JPS63160714A - Automatic plate thickness control method for rolling mill - Google Patents

Automatic plate thickness control method for rolling mill

Info

Publication number
JPS63160714A
JPS63160714A JP61313788A JP31378886A JPS63160714A JP S63160714 A JPS63160714 A JP S63160714A JP 61313788 A JP61313788 A JP 61313788A JP 31378886 A JP31378886 A JP 31378886A JP S63160714 A JPS63160714 A JP S63160714A
Authority
JP
Japan
Prior art keywords
plate thickness
rolling
rolling mill
plate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61313788A
Other languages
Japanese (ja)
Inventor
Satoshi Tsuzuki
聡 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61313788A priority Critical patent/JPS63160714A/en
Publication of JPS63160714A publication Critical patent/JPS63160714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the accuracy in plate thickness by using a detection plate thick ness and detection plate length at an inlet side and outlet side, correcting a rolling reduction amt. based on the established rule of a mass flow in the case of a rolling mill being at the time of an acceleration and speed reduction and correcting the rolling reduction amount by using the detection plate thickness in the case of a constant speed time. CONSTITUTION:The plate lengths at the inlet side and outlet side of a rolling mill are detected by an inlet side plate length gage 24, outlet side plate length gage 34. The plate thickness at the inlet side of a rolling mill is detected. Then, whether the rolling speed of a rolling mill is in a constant speed state or in a speed acceleration and reduction state is detected in order to operate or judge the output of the rolling reduction with the automatic plate thickness controller of either that by the established rule of a mass flow or that by a feed forward control. At the time of a speed accelera tion or deceleration, the operation of the value to correct the rolling reduction amt. is performed to perform the automatic plate thickness control by the mass flow estab lished rule and at a constant speed time the rolling reduction correction amt. is operat ed with that by a feed forward control. This correction amt. is outputted to an electro- hydraulic servo valve 30 to perform the plate thickness control.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、圧延機の自動板厚制御方法に係り、特に、コ
イル全長に亘り板jXFs度を向上させるべく自動板厚
制御を行う際に用いるのに好適な、圧延機の自動板厚i
制御方法の改良に関する。
The present invention relates to an automatic plate thickness control method for a rolling mill, and in particular, an automatic plate thickness i control method for a rolling mill suitable for use when performing automatic plate thickness control to improve the plate jXFs degree over the entire length of the coil.
Concerning improvements in control methods.

【従来の技術】[Conventional technology]

