JPS63160665A - Ceramic coated implant - Google Patents

Ceramic coated implant

Info

Publication number
JPS63160665A
JPS63160665A JP61307849A JP30784986A JPS63160665A JP S63160665 A JPS63160665 A JP S63160665A JP 61307849 A JP61307849 A JP 61307849A JP 30784986 A JP30784986 A JP 30784986A JP S63160665 A JPS63160665 A JP S63160665A
Authority
JP
Japan
Prior art keywords
coating layer
ceramic
implant
metal
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61307849A
Other languages
Japanese (ja)
Other versions
JPH0622576B2 (en
Inventor
和夫 近藤
昌晃 服部
西尾 信二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61307849A priority Critical patent/JPH0622576B2/en
Publication of JPS63160665A publication Critical patent/JPS63160665A/en
Publication of JPH0622576B2 publication Critical patent/JPH0622576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Prostheses (AREA)
  • Dental Prosthetics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この范明は、歯科、整形外科の分野において使用される
医療用のインプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to medical implants used in the fields of dentistry and orthopedics.

(従来の技術) 近年、Co−Cr合金、T1合金、ステンレス環のイン
プラントが多数医療分骨で使用されているが、長期間こ
のインプラントラ体内に埋設されることで、体内の組織
液や体液により、又体内での組機体との#擦によってイ
ンプラントが腐食されてしまい、インプラント基体の成
分イオンが溶出してしまい、マクロファージを損傷した
り、細胞内に侵入することにより炎症性細胞や巨犬訓胞
ボ生の原因となるものである。そのためインプラント基
材の表面にコーティング等の表面処理分施し、インプラ
ント基材の成分イオンの溶出を防止するものが多く堤案
されている(特公昭49−24429号、特開昭59−
82849号、特開昭61−176354号)。
(Prior art) In recent years, many Co-Cr alloy, T1 alloy, and stainless steel ring implants have been used in medical bone implants. In addition, the implant is corroded due to friction with the assembled body in the body, and the component ions of the implant base are eluted, damaging macrophages and invading into cells, causing inflammatory cells and macrophages. This is the cause of cysts. Therefore, many proposals have been made to prevent the elution of component ions from the implant base material by applying surface treatments such as coating to the surface of the implant base material (Japanese Patent Publication No. 49-24429, JP-A No. 59-1999).
No. 82849, JP-A-61-176354).

(発明が解決しようとする問題点) しかしながら、上記従来のものにおいても未だ耐腐食性
、耐久性、生体親和性が不十分なものであり、特にイン
プラント基体のコーテイング材としてよく用いられる燐
酸カルシウム材料は、長期にわたり体内に埋入すると骨
に転化するため、骨と生体金属とが直接に接触すること
となり、生体金属の腐食による為害性を現すこととなり
、長期間使用する整形外科用としては不適当なものとな
る。そこで、この発明は上記従来のもののもつ欠点を改
善するものであり、インプラントの耐蝕性、耐久性、生
体親和性を十分に向上させ、インプラントの長期間使用
に対して十分に安全を確保しようとするものである。
(Problems to be Solved by the Invention) However, even the above-mentioned conventional products still have insufficient corrosion resistance, durability, and biocompatibility, especially calcium phosphate materials that are often used as coating materials for implant substrates. When implanted in the body for a long period of time, it converts into bone, which results in direct contact between the bone and biometal, which can cause harm due to corrosion of the biometal, making it unsuitable for orthopedic use for long-term use. It becomes appropriate. Therefore, this invention aims to improve the above-mentioned drawbacks of the conventional methods, and aims to sufficiently improve the corrosion resistance, durability, and biocompatibility of implants, and to ensure sufficient safety for long-term use of implants. It is something to do.

(問題点を解決するための手段) ステンレス、Co−Cr合金、Ti合金等の生体金属よ
りなるインプラント基体の表面に生体為害性の少い金属
を被覆した第1被覆層を設け、次にこの第1被覆層の上
に、生体為害性の少な^金属を被覆したセラミック粉末
を溶着して形成する第2被覆層を設け、この被覆層上に
1セラミツク粉末と連なるセラミック材よりなる第3被
慢層を設けその1忙アパタイト又はリン酸カルシウムよ
り形成する第4被覆層を積層してなるセラミック被覆イ
ンプラントを提供することにより解決するもので第1、
第2被覆層の生体為害性の少い金属としてはW 、 M
o及び/又はGeが適している。
(Means for solving the problem) A first coating layer coated with a metal that is less harmful to the living body is provided on the surface of an implant base made of a biometal such as stainless steel, Co-Cr alloy, Ti alloy, etc. On the first coating layer, a second coating layer is formed by welding ceramic powder coated with a metal that is less harmful to the body, and on this coating layer, a third coating layer made of a ceramic material connected to the first ceramic powder is provided. The first problem is solved by providing a ceramic-coated implant comprising a ceramic layer and a fourth coating layer made of apatite or calcium phosphate.
Metals with less biotoxicity for the second coating layer include W and M.
o and/or Ge are suitable.

