JPS63159414A - Preparation of rubber-modified styrene resin composition having excellent flow property - Google Patents

Preparation of rubber-modified styrene resin composition having excellent flow property

Info

Publication number
JPS63159414A
JPS63159414A JP30525986A JP30525986A JPS63159414A JP S63159414 A JPS63159414 A JP S63159414A JP 30525986 A JP30525986 A JP 30525986A JP 30525986 A JP30525986 A JP 30525986A JP S63159414 A JPS63159414 A JP S63159414A
Authority
JP
Japan
Prior art keywords
rubber
weight
styrene
rubbery polymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30525986A
Other languages
Japanese (ja)
Inventor
Shizuo Mihashi
三橋 鎮雄
Akira Enomoto
榎本 昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP30525986A priority Critical patent/JPS63159414A/en
Publication of JPS63159414A publication Critical patent/JPS63159414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the title resin composition easily, by graft-polymerizing styrene monomers in the presence of a rubbery polymer and a mineral oil and then adding a specified MW modifier at a point where the polymerization conversion rate reaches a given value. CONSTITUTION:Styrene monomers are graft-polymerized in the presence of a rubbery polymer of which the viscosity of a 5% styrene solution is 50-100cp and a mineral oil. When the polymerization conversion rate of these monomers is in a range of 10-50wt%, an MW modifier (e.g. acetyl chloride) having a chain transfer constant of 0.15-0.4 is added in an amount of 0.05-0.5pt.wt. per 100pts.wt. monomers, thereby obtaining the title resin composition wherein the weight-average MW of the continuous phase of styrene polymers is 11X10<4>-18X10<4>, the weight-average particle diameter of the grafted rubbery polymer particles is 1.8-5mu, the concentration of the rubbery polymer is 4-10wt%, and the methanol-soluble content in the graft-polymer product is 3-6wt%.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、熱溶融時の流動特性、即ち加工性、成形性に
優れたゴム変性スチレン系重合体樹脂の製造法に関する
ものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for producing a rubber-modified styrenic polymer resin that has excellent flow characteristics during hot melting, that is, processability and moldability. It is something.

(従来の技術) 従来より、スチレン系重合体の耐衝撃性を改良するため
にゴム質重合体にスチレン系単量体をグラフト重合させ
、かつ該グラフト化ゴム質重合体をポリスチレン相に分
散させ、所謂、ゴム変性スチレン系樹脂組成物とするこ
とが知られている。
(Prior art) Conventionally, in order to improve the impact resistance of styrenic polymers, styrenic monomers are graft-polymerized to rubbery polymers, and the grafted rubbery polymers are dispersed in a polystyrene phase. , so-called rubber-modified styrenic resin compositions are known.

こうして得られるゴム変性スチレン系樹脂は。The rubber-modified styrenic resin obtained in this way is.

耐衝撃性が大幅に改良され、玩具9日用品、ミートトレ
ー等の食品包装容器を初め、各種弱電ハウジング用にも
幅広く使用されている。
Its impact resistance has been greatly improved, and it is widely used in toys, daily necessities, food packaging containers such as meat trays, and various types of light electrical housings.

しかしながら、ゴム変性スチレン系樹脂はゴム変性され
ていないスチレン系重合体より射出成形時の流動特性が
悪い。そこで流動特性を改良するために、ミネラルオイ
ルを添加する手法(特公昭29−7892) 、ステア
リン酸、オイレン酸等の高級脂肪酸もしくはその金属塩
を添加する手法(特公昭48−1236) 、等が提案
されている。これらの改良技術においては射出成形時の
金型からの離型性は改良されるものの、複雑な形状を有
する歯車等の成形品を高速射出成形したり、省エネルギ
一対策のために通常より低い温度条件で成形したりする
場合、未だ根本的な解決策には至っていない。
However, rubber-modified styrenic resins have poorer flow characteristics during injection molding than non-rubber-modified styrenic polymers. Therefore, in order to improve the flow characteristics, methods of adding mineral oil (Japanese Patent Publication No. 29-7892), methods of adding higher fatty acids such as stearic acid and oleic acid or their metal salts (Japanese Patent Publication No. 48-1236), etc. Proposed. Although these improved technologies improve the release property from the mold during injection molding, the release performance is lower than usual due to high-speed injection molding of molded products such as gears with complex shapes, and as a measure to save energy. When molding under temperature conditions, no fundamental solution has yet been found.

又流動性改質のためにミネラルオイルを無暗に増量する
ことは耐熱性及び機械的強度(例えば、Vicat軟化
点や引張強度)を低下せしめ、工業的用途を狭ばめるこ
とにもなる。
In addition, increasing the amount of mineral oil in order to improve fluidity will lower the heat resistance and mechanical strength (e.g., Vicat softening point and tensile strength), and will also limit industrial applications. .

(発明が解決しようとする問題点) 本発明者らはかかる現状に鑑み、複雑な成形金型を使用
する場合においても、また、経済的に優位な低温度領域
(170〜190℃)においても容易に射出成形が可能
な、即ち熱溶融時の流動特性に優れたゴム変性スチレン
系樹脂について鋭意検討した。
(Problems to be Solved by the Invention) In view of the current situation, the present inventors believe that even when using a complicated molding die, and in the economically advantageous low temperature range (170 to 190°C), We conducted extensive research on rubber-modified styrenic resins that can be easily injection molded, that is, have excellent flow characteristics when melted.