圧延される板材の品質を決定する上で、その板厚は重要
な品質管理項目の1つである。 この板厚を−2にMupする技術に、自動板厚制御(オ
ートマチックゲージコントロール: AGC)があるが
、その1つに特開昭57−181711号公報で示され
た圧延機の自動圧下率制御方法がある。この自動圧下率
制御方法においては、圧延材のJjt量流量一定則(マ
スフロー一定則)に基づき圧延機入側板長さ、入側板厚
及び目標圧下率から出側板長さを算出し、算出出側板長
さと実測出側板長さを比較して、比較の結果により前記
圧延機の圧下量を制御している。 ところで、質量流量一定則に従うと、ある瞬間の圧延前
における板材の所定部分の体積V HJと該所定部分が
圧延され出側に出てきた際の体積VOJとの関係は次式
(1)の如くとなり、圧延前後の前記所定部分(図では
区分jで示す)の板厚の変化状態は第4図(A)〜(C
)に示されるものとなる。 V i  J  ” V Oj          ・
・・・・・・・・ (1)なお、同図(A)は板材(例
えばストリップ)10中の区分jで示される所定部分(
以下、区分jと称する)が圧延機のワークロール16直
前にある場合の状態を示し、同図(B)は前記区分jが
圧延中であり、次の区分j+1がワークロール16直前
にある場合を示し、同図(C)は前記区分jの圧延が終
了し、次の区分j+1が圧延されている状態を示すもの
である。 ここで、前記区分jの圧延機入側板長さをLij、入側
板厚の設定値をGij、入側板厚の設定値GiJに対す
る実際の値の偏差をΔG i J 、出側の板長さをL
 Oj 、出側板厚の設定値をGOJ、出側板厚の設定
値GOjに対する実際の値の偏差をΔGOJとし、幅方
向の板波れを無視すれば、(1)式は次式(2)の如く
変換できる。 Li、・(GIJ+ΔG+J) =Lo  j  ・  (Go  J  + Δ Go
  J )    ・” ・=(2>又、実際の出側板
厚が設定板厚GOjになったと仮定した場合(出側板厚
偏差ΔGo J =Oの場合)、第4図に示されるよう
なj −1番目の区分J−1では、(2)式より入側板
厚G i ; −1’が次式(3)のようになる。 GiJ−*’=(LoJ−z/Lij−t)xGoJ−
t  ・・・・・・(3) 従って、この入側板厚GiJ−1’と実際の区分jの入
側板厚GiJ’との差ΔGJは次式(4)%式% そして、この差ΔGJに見合う分だけ圧延機の油圧シリ
ンダを動作させ、入側板厚偏差ΔciJを補正すれば、
出側板厚偏差ΔGOJが零になるはずである。
In determining the quality of a rolled plate, the thickness of the plate is one of the important quality control items. Automatic plate thickness control (automatic gauge control: AGC) is a technology for increasing this plate thickness to -2, and one of them is the automatic rolling reduction rate control of a rolling mill shown in Japanese Patent Application Laid-open No. 57-181711. There is a way. In this automatic rolling reduction rate control method, the length of the outlet plate is calculated from the length of the plate entering the rolling machine, the thickness of the plate entering the rolling machine, and the target rolling rate based on the constant Jjt flow rate law (constant mass flow law) of the rolled material. The length is compared with the actually measured outlet plate length, and the rolling reduction amount of the rolling mill is controlled based on the comparison result. By the way, according to the law of constant mass flow rate, the relationship between the volume V HJ of a predetermined portion of the plate material before rolling at a certain moment and the volume VOJ when the predetermined portion is rolled and comes out on the exit side is expressed by the following equation (1). The state of change in the thickness of the predetermined portion (indicated by section j in the figure) before and after rolling is shown in Figures 4(A) to (C).
). V i J ”V Oj・
・・・・・・・・・ (1) Note that FIG.
(hereinafter referred to as section j) is located immediately before the work roll 16 of the rolling mill. Figure (B) shows the case where the section j is being rolled and the next section j+1 is located immediately before the work roll 16. The same figure (C) shows a state in which the rolling of the section j has been completed and the next section j+1 is being rolled. Here, Lij is the length of the plate on the entrance side of the rolling machine for the above classification j, Gij is the set value of the plate thickness on the inlet side, ΔG i J is the deviation of the actual value of the plate thickness from the set value GiJ, and is the length of the plate on the exit side. L