(作用) 以上の構成を具えるので、第1被覆層のMO,W。(effect) Since it has the above configuration, MO and W of the first coating layer.

Qe等の生体為害性の少ない金属層によってインプラン
ト基体面を被覆するのでその表面の腐食、その表面より
溶出する金属イオンを阻止すると共に、Mo 、 W 
、 Geと基体となる生体金属との結合を金属同士の金
属結合によって強固に結合する。
Since the implant base surface is coated with a metal layer such as Qe that is less harmful to the body, corrosion of the surface and metal ions eluted from the surface are prevented, and Mo, W
, Ge and the biological metal serving as the base are strongly bonded by metal-to-metal bonding.

次に、第2被覆層セラミックを露出させることにより、
セラミック材を有する第2被覆層と第3被覆層がセラミ
ック結合により強固に接合する。
Next, by exposing the second coating layer ceramic,
The second coating layer and the third coating layer having a ceramic material are firmly joined by ceramic bonding.

これにより基体金属からセラミックの第3被覆層迄連続
した強固な結合を有すると共に金属とセラミンクの熱膨
張差による内部応力も緩和する。このように自然に且つ
、強固に結合することができるので、第2被覆層の剥離
を防ぎ、しかも、第3被覆層のセラミックがアパタイト
又はリン酸カルシウムによる第4被覆層とセラミック相
立の結合により強固に結合でき、更にまた第4被覆層は
骨と結合して、前転化をするものであり、生体く害を与
えることなしに、強固なインプラントとして使用できる
ものである。
This provides a continuous and strong bond from the base metal to the third ceramic coating layer, and also relieves internal stress due to the difference in thermal expansion between the metal and the ceramic. Since it is possible to bond naturally and strongly in this way, peeling of the second coating layer is prevented, and moreover, the ceramic of the third coating layer is strongly bonded to the fourth coating layer of apatite or calcium phosphate by the ceramic mutual bond. Furthermore, the fourth covering layer can be bonded to bone and undergo forward transformation, and can be used as a strong implant without causing harm to living organisms.

(実権例) この発明を図に示す実施例により更に説明する。(Example of actual power) This invention will be further explained with reference to embodiments shown in the drawings.

第1図において(1)は、整形外科用に用いられるイン
プラントであり、このセラミック被覆インプラント(1
)は、骨C5i部(力とステム(]1からなり、このス
テム(19は、ステンレス(SuS 316 ) 、 
Co −Cr合金(Co −30Cr −7Mo鋳造用
、Co−21Cr −16W−11Ni加工用)y’r
t合金(Ti −6AA−4V )等の生体金属材料で
あり、高強度金属であるインプラント基体(2)上に、
まず生体為害性の少ないW。
In Fig. 1, (1) is an implant used for orthopedics, and this ceramic-coated implant (1) is an implant used for orthopedics.
) consists of a bone C5i part (force) and a stem (]1, this stem (19 is made of stainless steel (SuS 316),
Co-Cr alloy (for Co-30Cr-7Mo casting, Co-21Cr-16W-11Ni processing)
On the implant base (2), which is a biometallic material such as t-alloy (Ti-6AA-4V) and is a high-strength metal,
First of all, W is less harmful to living organisms.