射出成形時、即ち熱溶融時の流動性は、本質的にゴム変
性スチレン系樹脂中のポリスチレン連続相の重量平均分
子量(那)の値に大きく左右される。
The fluidity during injection molding, that is, during hot melting, essentially depends largely on the value of the weight average molecular weight (NA) of the polystyrene continuous phase in the rubber-modified styrenic resin.

工業的に射出成形品として使用されているゴム変性スチ
レン系樹脂中のポリスチレン連続相の重量平均分子m(
那)は、20 X 10’〜35 X 10’の範囲に
ある。
The weight average molecule m(
) is in the range of 20 x 10' to 35 x 10'.

熱溶融時の流動性を改良する手段、即ち前記分子量を低
下せしめる方法として、ゴム変性スチレン系樹脂を製造
する過程における重合時の温度を150〜170℃と高
温下とする方法が考えられるが、重合に伴なう重合熱の
除去法が工業的に困難であり、かつ経済的に不利なため
現実性に乏しい、一方、比較的低温下で分子量を低下せ
しめる方法として1分子量調整剤である脂肪族又は芳香
族メルカプタン類を重合初期から添加する方法が公知で
ある。しかしながら、このような容易な分子量調整手段
で得られるゴム変性スチレン系樹脂は、ポリスチレン連
続相中に微細分散するゴム質重合体にグラフト重合した
ポリスチレン鎖の分子量も同時に低下するため、耐衝撃
性が極度に低下してしまう欠点がある。こうした問題点
を解決する方法としてメルカプタンの累積添加法が提案
されているが(特公昭4l−11468)、スチレン単
量体に対する連鎖移動定数(CB)が大きいため(Cs
=20〜40)、分子量を調整する上で添加量の規制が
工業的に難しく、かつメルカプタン類を使用した場合、
射出成形して得られる成形品に黄変が見られたり、メル
カプタン特有の異臭が残存したりして商品価値の低下を
もたらす場合がある。
As a means of improving fluidity during hot melting, that is, a method of reducing the molecular weight, it is possible to raise the temperature during polymerization to a high temperature of 150 to 170 ° C. in the process of producing a rubber-modified styrenic resin. A method for removing the polymerization heat accompanying polymerization is industrially difficult and economically disadvantageous, and is therefore impractical.On the other hand, one method for reducing the molecular weight at relatively low temperatures is the use of fats, which are molecular weight modifiers. A method of adding group or aromatic mercaptans from the initial stage of polymerization is known. However, rubber-modified styrenic resins obtained by such easy molecular weight adjustment methods have poor impact resistance because the molecular weight of the polystyrene chains graft-polymerized to the rubbery polymer finely dispersed in the polystyrene continuous phase also decreases. It has the disadvantage of being severely degraded. A cumulative addition method of mercaptan has been proposed as a method to solve these problems (Japanese Patent Publication No. 41-11468), but since the chain transfer constant (CB) for styrene monomer is large (Cs
= 20 to 40), it is industrially difficult to control the amount added to adjust the molecular weight, and when mercaptans are used,
Yellowing may be observed in the molded product obtained by injection molding, and the peculiar odor of mercaptan may remain, resulting in a decrease in commercial value.

又、ゴム変性スチレン系樹脂の流動特性はポリスチレン
連続相の分子量のみではなく、該連続相中に微細分散す
るゴム相の特性、即ちゴム質重合体濃度及びそのものの
溶液粘度、ゴム粒子径さらにはゴム変性スチレン系樹脂
の溶媒可溶性に関する総合的な最適化が必要とされる。
Furthermore, the flow characteristics of rubber-modified styrenic resins are determined not only by the molecular weight of the polystyrene continuous phase, but also by the characteristics of the rubber phase finely dispersed in the continuous phase, such as the rubbery polymer concentration, its solution viscosity, the rubber particle size, and even more. Comprehensive optimization of the solvent solubility of rubber-modified styrenic resins is required.

本発明は、熱溶融時の流動特性を改善したゴム変性スチ
レン系樹脂を得ることを目的に、これら流動特性改善フ
ァクターの総合的最適化のもとに見い出されたものであ
る。
The present invention was discovered based on comprehensive optimization of these flow characteristic improvement factors, with the aim of obtaining a rubber-modified styrenic resin with improved flow characteristics during hot melting.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明を概説すれば、本発明は 5%スチレン溶液における溶液粘度が50〜100セン
チポイズのゴム質重合体及びミネラルオイルの存在下で
スチレン系単量体をグラフト重合し、(i)  スチレ
ン系重合体連続相の重量平均分子量(那)が、11Xl
O’〜18 X 10’で。
(Means for Solving the Problems) To summarize the present invention, a styrenic monomer is prepared in the presence of a rubbery polymer having a solution viscosity of 50 to 100 centipoise in a 5% styrene solution and mineral oil. Graft polymerization is carried out, and (i) the weight average molecular weight (na) of the styrenic polymer continuous phase is 11Xl.
O'~18 x 10'.

