JPS6316097A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPS6316097A
JPS6316097A JP61158046A JP15804686A JPS6316097A JP S6316097 A JPS6316097 A JP S6316097A JP 61158046 A JP61158046 A JP 61158046A JP 15804686 A JP15804686 A JP 15804686A JP S6316097 A JPS6316097 A JP S6316097A
Authority
JP
Japan
Prior art keywords
membrane
liquid
treatment
organic substances
permeated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61158046A
Other languages
Japanese (ja)
Other versions
JPH0218917B2 (en
Inventor
Takayuki Suzuki
隆幸 鈴木
Kaneaki Endo
銀朗 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP61158046A priority Critical patent/JPS6316097A/en
Publication of JPS6316097A publication Critical patent/JPS6316097A/en
Publication of JPH0218917B2 publication Critical patent/JPH0218917B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To efficiently and stably treat organic waste water by separating it into a liquid which permeats a membrane and a liquid which does not permeat therethrough by means of an ultrafiltration membrane and subjecting the liquid which has permeated the membrane to anaerobic treatment. CONSTITUTION:Raw water is fed to a UF membrane filtering stage 2 via an introduction pipe 1, and incorporated SS and high molecular organic substances are separated. The liquid which has permeated through the membrane is fed to a UASB reaction tank 4 via a discharge pipe 3 thereof and organic substances contained in the liquid are subjected to methane fermentation by granules 5 of methane fermentation bacteria. The treated liquid wherein organic substances have been removed is discharged to the outside of the system via a discharge pipe 8 thereof. The liquid which has not permeated and contains. SS and soluble high molecular organic substances separated by the UF membrane is transferred to a dehydration treating stage 10 via a pipe 9 and subjected to a flocculating treatment by a flocculating agent and thereafter concentrated and dehydrated. Thereby an extremely high-load treatment can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は食品加工廃水などの産業廃水、し尿系汚水、そ
の他の浮遊性および溶解性の高分子有機物を含有する有
機性廃水を上向流式嫌気性汚泥床法(UASB法)t−
用いて効率的に嫌気処理を行う方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to upward flow of industrial wastewater such as food processing wastewater, human waste water, and other organic wastewater containing floating and soluble polymeric organic substances. Type anaerobic sludge bed method (UASB method) t-
The present invention relates to a method for efficiently performing anaerobic treatment using the method.

〔発明の技術的背景〕[Technical background of the invention]

UASB @は、嫌気性反応槽の底部にメタン菌のグラ
ニユール(団塊)を形成、堆積せしめて、メタン発酵を
行うものである。
UASB@ performs methane fermentation by forming and depositing granules of methane bacteria at the bottom of an anaerobic reaction tank.

UASB @は、従来の檜内金混合して液中にメタン菌
を分散する方法と異なり、槽内を混合せずに原水を槽底
から上向きに流すことによって槽底にメタン耐自体が緻
密に集合した1径α5〜5mのグラニユールを形成せし
めるものである。このようなグラニユールの堆積層のメ
タン菌濃度は極めて高いため、著るしく高負荷のメタン
発酵処理が可能となった◇しかしながらグラニユールを
形成するメタン菌およびその他の墓の基質の炭素数が9
程度以下の低分子化合物に限られており、高分子有機物
を分解することはできない。高分子有機物の低分子化に
主として反応槽に浮遊する他の嫌気性菌によって行われ
るが、浮遊性の菌は一過性で流出液とともに反応槽外に
流出してしまうので、菌体濃度が低(、UA8B反応槽
での低分子化の速度はメタン生成速度に比べて小さい。
Unlike the conventional method of dispersing methane bacteria in the liquid by mixing metal inside the tank, UASB @ allows the raw water to flow upward from the bottom of the tank without mixing inside the tank, thereby creating a dense methane-proofing system at the bottom of the tank. This is to form a granule with a diameter α of 5 to 5 m. The concentration of methane bacteria in the sedimentary layer of such granules is extremely high, making it possible to carry out extremely high-load methane fermentation treatment.
It is limited to low-molecular compounds of a certain degree or less, and cannot decompose high-molecular organic substances. Other anaerobic bacteria floating in the reaction tank are used to reduce the molecular weight of high-molecular organic substances, but the floating bacteria are temporary and flow out of the reaction tank together with the effluent, so the bacterial cell concentration is reduced. The rate of molecular weight reduction in the UA8B reactor is low compared to the rate of methane production.

