JPS63160489A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS63160489A
JPS63160489A JP61309810A JP30981086A JPS63160489A JP S63160489 A JPS63160489 A JP S63160489A JP 61309810 A JP61309810 A JP 61309810A JP 30981086 A JP30981086 A JP 30981086A JP S63160489 A JPS63160489 A JP S63160489A
Authority
JP
Japan
Prior art keywords
solid
light
state image
image pickup
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61309810A
Other languages
Japanese (ja)
Inventor
Masahiko Ikeno
池野 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61309810A priority Critical patent/JPS63160489A/en
Publication of JPS63160489A publication Critical patent/JPS63160489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To require no image set and adjustment by incorporating a light flux branching means and a solid-state image pickup element corresponding thereto. CONSTITUTION:An optical path length correcting member 10 and an optical path length correction member 11 for correcting differences in the optical path length between blue light, red light and green light are successively disposed in the reflecting direction of a total reflection mirror 7 and a total reflection mirror 9 and the light flux branch part 12 is integrally formed by them all. The solid-state image pickup element 1b for the blue light, the solid state image pickup element 1g for the green light and the solid-state image pickup element 1r for the red light are mounted on a sealing member 2 made of ceramics, for instance, correspondingly to the transmitting positions of the three types of the light fluxes branched by the light flux branching part 12. The light flux branching part 12 and the sealing member 2 are bonded by a bonding agent through a sealing member 3 made of ceramics, for instance, The airtightness of the three solid-state image pickup elements 1b, 1g, 1r is maintained. Thereby, the fluctuation in position due to the elapse of time is substantially eliminated and the image set and adjustment is not required.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は固体撮像装置に関し、特に高解像性、高色再
現性が望まれる高画質性能を有した固体撮像装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device, and more particularly to a solid-state imaging device having high image quality performance in which high resolution and high color reproducibility are desired.

[従来の技術] 第3図は従来の固体lll1l装置の撮像部の断面図で
ある。
[Prior Art] FIG. 3 is a sectional view of an imaging section of a conventional solid-state llll1l device.

図において、光の像情報を電気信号に変換する固体Wi
像素子1がたとえばセラミック製の封止部材2の上に載
置されており、また外部と接続するリードフレーム4と
固体撮像素子1との電気導通をとるためにアルミニウム
lll5が形成される。固体撮像素子1の周囲がたとえ
ばセラミック製の封止部材3によって覆われ、その表面
は接着剤にてガラス116が取付けられて気密保持され
る。
In the figure, a solid-state Wi converts optical image information into electrical signals.
The image element 1 is placed on a sealing member 2 made of ceramic, for example, and an aluminum layer 5 is formed to establish electrical continuity between the solid-state image sensor 1 and a lead frame 4 that is connected to the outside. The periphery of the solid-state image sensor 1 is covered with a sealing member 3 made of ceramic, for example, and a glass 116 is attached to the surface with an adhesive to maintain airtightness.

上記のように構成された固体撮像装置は家庭用ビデオカ
メラ等、特に高解像度を必要としない用途には単体で用
いられることが多いが放送用、業務用など画質に高解像
性、高色再現性を必要とする用途には2台または3台等
の複数の固体撮像装霞を組合わせて用いられていた。
The solid-state imaging device configured as described above is often used alone for applications that do not require particularly high resolution, such as home video cameras, but it is also used for broadcasting and business purposes, where high resolution and high color image quality is required. For applications requiring high reproducibility, a combination of two or three solid-state imaging devices has been used.

第4図は3台の固体Wi像装置で構成された3板式テレ
ビカメラの撮像光学系である。
FIG. 4 shows an imaging optical system of a three-panel television camera composed of three solid-state Wi image devices.

図において結像レンズ15を透過する入射光束13の進
行方向直線上に青反射ダイクロイックミラー6および赤
反射ダイクロイックミラー8が設置され、その後方に第
3図で示した構成よりなる緑色光用固体1lii像装置
14gが備えられる。一方青反射ダイクロイックミラ−
6により反射される方向に全反射ミラー7が、赤反射ダ
イクロイックミラー8によって反射される方向に全反射
ミラー9が設置され、それぞれその反射方向の先方に青
色光用固体!Il@装[14bおよび赤色光用固体撮像
装f14rが備えられる。
In the figure, a blue-reflecting dichroic mirror 6 and a red-reflecting dichroic mirror 8 are installed on a straight line in the traveling direction of the incident light beam 13 that passes through the imaging lens 15, and behind them is a green light solid 1lii having the configuration shown in FIG. An imaging device 14g is provided. On the other hand, blue reflective dichroic mirror
A total reflection mirror 7 is installed in the direction reflected by the red reflection dichroic mirror 8, and a total reflection mirror 9 is installed in the direction reflected by the red reflection dichroic mirror 8. A solid-state imaging device f14b and a red light solid-state imaging device f14r are provided.