(ii)  前記ゴム質重合体にスチレン系単量体がグ
ラフト重合して生成する前記スチレン系重合体連続相中
に分散されたグラフト化ゴム貿重合体粒子の重量平均粒
子径(D、)が、1.8〜5μで、 (in)  グラフト重合生成物中の前記ゴム質重合体
含有濃度が、4〜10重量%で、かつ (tv)  グラフト重合生成物のメタノール可溶分が
、3〜6重量%である ゴム変性スチレン系樹脂組成物を製造するに際して、ス
チレン系単量体の重合転化率が10〜50重景%の重量
内で連鎖移動定数(Cs)が0.15〜0.4の値を有
する分子量調整剤を前記スチレン系単量体100重量部
に対して0.05〜0.5重量部添加することを特徴と
する熱溶融時の流動性に優れたゴム変性スチレン系樹脂
組成物の製造法に関するものである。
(ii) The weight average particle diameter (D,) of the grafted rubber polymer particles dispersed in the styrenic polymer continuous phase produced by graft polymerization of a styrenic monomer to the rubbery polymer is , 1.8 to 5μ, (in) the concentration of the rubbery polymer in the graft polymerization product is 4 to 10% by weight, and (tv) the methanol soluble content of the graft polymerization product is 3 to 5μ. When producing a rubber-modified styrenic resin composition with a weight of 6% by weight, the chain transfer constant (Cs) is 0.15-0. A rubber-modified styrenic system having excellent fluidity during hot melting, characterized in that 0.05 to 0.5 parts by weight of a molecular weight regulator having a value of 4 is added to 100 parts by weight of the styrenic monomer. The present invention relates to a method for producing a resin composition.

以下、本発明の構成について詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

最初に1本発明の熱溶融時の流動特性に優れたゴム変性
スチレン系樹脂を製造する方法において、どのようなグ
ラフト重合体を調製しようとしているか言及する。本発
明においてはポリスチレン連続相の重量平均分子量をl
lXl0’〜18 X 10’にコントロールすること
が必須条件である。
First, we will discuss what kind of graft polymer is being prepared in the method of the present invention for producing a rubber-modified styrenic resin with excellent fluidity properties during hot melting. In the present invention, the weight average molecular weight of the polystyrene continuous phase is l
It is an essential condition to control the range between 1X10' and 18X10'.

ここで言うポリスチレンの重量平均分子量とは広く知ら
れている方法で測定される値のものであり、本発明法に
調製されたゴム変性スチレン系樹脂をメチルエチルケト
ンとメタノールの10:1の溶媒に溶解し、遠心分離で
スチレン系重合体相とゴム相を分難し、上澄液をメタノ
ールに入れ再沈。
The weight average molecular weight of polystyrene mentioned here is a value measured by a widely known method, and the rubber-modified styrenic resin prepared by the method of the present invention is dissolved in a solvent of methyl ethyl ketone and methanol in a ratio of 10:1. Then, separate the styrene polymer phase and rubber phase by centrifugation, and pour the supernatant into methanol and reprecipitate.

濾過、乾燥し、スチレン系重合体連続相を得、これの一
部をテトラヒドロフランに溶解しゲルパーミレージョン
クロマトグラフィー(GPC)により測定される。
A styrene polymer continuous phase is obtained by filtration and drying, a portion of which is dissolved in tetrahydrofuran, and measured by gel permeation chromatography (GPC).

本発明において、スチレン系重合体連続相の重量平均分
子量(那)はllXl0’〜18 X 10’で、好ま
しくは13xlO’ 〜15X10’(7)モ(7)テ
アル、  11xlO’以下では熱溶融的における流動
特性(成形性)が改善されるものの、使用に耐え得る耐
衝撃性を確保するのが困難であり実用性がない、一方、
 18X10’以上では本発明の最大の効果としている
熱溶融時の流動特性を根本的に改善するという目的を達
成することができない。
In the present invention, the weight average molecular weight (NA) of the styrenic polymer continuous phase is from 11x10' to 18x10', preferably from 13x10' to 15x10' (7) mo(7), and below 11x10', the weight average molecular weight (na) is 11x10' to 18x10'. Although the flow characteristics (formability) are improved, it is difficult to ensure impact resistance that can withstand use, and it is not practical.
If it is 18×10' or more, it is impossible to achieve the purpose of fundamentally improving the flow characteristics during hot melting, which is the greatest effect of the present invention.

又1本発明の目的を達成す名には、スチレン系重合体連
続相の重量平均分子量(那)の最適化に加えてゴム質重
合体の種類、量、及び分散ゴム粒子径を特定する事が必
要である。
In order to achieve the object of the present invention, in addition to optimizing the weight average molecular weight (NA) of the styrenic polymer continuous phase, it is necessary to specify the type and amount of the rubbery polymer and the dispersed rubber particle diameter. is necessary.