Mo、Qeの金属薄膜(,3)を無電震メッキ法により
被覆し、これを第1被覆層(3)とし、この第1被覆層
の上に上記生体為害性の少いw、Mo、ceの金属被覆
(至)を設けた、(被覆層の厚さ0.5〜8μ)燐酸力
yシウムに親和性のあるセラミック粉αゆを溶着して第
2被覆層(4)を形成する、このセラミック粉は望まし
くは粒度10μ〜200μであって、アパタイト、リン
酸カルシウム、アルミナ、 Zr0t、 Si、N、 
、 SiC、TiN 6るいは、TCP (3CaC0
゜p、o、であることが望ましい。W 、 Mo 、G
e等の金属は、タングステン酸アンモン又はモリブデン
酸アンモンの30チ水溶液に潰して、乾燥を繰返した後
、H1中で1元焼結し、形成したものであり、この金属
により被覆されるセラミックは前記のようKArガスを
用いたプラズマ(第3図矢印)にて基体(3)上に溶射
して、第2被覆層(4)を形成するものである。(第3
図左方に示す)さらに、セラミック01表面を露出させ
るなめに、ダイヤモンド砥石で表面を研磨し、上面の金
属被覆層(ハ)を除き平滑な第2被覆層(4)を形成す
る(第3図右方に示す。)この第2被覆層は上記のよう
な金属セラミックにこだわらずセラミックと金属との混
合粉末でも形成することができる。
A metal thin film (, 3) of Mo, Qe is coated by an electroless plating method, and this is used as a first coating layer (3). A second coating layer (4) is formed by welding a ceramic powder having an affinity for phosphoric acid (with a coating layer thickness of 0.5 to 8 μm) and a metal coating (up to). This ceramic powder preferably has a particle size of 10μ to 200μ and contains apatite, calcium phosphate, alumina, ZrOt, Si, N,
, SiC, TiN 6 or TCP (3CaC0
It is desirable that ゜p, o. W, Mo, G
Metals such as e are crushed in a 30% aqueous solution of ammonium tungstate or ammonium molybdate, dried repeatedly, and then sintered in one unit in H1, and the ceramic coated with this metal is As described above, the second coating layer (4) is formed by spraying onto the substrate (3) using plasma (arrow in FIG. 3) using KAr gas. (3rd
(shown on the left side of the figure) Furthermore, in order to expose the surface of the ceramic 01, the surface is polished with a diamond grindstone to remove the metal coating layer (c) on the top surface and form a smooth second coating layer (4) (the third (Shown on the right side of the figure.) This second coating layer is not limited to the above-mentioned metal ceramic, but can also be formed using a mixed powder of ceramic and metal.

上記第2被覆層の表面(4)の上に、第2被覆層(4)
の露出したセラミックCt4と結合するように1セラミ
ツク材で被覆して第3被覆層(5)を設ける。
A second coating layer (4) is formed on the surface (4) of the second coating layer.
A third coating layer (5) is provided by coating with a ceramic material so as to bond with the exposed ceramic Ct4.

このセラミック材料は基本的に述べれば第2被覆層に用
いた材料で良い。その場合第2被覆層と同物質であれば
その間の接着力は最も確実なものであるがこの発明はこ
れKこだわることなく異物質でも可能である、何れの場
合もセラミックーセラミックの結合親和性は良好である
ため強い化学結合力が得られるものである。この第3被
覆層(5)の表面、すなわち、外方には、生体親和性の
高いアパタイト又はリン酸カルシウムよりなる第4被覆
層(6)を積層してなるものである。この工程の最も具
体的な例を述べれば、市販の試薬1級のCaC0−とp
、o、をCa/Pの原子比が1.5 Kなるように配合
し、1200℃に焼成して後、冷却徨粉砕してトリカル
シウム7オス7エートの微粉末を得てから、これを19
にの有機質結合剤と共に50%の水圧入れ攪拌して燐酸
カルシウム塩のスリップとし、前記第3被覆層の上に付
着し1、乾燥后大気中1000℃にて焼きつけテストピ
ースとした。このようにして製作した3wφ×20WJ
の円柱状テストピースを成兎の大腿骨に埋入したところ
、約1カ月で第4被覆層は骨に転化し念。又20mX2
()■×5園の直方体に製作したテストピースの主表面
にゴム板を接着し1oxyの力で引張ることを40回繰
り返したが、剥離することはなかった。併し比較の念め
第2被覆層をGeのみとして製作したテストピースは1
0回の引張りテストで剥離した。
Basically, this ceramic material may be the material used for the second coating layer. In that case, if the material is the same as that of the second coating layer, the adhesive force between them will be the most reliable, but this invention is not limited to this, and can be made of a different material.In either case, the bonding affinity of ceramic-ceramic is good, so a strong chemical bonding force can be obtained. A fourth coating layer (6) made of apatite or calcium phosphate, which has high biocompatibility, is laminated on the surface of the third coating layer (5), that is, on the outside. The most specific example of this process is the commercially available reagent grade 1 CaC0- and p
, o, were blended so that the atomic ratio of Ca/P was 1.5 K, calcined at 1200°C, cooled and crushed to obtain a fine powder of tricalcium 7-mole-7-ate, and then 19
A slip of calcium phosphate salt was obtained by press-fitting and stirring with 50% water together with an organic binder, and the slip was adhered onto the third coating layer 1. After drying, it was baked at 1000° C. in the atmosphere to form a test piece. 3wφ×20WJ manufactured in this way
When a cylindrical test piece was implanted into the femur of an adult rabbit, the fourth covering layer was transformed into bone in about a month. Also 20mX2
A rubber plate was glued to the main surface of a test piece made in the shape of a rectangular parallelepiped ()■×5 and pulled with a force of 1oxyy 40 times, but no peeling occurred. However, for comparison, the test piece made with only Ge as the second coating layer was 1.
It peeled off after 0 tensile tests.