このように廃水からの高分子有機物の除去に低分子化の
過程が律速となり、UASB法本来の高負荷処理機能を
効率的に利用することができなかった。1次UASB法
の欠点は、流入水にSS(浮遊固形物)分が多いと、メ
タンガスあるいHCo、ガス泡に付着してスカム化浮上
するSSに同伴してグラニユールも浮上、流出してしま
うことであった。
In this way, the process of lowering the molecular weight becomes rate-limiting for the removal of high-molecular organic substances from wastewater, and the high-load processing function inherent in the UASB method cannot be utilized efficiently. The disadvantage of the primary UASB method is that if the inflow water contains a large amount of SS (suspended solids), the granules will float and flow out along with the SS that adheres to methane gas, HCo, and gas bubbles and becomes scum. Was that.

グラニユールは生長速度が極めて小さいため、一度流出
してしまうと、処理に必要な量が再び形成される筐で長
期間を要し、その間処理が不可能となる。
Granules have an extremely slow growth rate, so once they flow out, it takes a long time in the casing for the amount necessary for treatment to be re-formed, making treatment impossible during that time.

〔発明の目的〕[Purpose of the invention]

本発明は、UASB法による高負荷の嫌気性処理を効率
的、安定的に行う方法を提供することを目的とするもの
である。
An object of the present invention is to provide a method for efficiently and stably performing high-load anaerobic treatment using the UASB method.

〔発明の構成〕[Structure of the invention]

本発明は、有機性廃水f:UASB法によって嫌気性処
理する方法において、該有機性廃水を限外r過膜(UP
膜)によって浮遊性および溶解性の高分子有機物を分離
除去した膜透過液と非透過液に分離り、前記膜透過液を
UAEIB法によって嫌気性処理することを特徴とする
有機性廃水の処理方法である。
The present invention provides a method for anaerobically treating organic wastewater by the UASB method.
A method for treating organic wastewater, characterized in that the membrane permeate and non-permeate are separated by a membrane) to separate and remove floating and soluble polymeric organic substances, and the membrane permeate is treated anaerobically by the UAEIB method. It is.

次に本発明を図面に基いて説明する。Next, the present invention will be explained based on the drawings.

原水は原水導入管1を経てUP膜f過工程2に供給され
、官有するSS及び高分子有機物が分離される。膜透過
液は膜透過液排出管3を経てUASB反応槽4に供給さ
れ、膜透過液中の有機物U UASB反応槽の底部に堆
積しているメタン発酵菌グラニユール5によってメタン
発酵され、生成したメタンガスはUA8B反応槽上部の
メタンガス捕集部6で捕集され管7を経て槽外に排出さ
れる。一方有機物の除去された処理液は処理液排出t8
を経て糸外に排出される。UP膜により分離されたSS
および溶解性の高分子有機物を含む非透過液は管9を経
て脱水処理工程10に移送され、凝集剤によって、凝集
処理されたのち濃縮、脱水される。脱水方法は遠心脱水
、ロール脱水、加圧脱水、真空脱水などいずれの方法で
もよい。脱水分離*12管11を経て直接UASB反応
槽4に移送してもよいが、エアレージョンを行ったあと
処理水8と混合して排出してもよい。
The raw water is supplied to the UP membrane f filtration step 2 through the raw water introduction pipe 1, and the organic SS and high molecular weight organic substances are separated. The membrane permeate is supplied to the UASB reaction tank 4 via the membrane permeate discharge pipe 3, and the organic matter U in the membrane permeate is subjected to methane fermentation by the methane-fermenting bacteria Granule 5 deposited at the bottom of the UASB reaction tank, resulting in methane gas produced. is collected by the methane gas collection section 6 at the upper part of the UA8B reaction tank and discharged to the outside of the tank via the pipe 7. On the other hand, the treated liquid from which organic matter has been removed is discharged at t8.
It is discharged to the outside of the thread. SS separated by UP membrane
The non-permeate liquid containing soluble organic polymers is transferred to a dehydration process 10 through a pipe 9, where it is flocculated by a flocculant, concentrated, and dehydrated. The dehydration method may be any method such as centrifugal dehydration, roll dehydration, pressure dehydration, or vacuum dehydration. It may be directly transferred to the UASB reaction tank 4 via the dehydration separation*12 pipe 11, or it may be mixed with the treated water 8 after aeration and then discharged.