すなわち、本発明法により調製されるゴム変性スチレン
系樹脂中のゴム質重合体の濃度は4〜10重量%、好ま
しくは5〜8重量%の範囲内にあり。
That is, the concentration of the rubbery polymer in the rubber-modified styrenic resin prepared by the method of the present invention is in the range of 4 to 10% by weight, preferably 5 to 8% by weight.

そのゴム質重合体の5%スチレン溶液の30℃における
溶液粘度が45〜100センチボイスであり、 かつゴ
ム質重合体にスチレン系単量体がグラフト重合して生成
するグラフト化ゴム粒子の重量平均粒子径(DV)が1
.8〜5μとする要件が不可欠である。
The solution viscosity of a 5% styrene solution of the rubbery polymer at 30°C is 45 to 100 centivoices, and the weight average of grafted rubber particles produced by graft polymerization of a styrene monomer to the rubbery polymer. Particle diameter (DV) is 1
.. The requirement of 8-5μ is essential.

前記したそれぞれの要件範囲において、その下限を下ま
わると使用に耐え得る耐衝撃性を有する成形品を得るこ
とが出来ず、又、上限を上まわると流動特性の改善を困
難ならしめかつ射出成形して得られる成形品の表面光沢
性が極度に低下する。
In each of the above-mentioned requirement ranges, if the lower limit is below, it will not be possible to obtain a molded product with impact resistance that can withstand use, and if the upper limit is exceeded, it will be difficult to improve the flow characteristics and injection molding will be difficult. The surface gloss of the molded product obtained by this process is extremely reduced.

なお、ここで言うグラフト化ゴム粒子の重量平均粒子径
(DV)は、 ジメチルホルムアミドとチオシアン酸ア
ンモニウムからなる電解液を使用し、コールタ−カウン
ター(コールタ−社mTA−n型)より重量平均の50
%メジアン程を求めることにより、定量的数値として得
られるものである。
The weight average particle diameter (DV) of the grafted rubber particles referred to here is determined by using an electrolytic solution consisting of dimethylformamide and ammonium thiocyanate, and measuring the weight average particle diameter (DV) of 50% using a Coulter counter (Model Coulter mTA-n).
It is obtained as a quantitative value by determining the % median.

さらに、本発明の目的を達成するには1本発明により調
製されるゴム変性スチレン系樹脂の溶解性が重要であり
、メタノール可溶分が、3〜6重量%の範囲に維持され
なければならない。ここで言うメタノール可溶分とは、
本発明のゴム変性スチレン系単量体1gを精秤し、約8
0gのトルエンに溶解した後、約800gのメタノール
に再沈殿し、濾過、乾燥を行った後、沈殿分を精秤し減
少した成分の量を求め、減少した量のもとの樹脂量に対
する割合をいう。メタノール可溶分が3重量%以下であ
ると1本発明の効果、特に射出成形時における所要射出
成形圧力の温度依存性が高くなり、射出成形が可能な温
度範囲が狭くなるという欠点が生じ、又6重量%を超え
ると耐熱性、引張強度。
Furthermore, in order to achieve the object of the present invention, the solubility of the rubber-modified styrenic resin prepared according to the present invention is important, and the methanol soluble content must be maintained in the range of 3 to 6% by weight. . The methanol soluble content referred to here is
Precisely weigh 1 g of the rubber-modified styrenic monomer of the present invention, and
After dissolving in 0g of toluene, reprecipitate in about 800g of methanol, filtering and drying, then accurately weigh the precipitate to determine the amount of the reduced component, and calculate the ratio of the reduced amount to the original amount of resin. means. If the methanol soluble content is 3% by weight or less, the effects of the present invention, especially during injection molding, will have the disadvantage that the temperature dependence of the required injection molding pressure will be high, and the temperature range in which injection molding can be performed will be narrowed. Also, if it exceeds 6% by weight, heat resistance and tensile strength will decrease.

曲げ強度が低下し実用的でなくなる。又前記した方法で
測定されたメタノール可溶分とは該ゴム変性スチレン系
樹脂中に含有される2〜4Ek体のスチレン系オリゴマ
ー、未反応モノマー、ミネラルオイルなどの可溶性成分
の総重量%濃度を意味する。
The bending strength decreases, making it impractical. In addition, the methanol soluble content measured by the above method refers to the total weight % concentration of soluble components such as 2 to 4 Ek styrenic oligomers, unreacted monomers, mineral oil, etc. contained in the rubber-modified styrenic resin. means.

次に1本発明のゴム変性スチレン系樹脂を製造する方法
において、その製造工程上の重要な点について説明する
Next, important points in the manufacturing process of the method for manufacturing the rubber-modified styrenic resin of the present invention will be explained.

まず、前記した条件を満たすゴム質重合体をスチレン系
単量体に添加し、40〜60℃に加熱溶解し。
First, a rubbery polymer that satisfies the above conditions is added to a styrenic monomer, and the mixture is heated and dissolved at 40 to 60°C.