以下、Wi像動作を説明する。The Wi image operation will be explained below.

結像レンズ15を透過した入射光束13は青反射ダイク
ロイックミラー6によって青色光束のみが分岐され、分
岐された青色光束は全反射ミラー7によって反射されて
青色光用固体撮像素子14bに入射し画像処理される。
The incident light beam 13 that has passed through the imaging lens 15 is split into only the blue light beam by the blue reflection dichroic mirror 6, and the branched blue light beam is reflected by the total reflection mirror 7 and enters the blue light solid-state image sensor 14b for image processing. be done.

一方、青反射ダイクロイックミラー6を透過した光束は
赤反射ダイクロイックミラー8によって赤色光束が分岐
され、分岐された赤色光束は同じく全反射ミラー9によ
って反射されて赤色光用固体撮像装置14「に入射し画
像処理される。青反射ダイクロイックミラー6および赤
反射ダイクロイックミラー8を透過して緑色光束のみと
なった入射光束は緑色光用固体撮像装置214111に
入射し同じく画像処理される。
On the other hand, the light beam that has passed through the blue reflection dichroic mirror 6 is split into a red light beam by the red reflection dichroic mirror 8, and the branched red light beam is also reflected by the total reflection mirror 9 and enters the red light solid-state imaging device 14. Image processing is performed.The incident light flux, which has passed through the blue reflection dichroic mirror 6 and the red reflection dichroic mirror 8 and is now only a green light flux, enters the green light solid-state imaging device 214111 and is similarly subjected to image processing.

以上のように高画質が要求される固体撮像装置は、青色
光、赤色光および緑色光の3つの光束に対しそれぞれ専
用の固体撮像素子を有するように構成されていた。
As described above, the solid-state imaging device that requires high image quality is configured to have a solid-state imaging device dedicated to each of the three light beams of blue light, red light, and green light.

[発明が解決しようとする問題点] 上記のような従来の固体撮像装置では、1つの封止部材
内に1個の固体撮像素子しか設置していないため複数個
の固体撮像素子でテレビカメラを構成する場合にはその
m像光学系の小形化には不向きであった。しかも、その
場合各Ifi像装置間の・像合わせ調整も頻繁に行なわ
なければならないなどの問題点があった。
[Problems to be Solved by the Invention] In the conventional solid-state imaging device as described above, only one solid-state imaging device is installed in one sealing member, so it is difficult to operate a television camera using multiple solid-state imaging devices. In this case, it is not suitable for downsizing the m-image optical system. Moreover, in this case, there are problems such as the need to frequently perform image alignment adjustment between the Ifi image devices.

この発明はかかる問題点を解決するためになされたもの
で、複数個の固体撮像素子で構成される撮像光学系を小
形化し、かつ像合わせ調整も頻繁に行なう必要のない固
体Il像装置を提供することを目的とする。
The present invention has been made to solve these problems, and provides a solid-state IL image device in which the imaging optical system composed of a plurality of solid-state image sensors is made smaller and does not require frequent image alignment adjustment. The purpose is to

E問題点を解決するための手段] この発明に係る固体撮像装置は、複数の光束に分岐する
光束分岐手段と、分岐された各々の光束を受光する複数
の固体撮像素子とを一体に組込まれて構成されるもので
ある。
Means for Solving Problem E] A solid-state imaging device according to the present invention includes a light beam branching unit that branches into a plurality of light beams, and a plurality of solid-state image sensors that receive each of the branched light beams. It is composed of

[作用] この発明においては、同一装置内に光束分岐手段とそれ
に対応する固体ms素子とを組込んだので高画質が得ら
れる固体撮像装置の!I像光学系を小形化でき、しかも
組込み時に像合わせを行なってしまうので頻繁な像合わ
せ調整が不要となる。
[Function] In the present invention, a light beam branching means and a corresponding solid-state MS element are incorporated in the same device, so that a solid-state imaging device can obtain high image quality! The I-image optical system can be made smaller, and since image alignment is performed at the time of installation, frequent image alignment adjustment is not necessary.

[実施例] 第1図はこの発明の一実施例を示すm像部の断面図であ
り、第2図はこの発明の一実施例の撮像光学系を示した
図である。
[Embodiment] FIG. 1 is a sectional view of an m-image section showing an embodiment of the invention, and FIG. 2 is a diagram showing an imaging optical system of an embodiment of the invention.

第1図において、入射光束13の進行方向直線上に青反
射ダイク0イックミラー6および赤反射ダイクロイック
ミラー8が連続して設置され、また青反射ダイクロイッ
クミラー6によって反射される方向に全反射ミラー7が
、赤反射ダイクロイックミラー8によって反射される方
向に全反射ミラー9がそれぞれ連続して設置される。さ
らに全反射ミラー7および全反射ミラー9の反射方向に
青色光および赤色光と緑色光との間の光路長の差を補正
する光路長補正部材10および光路長補正部材11が連
続して設置され、これら全体によって一体として光束分
岐部12が形成されている。
In FIG. 1, a blue-reflecting dichroic mirror 6 and a red-reflecting dichroic mirror 8 are successively installed on a straight line in the traveling direction of the incident light beam 13, and a total-reflecting mirror 7 is placed in the direction of reflection by the blue-reflecting dichroic mirror 6. However, total reflection mirrors 9 are successively installed in the direction in which the light is reflected by the red reflection dichroic mirror 8. Furthermore, an optical path length correction member 10 and an optical path length correction member 11 are successively installed in the reflection direction of the total reflection mirror 7 and the total reflection mirror 9 to correct the difference in optical path length between the blue light, the red light, and the green light. , the light beam branching section 12 is integrally formed by these parts.

一方、光束分岐部12によって分岐された3種の光束の
透過位置に対応して青色光用固体撮像素子1b、緑色光
用固体撮像素子1gおよび赤色光用固体撮像素子1「が
たとえばセラミック製の封止部材2の上に載置される。
On the other hand, the solid-state image sensor 1b for blue light, the solid-state image sensor 1g for green light, and the solid-state image sensor 1 for red light are made of, for example, ceramic, corresponding to the transmission positions of the three types of light beams branched by the light beam splitter 12. It is placed on the sealing member 2.

また光束分岐部12と封止部材2とはたとえばセラミッ
ク製の封止部材3を介して接着剤にて接合され、3個の
固体撮像素子の気密を保持する。封止部材2から突出す
る外部接続用リードフレーム4と固体撮像素子とはアル
ミニウム線5によって接続される。
Further, the light beam branching section 12 and the sealing member 2 are bonded to each other with an adhesive via a sealing member 3 made of ceramic, for example, to maintain airtightness of the three solid-state image sensors. The external connection lead frame 4 protruding from the sealing member 2 and the solid-state imaging device are connected by an aluminum wire 5.

以上のように構成された固体撮像装置の撮像動作を次に
説明する。
The imaging operation of the solid-state imaging device configured as described above will be described next.

第2図に示す結像レンズ15を通過して固体撮像装置1
4に向かう入射光束13は青反射ダイクロイックミラー
6および赤反射ダイクロイックミラー8によって青色光
、赤色光および緑色光の3成分に分解される。青色光お
よび赤色光はそれぞれ全反射ミラー7および全反射ミラ
ー9によって反射され3成分の光は相互に平行な光束と
なる。
The solid-state imaging device 1 passes through the imaging lens 15 shown in FIG.
The incident light beam 13 directed toward the light source 4 is separated into three components of blue light, red light, and green light by the blue reflection dichroic mirror 6 and the red reflection dichroic mirror 8. The blue light and the red light are reflected by the total reflection mirror 7 and the total reflection mirror 9, respectively, and the three components of light become a mutually parallel light beam.

次に青色光および赤色光は緑色光との光路長との差を補
正する光路長補正部材1oおよび光路長補正部材11を
通過して、緑色光はそのままで各々の固体撮像素子1b
、1g、1rに入射し画像処理される。
Next, the blue light and the red light pass through an optical path length correction member 1o and an optical path length correction member 11 that correct the difference in optical path length from the green light, and the green light remains as it is and passes through each solid-state image sensor 1b.
, 1g, and 1r and undergo image processing.

したがって個々の固体m像素子および光束分岐(部12
を製造時Cil整し、固定、工しまえ1□、経時的な位
置変動はほとんどなく像合わせ調整が不要となる。
Therefore, the individual solid-state m-image elements and the beam splitter (section 12
The Cil is adjusted and fixed at the time of manufacturing, and the machining stage is 1□.There is almost no positional variation over time, and image alignment adjustment is not required.

なお、上記実流例では光束分岐手段としてダイクロイッ
クミラーを用いて色成分の分離を行なったが、ハーフミ
ラ−を用いて光束分岐し、その後各々の光束中に色フィ
ルタを挿入することにより色分離してもよい。
In the above actual flow example, a dichroic mirror was used as a beam splitting means to separate the color components, but it is also possible to separate the color components by splitting the beam using a half mirror and then inserting a color filter into each beam. It's okay.

また、上記実施例では光路長補正部材を用いて各色光束
間の光路長を補正することによって各々の固体撮像素子
を同一平面上に配置したが、光路長補正部材を用いずに
固体撮像素子の取付位置を変化させることによって各色
光束の光路長を等しくしても同様の効果を秦する。
Further, in the above embodiment, each solid-state image sensor is arranged on the same plane by correcting the optical path length between each color light beam using an optical path length correction member, but the solid-state image sensor is arranged on the same plane without using an optical path length correction member. A similar effect can be obtained even if the optical path lengths of the respective color beams are made equal by changing the mounting position.

さらに、上記実施例では封止部材をセラミック製とした
が他の材料を用いてもよいことは言うまでもない。
Furthermore, although the sealing member is made of ceramic in the above embodiment, it goes without saying that other materials may be used.

[発明の効果] この発明は以上説明したとおり、同一装置内に光束分岐
手段とそれに対応する固体撮像素子とを組込んだのでm
像光学系を小形化でき、しかも像合わせ調整の不要な高
画質が得られる固体撮像装置となる効果がある。
[Effects of the Invention] As explained above, the present invention incorporates a light beam branching means and a solid-state image sensor corresponding thereto in the same device.
This has the effect of providing a solid-state imaging device that can reduce the size of the imaging optical system and provide high image quality without the need for image alignment adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すm像部の断面図、第
2図はこの発明の一実施例のIfi像光学系を示した図
、第3図は従来装置のmm部の断面図、第4図は従来装
置による3板式カメラの撮像光学系である。 図において、1bは青色光用固体m像素子、1aは緑色
光用固体m像素子、1rは赤色光用固体撮像素子、2,
3は封止部材、6は青反射ダイクロイックミラー、8は
赤反射ダイクロイックミラー、10.11は光路長補正
部材、12は光束分岐部、13は入射光束である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a cross-sectional view of the m image section showing an embodiment of the present invention, Fig. 2 is a view showing the Ifi image optical system of an embodiment of the present invention, and Fig. 3 is a cross-sectional view of the mm part of a conventional device. 4 shows an imaging optical system of a three-panel camera according to the prior art. In the figure, 1b is a solid-state m-image element for blue light, 1a is a solid-state m-image element for green light, 1r is a solid-state image sensor for red light, 2,
3 is a sealing member, 6 is a blue reflective dichroic mirror, 8 is a red reflective dichroic mirror, 10.11 is an optical path length correction member, 12 is a light beam branching part, and 13 is an incident light beam. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)入射光束を少なくとも2色の光束に分岐する光束
分岐手段と、 前記光束分岐手段によつて分岐された各々の光束を受光
する少なくとも2個の固体撮像素子とを備え、 前記光束分岐手段と前記固体撮像素子とを一体に設置す
る、固体撮像装置。
(1) A beam splitting means for splitting an incident light beam into at least two color beams; and at least two solid-state imaging devices that receive each of the light beams split by the light beam splitting means, the light beam splitting means and the solid-state image sensor are installed together.
(2)前記光束分岐手段は、ダイクロイックミラーを含
む、特許請求の範囲第1項記載の固体撮像装置。
(2) The solid-state imaging device according to claim 1, wherein the light beam branching means includes a dichroic mirror.
(3)前記光束分岐手段は、ハーフミラーを含む、特許
請求の範囲第1項記載の固体撮像装置。
(3) The solid-state imaging device according to claim 1, wherein the light beam branching means includes a half mirror.
(4)前記光束分岐手段は、光路長補正部材を含む、特
許請求の範囲第1項、第2項または第3項記載の固体撮
像装置。
(4) The solid-state imaging device according to claim 1, 2, or 3, wherein the light beam branching means includes an optical path length correction member.
JP61309810A 1986-12-24 1986-12-24 Solid-state image pickup device Pending JPS63160489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309810A JPS63160489A (en) 1986-12-24 1986-12-24 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309810A JPS63160489A (en) 1986-12-24 1986-12-24 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS63160489A true JPS63160489A (en) 1988-07-04

Family

ID=17997519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309810A Pending JPS63160489A (en) 1986-12-24 1986-12-24 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS63160489A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468190A (en) * 1987-09-09 1989-03-14 Victor Company Of Japan Three-color separation optical system
JP2011517192A (en) * 2008-03-28 2011-05-26 コントラスト オプティカル デザイン アンド エンジニアリング,インク. Full beam image splitter system
JP2011254265A (en) * 2010-06-01 2011-12-15 Sharp Corp Multi-eye camera device and electronic information apparatus
US9948829B2 (en) 2016-02-12 2018-04-17 Contrast, Inc. Color matching across multiple sensors in an optical system
US10264196B2 (en) 2016-02-12 2019-04-16 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
US10554901B2 (en) 2016-08-09 2020-02-04 Contrast Inc. Real-time HDR video for vehicle control
US10951888B2 (en) 2018-06-04 2021-03-16 Contrast, Inc. Compressed high dynamic range video
US11265530B2 (en) 2017-07-10 2022-03-01 Contrast, Inc. Stereoscopic camera

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468190A (en) * 1987-09-09 1989-03-14 Victor Company Of Japan Three-color separation optical system
JP2011517192A (en) * 2008-03-28 2011-05-26 コントラスト オプティカル デザイン アンド エンジニアリング,インク. Full beam image splitter system
EP2265993A4 (en) * 2008-03-28 2015-03-04 Contrast Optical Design & Engineering Inc Whole beam image splitting system
JP2011254265A (en) * 2010-06-01 2011-12-15 Sharp Corp Multi-eye camera device and electronic information apparatus
US10264196B2 (en) 2016-02-12 2019-04-16 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
US10200569B2 (en) 2016-02-12 2019-02-05 Contrast, Inc. Color matching across multiple sensors in an optical system
US10257393B2 (en) 2016-02-12 2019-04-09 Contrast, Inc. Devices and methods for high dynamic range video
US10257394B2 (en) 2016-02-12 2019-04-09 Contrast, Inc. Combined HDR/LDR video streaming
US11463605B2 (en) 2016-02-12 2022-10-04 Contrast, Inc. Devices and methods for high dynamic range video
US10536612B2 (en) 2016-02-12 2020-01-14 Contrast, Inc. Color matching across multiple sensors in an optical system
US9948829B2 (en) 2016-02-12 2018-04-17 Contrast, Inc. Color matching across multiple sensors in an optical system
US10742847B2 (en) 2016-02-12 2020-08-11 Contrast, Inc. Devices and methods for high dynamic range video
US10805505B2 (en) 2016-02-12 2020-10-13 Contrast, Inc. Combined HDR/LDR video streaming
US10819925B2 (en) 2016-02-12 2020-10-27 Contrast, Inc. Devices and methods for high dynamic range imaging with co-planar sensors
US11785170B2 (en) 2016-02-12 2023-10-10 Contrast, Inc. Combined HDR/LDR video streaming
US11637974B2 (en) 2016-02-12 2023-04-25 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
US11368604B2 (en) 2016-02-12 2022-06-21 Contrast, Inc. Combined HDR/LDR video streaming
US10554901B2 (en) 2016-08-09 2020-02-04 Contrast Inc. Real-time HDR video for vehicle control
US11910099B2 (en) 2016-08-09 2024-02-20 Contrast, Inc. Real-time HDR video for vehicle control
US11265530B2 (en) 2017-07-10 2022-03-01 Contrast, Inc. Stereoscopic camera
US10951888B2 (en) 2018-06-04 2021-03-16 Contrast, Inc. Compressed high dynamic range video
US11985316B2 (en) 2018-06-04 2024-05-14 Contrast, Inc. Compressed high dynamic range video

Similar Documents

Publication Publication Date Title
US4323918A (en) Optical assembly for color television
JPS63160489A (en) Solid-state image pickup device
JPH077125B2 (en) Three color separation optical device
JPH03135286A (en) Solid-state image pickup device
JPS59196682A (en) Image pickup optical system
JP2830581B2 (en) Color separation prism device
JPH066646A (en) Image pickup device
JPH02135301A (en) Color separation optical system
JPH03209419A (en) Assembling method for three color separation prism
JP3104446B2 (en) Color separation optics
JP2982169B2 (en) Mounting structure of color separation prism
JPH04290090A (en) Assembling method for three-plate camera image pickup block
JPH03259691A (en) Solid-state image pickup element
JPS63276992A (en) Color solid-state image pickup device
JP2004258497A (en) Color separation optical system for television camera
JPH01194466A (en) Solid state image sensing component
JP2797410B2 (en) Color separation optics
JPH0422914A (en) Three-color separating optical system
JPH05199530A (en) Method for fixing solid-state image pickup device
JPH09121364A (en) Color separation optical system
JP2601029B2 (en) Solid-state imaging device
JP2000134636A (en) Solid-state image pickup device and assembling device therefor
JPH03273784A (en) Solid-state image pickup element
JPH05257004A (en) Color resolving prism
JPH11211980A (en) Television lens with still picture photographing function