Oj, the set value of the outlet plate thickness is GOJ, the deviation of the actual value from the set value GOj of the outlet plate thickness is ΔGOJ, and if the plate corrugation in the width direction is ignored, equation (1) becomes the following equation (2). It can be converted as follows. Li, ・(GIJ+ΔG+J) = Lo j ・(Go J + ΔGo
J) ・"・=(2>Also, if it is assumed that the actual exit plate thickness becomes the set plate thickness GOj (if the exit plate thickness deviation ΔGo J = O), then j − as shown in FIG. In the first division J-1, the inlet side plate thickness G i ; -1' becomes as shown in the following equation (3) from equation (2): GiJ-*'=(LoJ-z/Lij-t)xGoJ-
t ・・・・・・(3) Therefore, the difference ΔGJ between this entrance side plate thickness GiJ-1' and the actual entrance side plate thickness GiJ' of section j is expressed by the following formula (4) % formula % And this difference ΔGJ If the hydraulic cylinder of the rolling mill is operated accordingly and the entry side plate thickness deviation ΔciJ is corrected,
The exit plate thickness deviation ΔGOJ should be zero.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、上記の如く質量流量一定則に基づき入側
板厚1口差を補正する際に、板長さを検出するのにタッ
チロールを用いた場合、高速圧延時には該タッチロール
と板材間に滑りが生じ、一定速度であっても板厚精度が
良好なものとは言えなくなってしまう場合があった。 一方、自動板厚制御には、従来から、上記フィードバッ
ク制御の他にフィードフォワード制御によるものがある
。このフィードバックフォワード制御は、例えば第4図
により説明すると、区分j、j−1番目の入側板厚偏差
ΔciJ、ΔGiJ−1から圧下シリンダを動作させて
圧下量を補正すべき値即ち圧下補正量ΔGJ’を次式(
5)の如く決定する技術である。 ΔG j ’ ” (G i J+ΔG+J)−(Gi
J−1+ΔGij−1> =ΔG i j−ΔGiJ−1 ・・・・・・・・・(5) なお、(5)式は区分j 、 j −1番目の入側板厚
Gij、GiJ−tが等しいものとして決められる。 ところで、上記フィードフォワード制御による自動板厚
制御は、入側板厚Giのみを検出して圧下量を決めるた
め、板材が入側板厚計からワークロールまで移動する際
に発生する状態変化が問題となる。この状態変化には例
えばワークロール及び板材間の油膜厚さ変化等がある。 又、前記状態変化により、圧延速度が変化し、該状態変
化が発生する圧延加減速時、例えば圧延開始及び停止時
は、一般に板厚精度が前記従来の質量流量一定則による
自動板厚制御よりも劣るものとなる。一方、前記状態変
化の少ない一定速度のとき、特に高速圧延時には、タッ
チロールが滑るという問題が発生する前記質量流量一定
則による自動板厚制御よりも板厚精度が良好なものが得
られる。 以上のように、質量流量一定則による自動板厚制御及び
フイードフォワードル制御による自動板厚制御はそれぞ
れ長所及び短所を有するが、それらの長所、短所を把握
して長所のみを生かし板厚精度を向上できる自動板厚i
1.制御が従来存在しなかっな。
However, when a touch roll is used to detect the length of the plate when correcting the one-hole difference in the entrance plate thickness based on the constant mass flow rate law as described above, slippage occurs between the touch roll and the plate during high-speed rolling. In some cases, the plate thickness accuracy could not be said to be good even at a constant speed. On the other hand, automatic plate thickness control has conventionally been based on feedforward control in addition to the feedback control described above. This feedback forward control will be explained with reference to FIG. 4, for example. The reduction cylinder is operated from the section j, j-1st entry side plate thickness deviation ΔciJ, ΔGiJ-1, and the value to correct the reduction amount, that is, the reduction correction amount ΔGJ ' with the following formula (
5). ΔG j ''' (G i J+ΔG+J)−(Gi