非透過液が悪臭を発生していたり、腐敗しているようで
あれば、脱水を行う前にエアレージョンを行うとよい。
If the non-permeate has a bad odor or appears to be putrid, aeration may be performed before dehydration.

これによって凝集性、脱水性が改善され、悪臭強度も軽
減される。脱水処理工程10において用いる凝集剤は、
有機性高分子凝集剤(ポリマー)t−用いてもよいが、
溶解性の高分子有機物が多い場合は硫酸バンド、塩化第
2鉄、消石灰などの無機凝集剤を用いると溶解性の有機
物も効果的に凝集、脱水することができる。原水1と異
なる他の廃水の処理施設に非透過Rat−移送できれば
、本発明のプロセスをより簡単にすることができる。ま
た、原水にUP膜流路を閉塞するような粗大なSSが含
有されている場合には、スクリーン等で予め粗大8Sを
除去し、脱水処理工程10で処理するとよい。UP膜は
、分画分子量15,000程度のものを用いると、膜平
均圧3iyf/cw’、膜面流速2.0m/秒で40へ
50t/−・時の透過水t−得ることができる。
This improves cohesiveness and dehydration, and reduces the intensity of bad odors. The flocculant used in the dehydration treatment step 10 is
Organic polymer flocculant (polymer) may be used, but
When there are many soluble organic polymers, using an inorganic flocculant such as chloride sulfate, ferric chloride, or slaked lime can effectively coagulate and dehydrate the soluble organic substances. The process of the present invention can be made simpler if non-permeable Rat-transfer can be carried out to another wastewater treatment facility different from the raw water 1. Furthermore, if the raw water contains coarse SS that would block the UP membrane flow path, it is preferable to remove the coarse 8S in advance using a screen or the like, and then treat it in the dehydration treatment step 10. When using a UP membrane with a molecular weight cut-off of approximately 15,000, it is possible to obtain permeate t-hours of 40 to 50 t/- at a membrane average pressure of 3 iyf/cw' and a membrane surface flow rate of 2.0 m/sec. .

一方、UA8B反応槽の容積はBOD 10,000w
y7tの廃水の処理にあたり、水温30Cで1.0日滞
留分が必要である。し友がって、例えばBOD 10,
000岬/を程度の低分子有機物を含有する廃水の処理
では、100−のUF膜と100m”のUA8B反応槽
が必要となる。またUASB @においてハ水温t−2
0℃〜40111:O中温で処理することが肝要である
。水温の降下する冬期の対策として、発生し念メタンガ
スによる加温設備を付帯しておくことが望ましい。
On the other hand, the capacity of the UA8B reaction tank is BOD 10,000w
To treat y7t of wastewater, a 1.0 day retention period is required at a water temperature of 30C. For example, BOD 10,
In the treatment of wastewater containing low-molecular-weight organic matter of about 0.000 m/m, a 100-m UF membrane and a 100 m" UA8B reaction tank are required. Also, at UASB@, a water temperature of t-2 is required.
It is important to process at a medium temperature of 0°C to 40111:O. As a countermeasure in the winter when the water temperature drops, it is desirable to have heating equipment attached that uses methane gas.

実施例−1 発酵部容積2tの円筒状UASB反応槽を用いて合成廃
水を水温53℃で嫌気性処理を行った。
Example 1 Synthetic wastewater was subjected to anaerobic treatment at a water temperature of 53° C. using a cylindrical UASB reaction tank with a fermentation section volume of 2 tons.

合成廃水の溶解性BOD 、溶解性C0Dorは夫々1
2.0001+9/ t、 52,000 ”P/ L
”ChつfCoそして、C0Dcrの70%は分子量が
15,000以上の有機物であつ次。
Solubility BOD and solubility C0Dor of synthetic wastewater are each 1
2.0001+9/t, 52,000”P/L
70% of C0Dcr is organic matter with a molecular weight of 15,000 or more.