なお、この実施例では一例として上記トリカルシウムフ
ォスフェートについて述べたが、この発明はこれKこだ
わることなく特開昭55−56062号「高強度リン酸
カルシウム焼結体の製造方法」K述べられた[カルシウ
ム/リン原子比1.4〜1.75のカルシウムのリン酸
塩を主体とする粉末に、焼成9嘱のリン酸カルシウム成
分九対し、0.5〜15重tesのカルシウム/リン原
子比0.2〜0.75を有するカルシウム・リン酸系7
リツトを添加混合したもの、又は特開昭55−1407
56号「高強度リン酸カルシウム焼結体」に述べられた
カルシウム/リン原子比1.4〜1.75のカルシウム
のリン酸塩を主体とする粉末に、焼成層のリン酸カルシ
ウム焼結体に対し、0.5〜15重量−のアルカリ金属
、亜鉛及び/又はアルカリ土類金属の酸化物−リン酸系
7リツトを含有せしめたものを用いてもよい。
In this embodiment, the above-mentioned tricalcium phosphate was described as an example, but this invention is not limited to this. Powder mainly composed of calcium phosphate with a /phosphorus atomic ratio of 1.4 to 1.75, 9 times of calcined calcium phosphate components, and a calcium/phosphorus atomic ratio of 0.2 to 0.5 to 15 times Calcium phosphate system 7 with 0.75
mixture with addition of lithium salt, or JP-A-55-1407
56 "High Strength Calcium Phosphate Sintered Body" powder mainly composed of calcium phosphate with a calcium/phosphorous atomic ratio of 1.4 to 1.75, A material containing 7 liters of an oxide of an alkali metal, zinc and/or alkaline earth metal and phosphoric acid in an amount of .5 to 15% by weight may also be used.

こ\でこの発明の一実施形聾として第2被覆層のセラミ
ック材料、第3被覆層のセラミック材料、第4被覆層セ
ラミック材料何れもアパタイト、燐酸カルシウムの何れ
かであることがあり得るが、この場合は骨は第2被覆層
の内部迄侵入し、骨との接合力の最も強いセラミック被
覆インプラントとなる。併し青年者用等極めて長期間生
体に埋設される場合は骨とW 、 Mo又はGeが直接
接触することとなるが、第2被覆層又は第3被覆層に燐
酸カルシウムを用いる場合はこの燐酸カルシウムではな
いセラミック層が骨と金属とのバリヤ一層として働き、
極めて安全なものとなる。
As an embodiment of the present invention, the ceramic material of the second coating layer, the ceramic material of the third coating layer, and the ceramic material of the fourth coating layer may all be apatite or calcium phosphate. In this case, the bone penetrates into the second covering layer, resulting in a ceramic-covered implant with the strongest bonding force with the bone. However, when implanted in a living body for a very long period of time, such as for young people, W, Mo, or Ge will come into direct contact with the bone, but if calcium phosphate is used for the second or third coating layer, this phosphoric acid A non-calcium ceramic layer acts as a barrier between bone and metal,
It will be extremely safe.