J-1+ΔGij-1> =ΔG i j−ΔGiJ-1 ・・・・・・・・・(5) Equation (5) is based on the following equation: determined to be equal. By the way, the automatic plate thickness control using the feedforward control described above detects only the entry side plate thickness Gi to determine the reduction amount, so the change in state that occurs when the plate material moves from the entry side thickness gauge to the work roll poses a problem. . This state change includes, for example, a change in the thickness of the oil film between the work roll and the plate material. In addition, the rolling speed changes due to the state change, and during rolling acceleration/deceleration when the state change occurs, for example, at the start and stop of rolling, the plate thickness accuracy is generally lower than the conventional automatic plate thickness control based on the constant mass flow rate law. will also be inferior. On the other hand, when rolling at a constant speed with little change in state, particularly during high-speed rolling, better plate thickness accuracy can be obtained than automatic plate thickness control based on the constant mass flow rate law, which causes the problem of touch roll slipping. As mentioned above, automatic plate thickness control using the constant mass flow rate law and automatic plate thickness control using feedforward control each have their advantages and disadvantages, but it is important to understand these advantages and disadvantages and take advantage of only their strengths to improve plate thickness accuracy. Automatic plate thickness i that can improve
1. Conventionally, there was no control.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消すべくなされたもの
であって、質量流量一定則による自動板厚制御とフィー
ドフォワード制御による自動板厚制御の両者の長所のみ
を取入れて自動板厚!制御を行うことができ、両者の欠
点を補い板厚精度の向上を確実に図るととができる圧延
機の自動板厚制御方法を提供することを目的とする。
The present invention was made in order to solve the above-mentioned problems of the conventional art, and takes advantage of both automatic plate thickness control based on the constant mass flow rate law and automatic plate thickness control based on feedforward control to achieve automatic plate thickness control. It is an object of the present invention to provide an automatic plate thickness control method for a rolling mill that can perform control, compensate for the drawbacks of both, and reliably improve plate thickness accuracy.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、圧延機で圧延される板材の板厚を目標板厚と
すべく、該圧延機の圧下量を、圧延機入側で検出される
板厚、入側、出側で検出される板長さにより補正して自
動板厚制御を行う際に、前記圧延機が加減速時の場合は
、前記検出板厚及び入側、出側の検出板長さを用い、質
量流量一定則に基づき圧下量を捕正し、前記圧延機が定
速時の場合は、前記検出板厚を用いて圧下量を補正する
ことにより、前記目的を達成したものである。
In order to set the thickness of a plate material rolled by a rolling mill to a target thickness, the present invention measures the rolling reduction amount of the rolling mill by measuring the plate thickness detected at the input side of the rolling machine, the input side, and the output side of the rolling mill. When performing automatic plate thickness control with correction based on the plate length, if the rolling mill is accelerating or decelerating, the detected plate thickness and the detected plate lengths on the entry and exit sides are used to control the constant mass flow rate. The above object is achieved by correcting the reduction amount based on the detected plate thickness when the rolling mill is at a constant speed.