本発明を実施するに当り、先づα3%乳酸および酢酸を
含みその他に酵母エキス等t−添加し友溶液i UAS
B反応槽に導入してUASB反応槽底部に有効容積の2
0%((L12)のグラニユールを増殖、堆積せしめ、
この時点から合成廃水に繊維性sst″夫々1,000
.5,000.10.000岬/を添加調整したものを
供試原水として2t/日で嫌気処理を行った。前処理と
して17F漢(分画分子量15,000f)、砂f過法
を用い友。結果t−i1に示す。
In carrying out the present invention, firstly, a solution containing α3% lactic acid and acetic acid and yeast extract, etc.
2 of the effective volume at the bottom of the UASB reaction tank.
Proliferate and deposit 0% ((L12) granules,
From this point on, the synthetic wastewater contains fibrous sst'' of 1,000
.. Anaerobic treatment was performed at a rate of 2 tons/day using sample raw water prepared by adding 5,000.10,000 capes/day. As a pretreatment, 17F (molecular weight cut off: 15,000f) and sand filtration were used. The results are shown in t-i1.

表1の結果は合成廃水通液10日後の1日あたりのガス
発生量を示す。
The results in Table 1 show the amount of gas generated per day after 10 days of flowing synthetic wastewater.

前処理が砂ろ過のものおよび前処理のないものh、ss
6るいは発生ガスの浮上に伴ってグラニユールが浮上し
て堆積量が減少したことにより、ガス発生量が低下した
ことが示されている。砂r過の逆洗液およびUFF濾過
で捕捉されたSS、溶解性高分子物質t−金含有る液は
Fect3および有機性高分子凝集剤(ポリマー)で凝
集したのち、フィルタプレスで脱水し、脱水P液t−t
7A8B反応槽に注入した。前処理に適用した砂ろ過水
は、SSがなく澄明であったにもかかわらず、メタン菌
グラニユールに発生ガスに付着して上昇し、流出した。
Pre-treatment with sand filtration and no pre-treatment h, ss
It is shown that the amount of gas generated decreased because the granules floated up as the generated gas rose and the amount of deposition decreased. The backwash liquid of sand filtration and the liquid containing SS and soluble polymer substance t-gold captured by UFF filtration are coagulated with Fect3 and an organic polymer flocculant (polymer), and then dehydrated with a filter press. Dehydrated P liquid t-t
7A8B reactor. Although the sand-filtered water applied for pretreatment was clear and free of SS, it adhered to the generated gas on the methane bacteria granules, rose, and flowed out.

一方、Uy@rt適用したものはグラニユールが浮上し
なかった。
On the other hand, granules did not emerge when Uy@rt was applied.

これに溶解性であっても砂ろ過では除去できない高分子
有機物が存在すると、発生ガス気泡にメタン菌グラニユ
ールの付着性が強くなり、かつ浮上した気泡が安定化し
て容易に破泡しないためであることが確認され几。
If there is a high-molecular organic substance that cannot be removed by sand filtration even if it is soluble, the methane bacteria granulules will strongly adhere to the generated gas bubbles, and the floating bubbles will be stabilized and will not burst easily. This is confirmed.