更に加熱し90〜150℃で撹拌下に予備塊状重合させ
る。この予備塊状重合工程において、スチレン系単量体
の重合転化率が10〜50重量%、好ましくは20〜4
0重量%の範囲に達した時点で、スチレン系単量体に対
する連鎖移動定数(Cs)が0.15〜0.4の値を有
する重合分子量調整剤をスチレン系単量体100重量部
に対して0.05〜0.5重量部、好ましくは0.1〜
0.3重量部を添加し、その後塊状重合を遂行せしめる
方法(塊状重合法)か、もしくは第3リン酸カルシウム
等の懸濁剤を含む水相へ移送懸濁せしめ重合せしめる方
法(塊状−懸濁二段重合法)などにより重合を完結せし
める。なお、重合に際して過酸化ベンゾイル等の重合開
始剤を用いることができるのは勿論である。
The mixture is further heated and preliminarily bulk polymerized at 90 to 150°C with stirring. In this preliminary bulk polymerization step, the polymerization conversion rate of the styrenic monomer is 10 to 50% by weight, preferably 20 to 4% by weight.
When the concentration reaches 0% by weight, a polymerization molecular weight regulator having a chain transfer constant (Cs) of 0.15 to 0.4 for the styrene monomer is added to 100 parts by weight of the styrene monomer. 0.05 to 0.5 parts by weight, preferably 0.1 to 0.5 parts by weight
A method of adding 0.3 parts by weight and then carrying out bulk polymerization (bulk polymerization method), or a method of transferring and suspending polymerization to an aqueous phase containing a suspending agent such as tribasic calcium phosphate (bulk-suspension method) The polymerization is completed by a step polymerization method) or the like. It goes without saying that a polymerization initiator such as benzoyl peroxide can be used during the polymerization.

ここでいう、連鎖移動定数(Cs)が、0.15〜0.
4の値を有する代表的な分子量調整剤としては、2゜4
−ジフェニル−4−メチル−1−ペンテン、2゜4.4
. トリフェニル−1−ペンテン、パラターシャリ−ブ
チルピロカテコール、酢酸ジブロモエチルエステル、ア
セチルクロライドが挙げられる。
The chain transfer constant (Cs) here is 0.15 to 0.
A typical molecular weight modifier having a value of 4 is 2°4.
-diphenyl-4-methyl-1-pentene, 2°4.4
.. Examples thereof include triphenyl-1-pentene, paratertiary-butylpyrocatechol, dibromoethyl acetate, and acetyl chloride.

ここで、前記したのとは相違する態様、即ち分子量調整
剤を重合初期に添加し重合せしめると。
Here, in a different manner from that described above, that is, a molecular weight regulator is added at the initial stage of polymerization and polymerization is carried out.

最終的に得られるゴム変性スチレン系樹脂は使用に耐え
得る耐衝撃性を保有することができない。
The rubber-modified styrenic resin finally obtained cannot have impact resistance sufficient for use.

一方、50重量%以上の重合転化率に達した時点で分子
量調整剤を添加すると1本発明の目的とする高流動性を
有する樹脂組成物を得ることができない、また分子量調
整剤の添加濃度を高め、無理にポリスチレン連続相の分
子量を低下せしめて、高流動性を付与せしめようとする
と、最終的に得られるゴム変性スチレン系樹脂中に分子
量調整剤が残存し、射出成形時のフラッシュ、又は色相
不良等の悪い結果をもたらす、従って、本発明のゴム変
性スチレン系樹脂の製造法において、添加する分子量調
整剤の添加時期及び使用割合は重要な要件となるもので
ある。
On the other hand, if the molecular weight modifier is added when a polymerization conversion rate of 50% by weight or more is reached, a resin composition with high fluidity, which is the objective of the present invention, cannot be obtained; If the molecular weight of the polystyrene continuous phase is forcibly lowered to give it high fluidity, the molecular weight modifier will remain in the rubber-modified styrenic resin that is finally obtained, causing flashing during injection molding or Therefore, in the method for producing the rubber-modified styrenic resin of the present invention, the timing of addition and the proportion of use of the molecular weight modifier are important requirements.

上記の如くして得られたゴム変性スチレン系樹脂は全工
程を塊状重合で行う場合は押出工程でペレット化され、
塊状−懸濁重合二段法で行う場合はスラリーを脱水し、
得られたビーズを乾燥し押出機にてペレット化する。
The rubber-modified styrenic resin obtained as described above is pelletized in the extrusion process when the entire process is carried out by bulk polymerization.
When carrying out a two-stage bulk-suspension polymerization method, the slurry is dehydrated;
The obtained beads are dried and pelletized using an extruder.

又、本発明で規定するグラフト化ゴム質重合体粒子の粒
径は、前記予備塊状重合時の撹拌条件を調整することに
より達成される。即ち、撹拌翼回転数を小さくすること
により平均粒径は大きくなり1回転数を大きくするとゴ
ム粒子径は小さくなるので、適切な撹拌回転数を選ぶこ
とによりゴム質重合体粒子の粒子径の調整が達成される
Further, the particle size of the grafted rubbery polymer particles specified in the present invention can be achieved by adjusting the stirring conditions during the preliminary bulk polymerization. In other words, by decreasing the rotation speed of the stirring blade, the average particle size increases, and by increasing the rotation speed, the rubber particle diameter decreases, so by selecting an appropriate stirring rotation speed, the particle size of the rubbery polymer particles can be adjusted. is achieved.

本発明のゴム変性スチレン系樹脂の製造方法に使用され
るスチレン系単量体としては、スチレン。
The styrenic monomer used in the method for producing a rubber-modified styrenic resin of the present invention is styrene.

α−メチルスチレン、およびベンゼン核の水素原子がハ
ロゲン原子やC1〜C4なるアルキル基で置換されたス
チレン誘導体であり、0−クロルスチレン、P−クロル
スチレン、P−メチルスチレン。
α-methylstyrene, and styrene derivatives in which the hydrogen atom of the benzene nucleus is substituted with a halogen atom or a C1-C4 alkyl group, such as 0-chlorostyrene, P-chlorostyrene, and P-methylstyrene.

t−ブチルスチレンなどがある。Examples include t-butylstyrene.

本発明法で使用されるゴム質重合体としては、5%スチ
レン溶液の30℃における溶液粘度が45〜95センチ
ストークスの範囲にあれば限定されるものではないが、
代表的なものを例示すれば、ポリブタジェン・ゴム、ス
チレン・ブタジェン共重合ゴム、スチレン・ブタジェン
・スチレンブロック共重合ゴム、エチレン・プロピレン
ターポリマー系ゴム等がある。
The rubbery polymer used in the method of the present invention is not limited as long as the solution viscosity of a 5% styrene solution at 30°C is in the range of 45 to 95 centistokes, but
Representative examples include polybutadiene rubber, styrene-butadiene copolymer rubber, styrene-butadiene-styrene block copolymer rubber, and ethylene-propylene terpolymer rubber.

以上のようにして調製される本発明、のゴム変性スチレ
ン系樹脂は、添加型流動改良剤であるミネラルオイルを
配合することができる。ミネラルオイルの添加は重合工
程中でも、あるいは押出工程時などで行なわれる。また
、使用するミネラルオイルの種類については、特に限定
されないが、100 Fでの動粘度が60センチストー
クス以下のものを使用するのが好ましい。
The rubber-modified styrenic resin of the present invention prepared as described above can be blended with mineral oil as an additive flow improver. Mineral oil is added during the polymerization process or during the extrusion process. The type of mineral oil to be used is not particularly limited, but it is preferable to use one having a kinematic viscosity of 60 centistokes or less at 100 F.

このほか1本発明においては、3・5−ジターシャリ−
ブチル−4−ヒドロキシトルエン(B HT)等の酸化
防止剤、ステアリン酸亜鉛等の滑剤などの公知慣用の添
加剤を使用できることは勿論のことである。
In addition, in the present invention, 3,5-ditertiary
Of course, known and commonly used additives such as antioxidants such as butyl-4-hydroxytoluene (BHT) and lubricants such as zinc stearate can be used.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例により更に具体的に
説明するが、本発明はこれら実施例に限定されない。尚
、例中の部および%はすべで重量基準である。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, all parts and percentages in the examples are based on weight.

例中の各種物性の測定は以下の様に行った。Measurements of various physical properties in the examples were performed as follows.

■メルト・フローレート J I S −7210 ■アイゾツト衝撃値 J I S  K−7110に準拠した。■Melt flow rate JIS-7210 ■Izotsu impact value Compliant with JIS K-7110.

■引張強度 J I S  K−7113に準拠した。■Tensile strength Compliant with JIS K-7113.

(へ)V 1cat軟化温度 J I S  K−7206に準拠した。(to) V 1cat softening temperature Compliant with JIS K-7206.

0表面光沢 J I S  Z−8741に準拠した。0 surface gloss Compliant with JIS Z-8741.

■ゴム質重合体含有率 赤外分光、光度計、または熱分解ガスクロマトグラフィ
ーによって求めた。
(2) Rubbery polymer content Determined by infrared spectroscopy, photometry, or pyrolysis gas chromatography.

■スパイラルフローによる流動特性 アルキメデス スパイラルフロー金型を射出成形機に取
り付けて成形しく射出ラム圧600 kg / am 
” )流動特性を評価した。ノズルタラ≠の位置から成
形品最遠部までの長さくL)と成形品肉厚(T)より求
めた流入長比(L/T)と成形温度の関係、即ち流動特
性の温度依存性を調べた。
■Flow characteristics due to spiral flow The Archimedes spiral flow mold is attached to an injection molding machine and the injection ram pressure is 600 kg/am.
) The flow characteristics were evaluated.The relationship between the inflow length ratio (L/T) obtained from the length L) from the position of the nozzle cod ≠ to the farthest part of the molded product and the molded product wall thickness (T) and the molding temperature, i.e. The temperature dependence of flow properties was investigated.

実施例1 内容積100Qの撹拌機付重合槽に701Cgのスチレ
ンを仕込み、そこへ5%スチレン溶液の30℃における
溶液粘度が90センチポイズなるスチレン・ブタジェン
共重合ゴム(スチレン25%含有5BR)5−を粉砕せ
しめた後、添加し、撹拌下に50℃にて6時間加熱し均
一溶液になるまで溶解せしめた。
Example 1 701 Cg of styrene was charged into a polymerization tank with an internal volume of 100 Q and equipped with a stirrer, and a 5% styrene solution was added thereto to obtain a styrene-butadiene copolymer rubber (5BR containing 25% styrene) with a solution viscosity of 90 centipoise at 30°C. After pulverizing, the mixture was added and heated at 50° C. for 6 hours with stirring to dissolve until a homogeneous solution was obtained.

これに3kgのミネラルオイルを加えた後、撹拌数を8
Orpmとして、昇温し、117℃で4時間予備重合を
行ない、スチレンの重合転□化率を32%とした。
After adding 3 kg of mineral oil to this, increase the stirring number to 8.
Orpm, the temperature was raised and preliminary polymerization was carried out at 117° C. for 4 hours, and the polymerization conversion rate of styrene was 32%.

これに0.2kgの2,4−ジフェニル−4−メチル−
1−ペンテンを添加し、10分後に予め下記の通り調整
用意した内容積200 Qの撹拌機付の重合槽へ、該予
備重合によるポリマー中間体を移送し、懸濁分散せしめ
た。
To this, 0.2 kg of 2,4-diphenyl-4-methyl-
1-pentene was added, and 10 minutes later, the polymer intermediate resulting from the prepolymerization was transferred to a polymerization tank equipped with a stirrer and having an internal volume of 200 Q, which had been adjusted and prepared in advance as described below, and was suspended and dispersed.

水            140  kg第3リン酸
カルシウム    2kg ポリビニルアルコール   0.5 kgこれに、ジタ
ーシャリ−ブチルパーオキサイド0.2kgを加え、1
15℃で3時間、130℃で2時間重合した。得られた
ビーズ状粒子を濾別、乾燥し、押出機にて押出しペレッ
ト化した。
Water 140 kg Tertiary calcium phosphate 2 kg Polyvinyl alcohol 0.5 kg To this, add 0.2 kg of ditertiary-butyl peroxide,
Polymerization was carried out at 15°C for 3 hours and at 130°C for 2 hours. The obtained bead-like particles were filtered, dried, and extruded into pellets using an extruder.

以上のようにして調製したゴム変性スチレン系樹脂中の
ポリスチレン連続相の重量平均分子量。
Weight average molecular weight of the polystyrene continuous phase in the rubber-modified styrenic resin prepared as described above.

ゴム質重合体の濃度、グラフト化ゴム質重合体の重量平
均粒子径、及びメタノール可溶分の測定結果、ならびに
前記ペレットを射出成形して得た試験片の物性測定結果
を第1表にあわせて示す。又。
The concentration of the rubbery polymer, the weight average particle diameter of the grafted rubbery polymer, the measurement results of the methanol soluble content, and the measurement results of the physical properties of the test piece obtained by injection molding the pellets are shown in Table 1. Shown. or.

スパイラルフロー射出成形法により得られた流動特性の
温度依存性を、第1図に示す。
FIG. 1 shows the temperature dependence of the flow characteristics obtained by the spiral flow injection molding method.

比較例1,2 予備重合を117℃で1時間行ない、スチレンの重合転
化率を8%(比較例1)とし、比較例2では予備重合を
117℃で7時間行ない、 スチレンの重合転化率を5
8%とした以外は、実施例1と同様にして比較対照用の
ゴム変性スチレン系樹脂を得た0次いで実施例1と同様
にして各種物性の測定を行った。結果を第1表、第1図
に示す。
Comparative Examples 1 and 2 Prepolymerization was carried out at 117°C for 1 hour, and the polymerization conversion rate of styrene was set at 8% (Comparative Example 1), and in Comparative Example 2, preliminary polymerization was carried out at 117°C for 7 hours, and the polymerization conversion rate of styrene was set at 8%. 5
A rubber-modified styrenic resin for comparison was obtained in the same manner as in Example 1 except that the amount was 8%.Next, various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1 and Figure 1.

第1表 これらの結果から1次のことがいえる。Table 1 From these results, the following can be said.

比較例1の方法で得られたペレットは、アイゾリット衝
撃値が極度に悪く、使用に耐え得るものではなかった。
The pellets obtained by the method of Comparative Example 1 had an extremely poor isolite impact value and were not usable.

また、第1図に示されるスパイラルフロー射出成形法に
よる流動性の温度依存性は。
Also, the temperature dependence of fluidity in the spiral flow injection molding method is shown in FIG.

実施例1のものより上位にあるが、 これは200〜2
20℃の温度領域のものであり、 本発明が主眼とする
低温領域(180℃)においては両者に差があるとは認
められない。
Although it is higher than that of Example 1, this is 200-2
The temperature range is 20°C, and there is no difference between the two in the low temperature range (180°C), which is the focus of the present invention.

一方、比較例2の方法で得られたペレットは。On the other hand, the pellets obtained by the method of Comparative Example 2.