【作用】[Effect]

本発明においては、自動板厚制御を行う際に、圧延機の
加減速時の場合は、圧延機入側で検出される板厚、圧延
機入側、出側で検出される板長さを用い、質量流量一定
則に基づき、前記圧延機の圧下量を補正し、前記圧延機
が定速時の場合は、前記検出板厚を用いて圧下量を補正
している。 従って、質量流麓一定則に基づく自動板厚制御及びフィ
ードフォワードmajによる自動板厚制御の両者の長所
のみを取入れて自動板厚III OIIを行うことがで
き、板厚精度の向上を確実に図ることができる。
In the present invention, when performing automatic plate thickness control, when the rolling mill is accelerating or decelerating, the plate thickness detected at the input side of the rolling mill, and the plate length detected at the input side and exit side of the rolling machine are The rolling reduction amount of the rolling mill is corrected based on the constant mass flow rate law, and when the rolling mill is at a constant speed, the rolling reduction amount is corrected using the detected plate thickness. Therefore, automatic plate thickness III OII can be performed by incorporating only the advantages of both automatic plate thickness control based on the constant mass flow law and automatic plate thickness control using feedforward maj, and it is possible to reliably improve plate thickness accuracy. be able to.

【実施例】【Example】

以下、図面を参照して本発明の実施例を詳細に説明する
。 この実施例は、第1図に示されるような制御手順で、第
2図に示されるような自動板厚M御装置を制御して圧延
加速時の板厚を最適なものとするようにしたものである
。 第2図の可逆式圧延機には、g1910を巻き出すペイ
オフリール12と、該銅帯10を送出すデフレクタロー
ル14と、送出された銅帯10を圧延するための、ワー
クロール16、及びバックアップロール18と、圧延さ
れた銅帯10が巻き掛かるデフレクタロール20、巻き
掛けられた鋼帯10を巻込むためのテンションリール2
2とが備えられる。 又、前記可逆式圧延機を制御するための自動板厚制御装
置には、圧延機入側の鋼帯10の板長さを検出するため
の入側板長さ計24と、該銅帯10の厚みを検出するた
めの入側厚み計26と、前記バックアップロール18に
圧下刃を加えるための油圧シリンダ28と、入力される
電気信号を制御油圧に変換して前記油圧シリンダ28へ
供給するための電油サーボ弁30と、圧延後の鋼帯10
の厚みを検出するための出側厚み計32と、該出側の鋼
帯10の長さを検出するための出側板長さ計34と、前
記入−側板長さ計24及び出側板長さ計34の出力L1
、L、の信号を計数して板長さを求めるためのカウンタ
36と、前記入側厚み計26及び出側厚み計32の出力
G i J+ΔG i J、GOj+ΔGOJから入側
板厚イα差ΔGi、実出側板厚偏差ΔCOを算出するた
めの板厚偏差出力回路38と、前記カウンタ36、及び
板厚偏差出力回路38の出力を基に前記電油サーボ弁3
0を制御して自動板厚制御をするための制御装置42と
が備えられる。 以下、実施例の作用を説明する。 この実施例は、第1図の流れ図に示される制御手順で自
動板厚制御を行ない、鋼帯10の板厚精度を向上させて
いる。 即ち、図の制御手順においては、まずステップ110で
、圧延機入側、出側の板長さLi、L。 を入側板長さ計24、出側板長さ計で検出する。 次いでステップ120で、前記圧延機入側板厚Giを検
出する0次いでステップ130で、質量流壁一定則によ
る自動板厚制御及びフィードフォワード制御による自動
板厚制御のうちいずれの自動板厚制御で圧下出力を演算
するかを判断するため、圧延機の圧延速度が一定速度の
状態にあるか、加減速の状態にあるかを検出する1次い
でステップ140で、前記圧延速度が加減速中であるか
否かを判定し、加減連中であればステップ150に進み
、加減速中でなく一定状態であればステップ160に進
む。 ステップ150においては、質量流量(マスフロー)一
定則による自動板厚制御(AGC)を行うため、前出(
1)〜(4)式を用いて、目標板厚を得るため圧延機の
圧下量を補正すべき値即ち圧下補正量ΔGJの演算を行
う、一方、ステップ160では、フィードフォワード制
御による自動板厚制御又は前出(5)式を用いて圧下補
正量ΔGj’を演算する。 ステップ150.160の演算処理が終った後にステッ
プ170で、演算された圧下補正量ΔGj、ΔGj’を
電油サーボ弁30に出力して板厚を制御する0次いでス
テップ180で圧延が終了したか否かを判定し、未だ圧
延終了と判断されない場合は再度ステップ110に戻り
、このrrA御手順を繰返し行う、一方、圧延終了と判
断されたときはこの制御手順を終了する。なお、ステッ
プ170で圧下補正量ΔGJあるいはΔGJ’を出力す
る頻度は、入側板長さが決められた長さ移動する毎に出
力するものとし、JM量流量一定則あるいはフィードフ
ォワード制御による自動板厚制御いずれの場合も同様の
長さ毎に出力する。又、ステップ150,160のいず
れかで補正量を算出するため、自動板厚制御に要する演
算回数が重複することがない、更に、上記制御手順によ
る圧延速度に対する各板Jゾv制御の制御時期の関係は
、第3図に示されるようなものとなる0図には比較のた
め、従来の質量流量一定則にのみによる11動板厚制御
を同図(A)に示し、本発明方法による自動板厚制御を
同図(B)に示しである。又、図中、時間t1〜t2は
加速時、t2〜t3は一定速度時、t3〜t4は減速時
を示す。 なお、前記実施例により板材として鋼種ステンレス鋼を
自動板厚ルリ御した結果を、以下に示す。 この場合、前記鋼種ステンレス鋼の材質は5US430
、板幅は1000n、板厚は1.011のものを用いた
。 板材全長に対する、板厚偏差が目標偏差内に入る板長さ
の比率即ちオンゲージ率が、第3図の(A)に示した従
来による場合96.5%であったが、同図の(B)に示
した本発明方法による場合、97.0%に向上すること
が確認できた。 なお、前記実施例においては、板材として鋼種ステンレ
ス鋼を例示したが、板材はこのようなものに検定されず
、他の材質あるいは寸法の板材を圧延機で圧延する際に
本発明方法を実施することが可能である。 又、前記実施例においては、本発明を可逆式圧延機の自
動板厚i!II御装置に採用していたが、本発明の採用
範囲はこれに限定されず、例えば連続式圧延機の自動板
厚制御装置にも同様に適用できることは明らかである。
Embodiments of the present invention will be described in detail below with reference to the drawings. In this embodiment, the automatic plate thickness M control device as shown in Fig. 2 is controlled using the control procedure shown in Fig. 1 to optimize the plate thickness during rolling acceleration. It is something. The reversible rolling mill shown in FIG. 2 includes a payoff reel 12 for unwinding g1910, a deflector roll 14 for delivering the copper strip 10, a work roll 16 for rolling the delivered copper strip 10, and a backup roll. A roll 18, a deflector roll 20 around which the rolled copper strip 10 is wound, and a tension reel 2 for winding up the rolled steel strip 10.
2 is provided. Further, the automatic plate thickness control device for controlling the reversible rolling mill includes an entry side plate length gauge 24 for detecting the plate length of the steel strip 10 on the entry side of the rolling mill, and An entry side thickness meter 26 for detecting the thickness, a hydraulic cylinder 28 for applying a reduction blade to the backup roll 18, and a hydraulic cylinder 28 for converting an input electric signal into control hydraulic pressure and supplying it to the hydraulic cylinder 28. Electro-hydraulic servo valve 30 and steel strip 10 after rolling
an exit side thickness gauge 32 for detecting the thickness of the steel strip 10, an exit side plate length gauge 34 for detecting the length of the steel strip 10 on the exit side, the input side plate length meter 24 and the exit side plate length. Total of 34 outputs L1
, L, and the outputs of the input side thickness gauge 26 and the output side thickness gauge 32, G i J + ΔG i J, GOj + ΔGOJ, and the input side plate thickness i α difference ΔGi, The electro-hydraulic servo valve 3 is operated based on the outputs of the plate thickness deviation output circuit 38, the counter 36, and the plate thickness deviation output circuit 38 for calculating the actual outlet side plate thickness deviation ΔCO.
A control device 42 is provided for automatically controlling the plate thickness by controlling the thickness of the plate. The effects of the embodiment will be explained below. In this embodiment, the plate thickness accuracy of the steel strip 10 is improved by automatically controlling the plate thickness according to the control procedure shown in the flowchart of FIG. That is, in the control procedure shown in the figure, first, in step 110, the plate lengths Li and L on the rolling mill entry side and exit side are determined. is detected by the inlet side plate length meter 24 and the outlet side plate length meter. Next, in step 120, the plate thickness Gi at the entrance of the rolling machine is detected.In step 130, rolling is performed by either automatic plate thickness control based on the constant mass flow wall law or automatic plate thickness control based on feedforward control. In order to determine whether to calculate the output, it is detected whether the rolling speed of the rolling mill is in a constant speed state or in an acceleration/deceleration state.Next, in step 140, whether the rolling speed is in an acceleration/deceleration state is detected. It is determined whether or not the speed is being increased or decreased, and if the speed is increasing or decreasing, the process proceeds to step 150, and if the speed is not being accelerated or decelerated but is in a constant state, the process proceeds to step 160. In step 150, in order to perform automatic plate thickness control (AGC) based on a constant mass flow rate (mass flow),
Using equations 1) to (4), a value to be corrected for the reduction amount of the rolling mill to obtain the target plate thickness, that is, a reduction correction amount ΔGJ is calculated.Meanwhile, in step 160, the automatic plate thickness is calculated by feedforward control. The reduction correction amount ΔGj' is calculated using control or equation (5) above. After the arithmetic processing in steps 150 and 160 is completed, in step 170, the calculated reduction correction amounts ΔGj, ΔGj' are output to the electro-hydraulic servo valve 30 to control the plate thickness.Next, in step 180, a check is made to determine whether rolling has ended. If it is determined that rolling has not yet been completed, the process returns to step 110 and this rrA control procedure is repeated.On the other hand, if it is determined that rolling has been completed, this control procedure is terminated. In addition, the frequency of outputting the reduction correction amount ΔGJ or ΔGJ' in step 170 is that it is output every time the entrance plate length moves a predetermined length, and the automatic plate thickness is determined by the constant JM flow rate law or feedforward control. In either case of control, the same length is output. In addition, since the correction amount is calculated in either step 150 or 160, the number of calculations required for automatic plate thickness control does not overlap.Furthermore, the control timing of each plate Jzov control for the rolling speed according to the above control procedure is The relationship is as shown in FIG. Automatic plate thickness control is shown in the same figure (B). Further, in the figure, time t1 to t2 indicates acceleration, t2 to t3 indicates constant speed, and t3 to t4 indicates deceleration. The results of automatically controlling the plate thickness of stainless steel as a plate material according to the above embodiment are shown below. In this case, the material of the stainless steel is 5US430
, the plate width was 1000n, and the plate thickness was 1.011. The ratio of the length of the plate whose thickness deviation falls within the target deviation to the total length of the plate, that is, the on-gauge rate, was 96.5% in the conventional method shown in (A) in Figure 3, but in the case of (B) in the same figure, the on-gauge rate was 96.5%. ), it was confirmed that the method of the present invention improved to 97.0%. In the above embodiments, stainless steel is used as an example of the plate material, but the plate material is not certified as such, and the method of the present invention is carried out when rolling plate materials of other materials or dimensions with a rolling mill. Is possible. In addition, in the above embodiments, the present invention was applied to the automatic plate thickness i! of a reversible rolling mill. Although the present invention is adopted in a II control device, the scope of the present invention is not limited thereto, and it is clear that it can be similarly applied to, for example, an automatic plate thickness control device of a continuous rolling mill.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、質量流量一定則に
よる自動板厚制御とフィードフォワード制御による自動
板厚制御を両者の長所のみを取入れて自動板厚制御を行
うことが可能となり、従って、両者の欠点を補い板厚精
度の向上を確実に図ることができるという優れた効果が
得られる。
As explained above, according to the present invention, it is possible to perform automatic plate thickness control by taking advantage of only the advantages of automatic plate thickness control based on the constant mass flow rate law and automatic plate thickness control using feedforward control. An excellent effect can be obtained in that the drawbacks of both can be compensated for and the plate thickness accuracy can be reliably improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である自動板厚制御装置のrv
i御手順を示す流れ図、第2図は前記実施例の自動板厚
1c11御装置の全体構成を示す、一部ブロック線図を
含む断面図、第3図は前記実施例の作用を説明するため
の、圧延速度に対する従来法及び本発明法による自動板
厚制御の関係の例を示す線図、第4図(A)〜(C)は
質量流量一定則に基づく板材の圧延前後の状態の例を示
す要部断面図である。 10・・・銅帯、 16・・・ワークロール、 18・・・バックアップロール、 24・・・入側板長さ計、 26・・・入側厚み計、 28・・・油圧シリンダ、 30・・・電油サーボ弁、 32・・・出側厚み計、 34・・・出側板長さ計、 36・・・カウンタ、 38・・・板厚偏差出力回路、 42・・・制御装置。
Figure 1 shows the rv of an automatic plate thickness control device which is an embodiment of the present invention.
FIG. 2 is a cross-sectional view, including a partial block diagram, showing the overall configuration of the automatic plate thickness 1c11 control device of the above embodiment; FIG. 3 is for explaining the operation of the above embodiment. A diagram showing an example of the relationship between automatic plate thickness control by the conventional method and the method of the present invention with respect to rolling speed, and Figures 4 (A) to (C) are examples of the state of the plate before and after rolling based on the constant mass flow rate law. FIG. DESCRIPTION OF SYMBOLS 10... Copper strip, 16... Work roll, 18... Backup roll, 24... Entrance plate length gauge, 26... Entrance thickness gauge, 28... Hydraulic cylinder, 30... - Electro-hydraulic servo valve, 32... Outlet side thickness gauge, 34... Outlet side plate length gauge, 36... Counter, 38... Plate thickness deviation output circuit, 42... Control device.