〔発明の効果〕〔Effect of the invention〕

ill  UASB反応槽に流入する廃水中の有機物が
メタン発酵に適合したものだけになるので、極めて高負
荷の処理を行うことができ、UASB法本来の機能を十
分に生かすことができる0t21UP膜によってコロイ
ド状の88ばかりですく、グラニユールと気泡の付着を
増強し、安定化+る溶解性の高分子有機物を選択的に除
去することによって、UASB反応槽におけるグラニユ
ールの浮上、流出を防止することができる。
ill Since the organic matter in the wastewater that flows into the UASB reaction tank is only those that are compatible with methane fermentation, it is possible to perform extremely high-load processing, and the 0t21UP membrane, which can fully utilize the original functions of the UASB method, is used to remove colloids. By increasing the adhesion of granules and air bubbles and selectively removing stabilizing soluble polymeric organic substances, it is possible to prevent granules from floating or flowing out in the UASB reaction tank. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのフロー概略
図である0
FIG. 1 is a flow diagram for explaining one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、有機性廃水を上向流式嫌気性汚泥床法によつて嫌気
性処理する方法において、前記有機性廃水を限外濾過膜
によつて該廃水中の浮遊性および溶解性の高分子有機物
を分離除去した膜透過液と非透過液に分離し、前記膜透
過液をUASB法によつて嫌気性処理することを特徴と
する有機性廃水の処理方法。
1. In a method for anaerobically treating organic wastewater by an upflow anaerobic sludge bed method, the organic wastewater is filtered through an ultrafiltration membrane to remove floating and soluble polymeric organic substances in the wastewater. 1. A method for treating organic wastewater, which comprises separating a membrane permeate liquid and a non-permeate liquid, which are separated and removed, and subjecting the membrane permeate liquid to anaerobic treatment by the UASB method.
JP61158046A 1986-07-07 1986-07-07 Treatment of organic waste water Granted JPS6316097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158046A JPS6316097A (en) 1986-07-07 1986-07-07 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158046A JPS6316097A (en) 1986-07-07 1986-07-07 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS6316097A true JPS6316097A (en) 1988-01-23
JPH0218917B2 JPH0218917B2 (en) 1990-04-27

Family

ID=15663107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158046A Granted JPS6316097A (en) 1986-07-07 1986-07-07 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS6316097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789000A1 (en) * 1996-02-12 1997-08-13 Oesterreichische Nationalbank Process for treating polluted alkaline aqueous cleaning solutions
JP2007524501A (en) * 2003-06-24 2007-08-30 カロロ エンジニアーズ, ピー・シー Wastewater treatment method and wastewater treatment system
JP2008510619A (en) * 2004-08-26 2008-04-10 カロロ エンジニアーズ, ピー・シー Anoxic biological reduction systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789000A1 (en) * 1996-02-12 1997-08-13 Oesterreichische Nationalbank Process for treating polluted alkaline aqueous cleaning solutions
JP2007524501A (en) * 2003-06-24 2007-08-30 カロロ エンジニアーズ, ピー・シー Wastewater treatment method and wastewater treatment system
JP2008510619A (en) * 2004-08-26 2008-04-10 カロロ エンジニアーズ, ピー・シー Anoxic biological reduction systems and methods

Also Published As

Publication number Publication date
JPH0218917B2 (en) 1990-04-27

Similar Documents

Publication Publication Date Title
US6245121B1 (en) Method for treating aqueous liquid effluents containing organic and inorganic materials to enable recycling thereof
CN104163548B (en) A kind of zero release sewage water treatment method
CN208917033U (en) Pre-treatment waste water treatment system
CN1970474A (en) Garbage leachate processing process and system based on membrane bioreactor-nano filtering membrane technology
CN106946407A (en) A kind of process for reclaiming of crushed coal pressure gasifying wastewater biochemical water outlet
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP2911327B2 (en) Method and apparatus for treating water containing turbid components
CN105948382A (en) Domestic sewage treatment process
CN104418465A (en) Landfill leachate treatment method and equipment
CN109354304A (en) A kind of sewage treatment and energy recovery method based on three-level membrane separation technique
CN105461170A (en) Device for treating methyl alcohol waste water through SBR process
CN208857095U (en) A kind of New-type refuse vehicle percolation liquid treating system
JPS6316097A (en) Treatment of organic waste water
JPH0218918B2 (en)
CN100537460C (en) Process for reclaiming PVC slurry waste water using liquid phase suspension method
JPH04131199A (en) Concurrent disposal of night soil and septic tank sludge
JPS6316099A (en) Treatment of organic waste water
JPH0760299A (en) Method for pressure-dehydrating fermentable organic liquid with high efficiency
JPH03275197A (en) Treatment of night soil type sewage
JPS61185400A (en) Apparatus for treating excretion sewage
CN203474561U (en) Treatment equipment of landfill leachate
KR100313455B1 (en) Livestock Wastewater Treatment Method Using Membrane Process
WO2023176161A1 (en) Method for operating anaerobic treatment apparatus
KR20130090592A (en) Advanced treating apparatus of wastewater using membrance its method
CN212451063U (en) Garbage penetrating fluid treatment system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees