 ■ 第3図 り。 第4図 ’VGS  −−−’  −V9 第5図 1og Voけ 第6図 第8 図 第9図 第10国
FIG. 1 is an enlarged plan view of a part of a sensor in a conventional photoelectric conversion device, and FIG. 2 is a sectional view taken along the line x-x' in FIG.
FIG. 3 is an equivalent circuit of a conventional photoelectric conversion device, FIG. 4 is an operation timing diagram, FIG. 5 is a characteristic diagram, FIG. 6 is an equivalent circuit diagram of an embodiment of the present invention, and FIG. An equivalent circuit diagram of another embodiment of the invention, FIG. 8 is a partially enlarged pattern diagram, and FIGS. 9 and 9 are cross-sectional views taken along the line x-x' in FIG.
FIG. 1θ is a sectional view taken along the line YY' in FIG. l...Substrate 2...Gate electrode 3...Insulating layer 4...Semiconductor layer 5...N layer 6.7.21.22.23...Electrode Figure 1 Figure 2 ■ Third diagram. Figure 4 'VGS ---' -V9 Figure 5 1og Voke Figure 6 Figure 8 Figure 9 Figure 10 Country

Claims (1)

【特許請求の範囲】[Claims] 1、光導電層と、該光導電層と同一平面上に対向して設
けられた第1および第2の電極と、前記光導電層に絶縁
層を介して設けられた第3の電極とで光電変換部が構成
され、前記第1の電極に電源電圧を印加して、第2の電
極から光電変換出力を得る光電変換装置において、前記
第2の電極が第3の電極に共通に接続されていることを
特徴とした光電変換装置。
1. A photoconductive layer, first and second electrodes provided oppositely on the same plane as the photoconductive layer, and a third electrode provided on the photoconductive layer via an insulating layer. In a photoelectric conversion device comprising a photoelectric conversion section, applying a power supply voltage to the first electrode and obtaining a photoelectric conversion output from the second electrode, the second electrode is commonly connected to a third electrode. A photoelectric conversion device characterized by:
JP61311205A 1986-11-11 1986-12-25 Photoelectric conversion device Expired - Lifetime JPH0628310B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61311205A JPH0628310B2 (en) 1986-12-25 1986-12-25 Photoelectric conversion device
US07/117,957 US4886977A (en) 1986-11-11 1987-11-09 Photoelectric converter provided with voltage dividing means
DE3751739T DE3751739T2 (en) 1986-11-11 1987-11-10 Photoelectric converter
EP87116614A EP0267591B1 (en) 1986-11-11 1987-11-10 Photoelectric converter
EP93113275A EP0576040B1 (en) 1986-11-11 1987-11-10 Photoelectric converter
DE3752337T DE3752337T2 (en) 1986-11-11 1987-11-10 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311205A JPH0628310B2 (en) 1986-12-25 1986-12-25 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS63161683A true JPS63161683A (en) 1988-07-05
JPH0628310B2 JPH0628310B2 (en) 1994-04-13

Family

ID=18014366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311205A Expired - Lifetime JPH0628310B2 (en) 1986-11-11 1986-12-25 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH0628310B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635707A (en) * 1994-05-30 1997-06-03 Nec Corporation Photoelectric conversion device for use in sensing light reflected from medium surface
US5663576A (en) * 1994-09-01 1997-09-02 Nec Corporation Photoelectic conversion element with islands
JP2007164127A (en) * 2005-12-14 2007-06-28 Lg Phillips Lcd Co Ltd Liquid crystal display device and fabricating method thereof
JP2008153427A (en) * 2006-12-18 2008-07-03 Hitachi Displays Ltd High sensitive optical sensor element and optical sensor device using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635707A (en) * 1994-05-30 1997-06-03 Nec Corporation Photoelectric conversion device for use in sensing light reflected from medium surface
US5663576A (en) * 1994-09-01 1997-09-02 Nec Corporation Photoelectic conversion element with islands
JP2007164127A (en) * 2005-12-14 2007-06-28 Lg Phillips Lcd Co Ltd Liquid crystal display device and fabricating method thereof
JP2008153427A (en) * 2006-12-18 2008-07-03 Hitachi Displays Ltd High sensitive optical sensor element and optical sensor device using it

Also Published As

Publication number Publication date
JPH0628310B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
KR101095720B1 (en) Display device having image sensor
KR100983524B1 (en) Light sensing panel, apparatus for sensing a light having the same, and driving method thereof
US7759627B2 (en) Display device
EP2033178B1 (en) Active matrix display compensating apparatus
US20100238135A1 (en) Image sensor and display
JPH04302593A (en) Input/output image circuit and circuit array thereof
JPH10108074A (en) High sensitivity image sensor array
KR100691023B1 (en) Active pixel sensor array
JPS63161683A (en) Optoelectric converter
US4788445A (en) Long array photoelectric converting apparatus with insulated matrix wiring
JP2875844B2 (en) Driving method and driving device for thin film transistor type optical sensor
KR20040044117A (en) Image reading device and image reading method
US5291292A (en) Image sensor and method of driving the same
US4965570A (en) Photoelectric conversion apparatus
JPS63161666A (en) Photoelectric conversion device
JP2660046B2 (en) Image sensor
US4916326A (en) Long array photoelectric converting apparatus with reduced crosstalk
JPH04109672A (en) Image sensor
JP2939505B2 (en) Image reading device
Ito et al. a-Si: H TFT array driven linear image sensor with capacitance coupling isolation structure
US6677997B1 (en) Amplifying solid-state imaging device, and method for driving the same
JPH06105069A (en) Method and device for reading picture
JPH0422387B2 (en)
JPH06303379A (en) Picture reading element
JP3094554B2 (en) Image reading device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term