Claims (1)

【特許請求の範囲】[Claims] (1)圧延機で圧延される板材の板厚を目標板厚とすべ
く、該圧延機の圧下量を、圧延機入側で検出される板厚
、入側、出側で検出される板長さにより補正して自動板
厚制御を行う際に、 前記圧延機が加減速時の場合は、前記検出板厚及び入側
、出側の検出板長さを用い、質量流量一定則に基づき圧
下量を補正し、 前記圧延機が定速時の場合は、前記検出板厚を用いて圧
下量を補正することを特徴とする圧延機の自動板厚制御
方法。
(1) In order to set the thickness of the plate material rolled by the rolling mill to the target thickness, the reduction amount of the rolling mill is determined by the plate thickness detected at the input side of the rolling machine, the plate thickness detected at the input side, and the plate thickness detected at the output side of the rolling machine. When performing automatic plate thickness control with correction based on the length, if the rolling mill is accelerating or decelerating, the detected plate thickness and the detected plate lengths on the entry side and exit side are used, and the control is performed based on the constant mass flow rate law. An automatic plate thickness control method for a rolling mill, comprising: correcting a reduction amount; and, when the rolling mill is at a constant speed, correcting the reduction amount using the detected plate thickness.
JP61313788A 1986-12-24 1986-12-24 Automatic plate thickness control method for rolling mill Pending JPS63160714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313788A JPS63160714A (en) 1986-12-24 1986-12-24 Automatic plate thickness control method for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313788A JPS63160714A (en) 1986-12-24 1986-12-24 Automatic plate thickness control method for rolling mill

Publications (1)

Publication Number Publication Date
JPS63160714A true JPS63160714A (en) 1988-07-04

Family

ID=18045536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313788A Pending JPS63160714A (en) 1986-12-24 1986-12-24 Automatic plate thickness control method for rolling mill

Country Status (1)

Country Link
JP (1) JPS63160714A (en)

Similar Documents

Publication Publication Date Title
KR100314840B1 (en) Automatic stop control method of tail end of strip of hot coiler
JPS63160714A (en) Automatic plate thickness control method for rolling mill
JP3520167B2 (en) Horizontal furnace furnace tension control method
US20040135024A1 (en) Method for controlling winder
EP0075946B1 (en) Dimension control device for a continuous rolling machine
JP2002172406A (en) Method for correcting plate thickness by rolling mill
JP2795791B2 (en) Steel sheet cooling control method
JP3073633B2 (en) Automatic thickness control method for rolling mill
JP2012183578A (en) Method of controlling plate thickness and plate thickness controller in cold rolling mill
JP2010000535A (en) System and method for controlling plate thickness
JPH0716637A (en) Controller for tension of strand looper
JP3586374B2 (en) Plate thickness control device
JPS63160713A (en) Automatic plate thickness control method for rolling mill
JPS594912A (en) Method and device for automatically controlling sheet thickness in continuous mill
JP2960011B2 (en) Method and apparatus for controlling thickness during acceleration and deceleration in rolling
JP2001179333A (en) Control method of winding device for band steel sheet
JP2763490B2 (en) Method of controlling tension between stands of rolling mill
JPH06285524A (en) Automatic plate thickness controlling method for mill
JPH0671614B2 (en) Automatic thickness control device
JPH0653283B2 (en) Adaptive control method in rolling mill
JPS62224413A (en) Control method for plate crown in hot rolling mill
JPH05177230A (en) Method for controlling plate thickness in tandem mill
JPH0212647B2 (en)
JPH06142736A (en) Speed controller of tandem roller
JPS6064718A (en) Device for automatically calculating factor