この発明を義歯装着用歯科インプラントに用いたものの
形状を第2図に示す。図中(8)は、歯科用に用いられ
るセラミック被覆インプラントであり、顎骨OQに埋設
されたセラミック被覆インプラント(8)の脚部0■も
上記同様に1インプラント基体(2)の上に第1被佼層
(3)、第2被覆層(4)及び第3被覆層(5)、第4
被覆層(6)を積層しているものである。特に、脚部(
6)が骨(1(11中に埋設されるとき、第4被覆層(
6)がアパタイトあるいはリン酸カルシウムにより構成
されるため、前転化により一体となシ、耐久性と同時に
強度も高くなるものであり、第1被覆層を金属で被覆し
、第2被覆層を金属及びセラミックとするため、第3被
覆層のセラミック材と強固に接合でき、第3被覆層と第
4被覆層はどちらもセラミックであるため親和性が高く
、又第4被覆層は骨と親和性が高く、生体内で骨に転化
するので、結局、基体金属から前進が強固に結合でき、
且つ生体為害性もないものである。
FIG. 2 shows the shape of a dental implant in which this invention is applied to a denture. In the figure, (8) is a ceramic-coated implant used for dentistry, and the leg 0■ of the ceramic-coated implant (8) embedded in the jawbone OQ is also placed on the first implant base (2) in the same manner as above. Covering layer (3), second coating layer (4), third coating layer (5), fourth
A covering layer (6) is laminated thereon. Especially the legs (
When the bone (6) is embedded in the bone (1 (11), the fourth covering layer (
6) Since it is composed of apatite or calcium phosphate, it becomes one piece by pre-conversion, and has high durability and strength.The first coating layer is coated with metal, and the second coating layer is made of metal and ceramic. Therefore, it can be firmly bonded to the ceramic material of the third coating layer, and since both the third coating layer and the fourth coating layer are made of ceramic, they have a high affinity, and the fourth coating layer has a high affinity with bone. , because it converts into bone in the living body, the base metal can be firmly bonded to the base metal.
Moreover, it is not harmful to living organisms.

(発明の効果) 以上のとおり、この発明はインプラント基体に用いられ
る生体金属から有害イオンの溶出を阻止し、生体親和性
に著しく富んだセラミックとの結合をより強固なものと
し、長期間使用できる生体用インプラントが得られると
いう優れた効果をもつものである。
(Effects of the Invention) As described above, the present invention prevents the elution of harmful ions from the biometal used for the implant base, strengthens the bond with the ceramic that is extremely biocompatible, and enables long-term use. This has the excellent effect of providing a biological implant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、整形外科等に用いられるセラミック被覆イン
プラントの断面図であり、第2図は歯科用に用いられる
セラミック被覆インプラントの取付状態を示す断面図で
ある。第3図はインプラントの積層状態を示す断面図で
ある。 1.8・・・セラミック被覆インプラント、2・・・イ
ンプラント基体、3・・・第1被覆層、4・・・第2被
覆層、5・・・第3被覆層、6・・・第4被覆層、7・
・・骨頭部、9・・・歯肉、10・・・顎骨、12・・
・脚部、13・・・ステム、14・・・セラミック粉、
15・・・金sma層。 特許出願人 代理人弁理士 藤木三幸 第1図 第2図
FIG. 1 is a cross-sectional view of a ceramic-coated implant used in orthopedic surgery, etc., and FIG. 2 is a cross-sectional view showing a state in which the ceramic-coated implant used in dentistry is installed. FIG. 3 is a sectional view showing the stacked state of the implant. 1.8... Ceramic coated implant, 2... Implant base, 3... First coating layer, 4... Second coating layer, 5... Third coating layer, 6... Fourth Covering layer, 7.
... Bone head, 9... Gums, 10... Jaw bone, 12...
・Legs, 13... Stem, 14... Ceramic powder,
15... Gold SMA layer. Patent applicant Representative patent attorney Miyuki Fujiki Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ステンレス,Co−Cr合金,Ti合金等の生体
金属よりなるインプラント基体の表面に生体為害性の少
ない金属を被覆した第1被覆層を設け、次にこの第1被
覆層の上に、生体為害性の少ない金属を被覆したセラミ
ツク粉末を溶着して形成する第2被覆層を設け、この第
2被覆層上に、セラミツク粉末と連なるセラミツク材よ
りなる第3被覆層を設けその上にアパタイト又はリン酸
カルシウムより形成する第4被覆層を積層してなるセラ
ミツク被覆インプラント。
(1) A first coating layer coated with a metal that is less harmful to the body is provided on the surface of the implant base made of biometal such as stainless steel, Co-Cr alloy, Ti alloy, etc., and then on this first coating layer, A second coating layer is formed by welding ceramic powder coated with a metal that is less harmful to living organisms, and on this second coating layer, a third coating layer made of a ceramic material connected to the ceramic powder is provided, and apatite is applied on top of the third coating layer. Or a ceramic-coated implant formed by laminating a fourth coating layer made of calcium phosphate.
(2)第1被覆層及び第2被覆層の金属をMo,W,G
eよりなるものとした特許請求の範囲第1項記載のセラ
ミツク被覆インプラント。
(2) The metals of the first coating layer and the second coating layer are Mo, W, and G.
The ceramic-coated implant according to claim 1, comprising e.
(3)第2被覆層のセラミツク材をアルミナ,Si_3
N_4,ZrO_2,SiC,TiWよりなるものとし
た特許請求の範囲第1項と第2項に記載のセラミツク被
覆インプラント。
(3) The ceramic material of the second coating layer is alumina, Si_3
A ceramic-coated implant according to claims 1 and 2, which is made of N_4, ZrO_2, SiC, TiW.
JP61307849A 1986-12-25 1986-12-25 Ceramic coated implant Expired - Lifetime JPH0622576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307849A JPH0622576B2 (en) 1986-12-25 1986-12-25 Ceramic coated implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307849A JPH0622576B2 (en) 1986-12-25 1986-12-25 Ceramic coated implant

Publications (2)

Publication Number Publication Date
JPS63160665A true JPS63160665A (en) 1988-07-04
JPH0622576B2 JPH0622576B2 (en) 1994-03-30

Family

ID=17973918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307849A Expired - Lifetime JPH0622576B2 (en) 1986-12-25 1986-12-25 Ceramic coated implant

Country Status (1)

Country Link
JP (1) JPH0622576B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317447A (en) * 1988-06-20 1989-12-22 Permelec Electrode Ltd Bioaffinity material-jointed body and production thereof
JPH02503757A (en) * 1987-06-15 1990-11-08 イリ‐ウルポ,アンティ Implants for replacing parts of teeth or bone tissue
WO1992014422A1 (en) * 1991-02-20 1992-09-03 Tdk Corporation Composite bio-implant and production method therefor
FR2688139A1 (en) * 1992-03-06 1993-09-10 Zimmer Sa NEW COATING FOR PROTHETIC SYSTEM.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02503757A (en) * 1987-06-15 1990-11-08 イリ‐ウルポ,アンティ Implants for replacing parts of teeth or bone tissue
JPH01317447A (en) * 1988-06-20 1989-12-22 Permelec Electrode Ltd Bioaffinity material-jointed body and production thereof
WO1992014422A1 (en) * 1991-02-20 1992-09-03 Tdk Corporation Composite bio-implant and production method therefor
FR2688139A1 (en) * 1992-03-06 1993-09-10 Zimmer Sa NEW COATING FOR PROTHETIC SYSTEM.
US5543209A (en) * 1992-03-06 1996-08-06 Zimmer, Inc. Surface coating for prosthesis system containing HA/TCP composition

Also Published As

Publication number Publication date
JPH0622576B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JP2858126B2 (en) Biological implant material and its manufacturing method
JPS63160665A (en) Ceramic coated implant
JPH0763503B2 (en) Calcium phosphate coating forming method and bioimplant
JPS63160666A (en) Ceramic coated implant
JPS5945384B2 (en) Manufacturing method for high-strength biological components
JP3012094B2 (en) Composite implant member and method of manufacturing the same
JP2967272B1 (en) Bisphosphonate immobilization on titanium implant surface and functional and adhesive protein binding method
JPH08117324A (en) Method for manufacturing a bio-implant material
JP3076636B2 (en) Composite implant
JP3038395B2 (en) Titanium alloy and implant material for living body
JPH0360274B2 (en)
JPH0360273B2 (en)
JPS63147455A (en) Composite implant member
JPS63218591A (en) Implant in vivo and manufacture
JP2956318B2 (en) Implant made of Ti or Ti alloy coated with calcium phosphate-based ceramic layer and method for producing the same
JPS63143072A (en) Apatite composite implant
JPS63277061A (en) In vivo implant
JPS63160663A (en) Medical member excellent in bone compatibility and its production
JP2997809B2 (en) Biological implant components
JPS6346165A (en) Production of implant material
JP3353308B2 (en) Biological metal and surface treatment method thereof
JPS63229059A (en) Elastic member for living body
JPH0739578A (en) Metallic implanting article and preparation thereof
JPS6331654A (en) Implant for artificial dental root and its production
JPH08150200A (en) In vivo implanting material