第1図から明らかのように射出成形温度の全領域におい
て実施例1のものより下位にあり、かつ温度依存性が高
い。このことは、実施例1の方法で得られたペレットは
、比較例2で得られたペレットと比較して、流入長比が
高いばかりでなく、成形温度が若干変動しても安定した
成形品(ショートショット等による不良発生率が低い)
が得られることを意味する。
As is clear from FIG. 1, the injection molding temperature is lower than that of Example 1 in the entire range of injection molding temperatures, and the temperature dependence is high. This means that the pellets obtained by the method of Example 1 not only have a higher inflow length ratio than the pellets obtained by Comparative Example 2, but also provide stable molded products even when the molding temperature slightly fluctuates. (Low incidence of defects due to short shots etc.)
This means that you can get

実施例2.3および比較例3,4 ゴム質重合体として5%スチレン溶液の30℃における
溶液粘度と添加量、ミネラルオイル添加量。
Example 2.3 and Comparative Examples 3 and 4 Solution viscosity and amount added of a 5% styrene solution as a rubbery polymer at 30° C., and amount added of mineral oil.

予備重合工程で使用する分子量調整剤の種類と添加量、
撹拌回転数の条件を第2表の如く変更した以外は、実施
例1と同様の条件で、ゴム変性スチレン系樹脂を得、次
いで同様にして各種物性の測定を行った。結果を第2表
にあわせて示す。
Type and amount of molecular weight regulator used in the prepolymerization process,
A rubber-modified styrenic resin was obtained under the same conditions as in Example 1, except that the stirring rotation speed was changed as shown in Table 2, and then various physical properties were measured in the same manner. The results are also shown in Table 2.

第2表 実施例2と比較して比較例3においてはゴム質重合体の
5%溶液粘度が極めて高い原料ゴムを使用したもので、
実施例2に等しいメルトブローレートを有する樹脂を得
るにはミネラルオイルを増量する必要があることがわか
る。しかも、実施例2のものは比較例3のものと比較し
てビカット軟化点、引張強度が著しく改良されておりそ
の優位性がわかる。
Table 2 Compared to Example 2, Comparative Example 3 used a raw material rubber having an extremely high 5% solution viscosity of a rubbery polymer.
It can be seen that to obtain a resin with a melt blow rate equal to that of Example 2, it is necessary to increase the amount of mineral oil. In addition, the Vicat softening point and tensile strength of Example 2 were significantly improved compared to those of Comparative Example 3, demonstrating its superiority.

一方、実施例3と比較例4は、使用する連鎖移動剤の種
類即ち2.4−ビフェニル−4−メチル−1−ペンテン
とノルマルドデシルメルカプタンとの比較を見たもので
あり、実施例3においては得られた成形品表面及び色相
に異変は認められないが、ノルマルドデシルメルカプタ
ンを使用した比較例4においては成形品表面にフラッシ
ュが認められ、かつ成形品に黄変が認められ、商品とし
ての価値をそこなうものであった。
On the other hand, Example 3 and Comparative Example 4 compare the types of chain transfer agents used, that is, 2,4-biphenyl-4-methyl-1-pentene and n-dodecyl mercaptan. No abnormality was observed on the surface or hue of the molded product obtained, but in Comparative Example 4 using n-dodecyl mercaptan, flash was observed on the surface of the molded product and yellowing was observed in the molded product, making it unsuitable as a product. It was a loss of value.

実施例4 スチレン単量体100部に対して、 5%スチレン溶液
の30℃における溶液粘度が85センチポイズなるポリ
ブタジェン7部、 ミネラルオイル3.5部を完全溶解
せしめた原料溶液を、アンカーパドル型の撹拌翼を備え
た20Qの種型反応器4基、熱交換器、脱揮槽から成る
連続反応装置を用いて重合反応を行った。°前記原料溶
液を連続的に7Q/時間で供給し、135℃で予備重合
させると供に、7Q/時間で抜き出し第2の槽型反応器
に供給し、引き続き第2の槽型反応器にて140℃で重
合させ、 かつ第2の重合槽ヘスチレン単量体原液10
0部に対して0.2部の 2,4−ジフェニル−4−メ
チル−1−ペンテンを連続供給した。なおここで、第1
重合槽と第2重合検出口の重量転化率を測定したところ
それぞれ、 21%と43%であった。その後第2重合
槽より7Q/時間で抜き出し、第3 (145℃)、第
4 (165℃)重合槽へ順次供給、抜き出しを連続的
に行いつつ重合せしめた。その後重合液を熱交換器で2
30℃まで加熱し、50IIIIIHgの減圧下で揮発
成分を除去した後、押出機により溶融、混練しペレット
化し、ゴム変性スチレン系樹脂を得1次いで各種物性の
測定を行った。
Example 4 A raw material solution prepared by completely dissolving 7 parts of polybutadiene and 3.5 parts of mineral oil with a 5% styrene solution having a solution viscosity of 85 centipoise at 30°C in 100 parts of styrene monomer was poured into an anchor paddle-shaped solution. The polymerization reaction was carried out using a continuous reaction apparatus consisting of four 20Q seed reactors equipped with stirring blades, a heat exchanger, and a devolatilization tank. °The raw material solution is continuously supplied at 7Q/hour and prepolymerized at 135°C, and at the same time, it is extracted at 7Q/hour and supplied to the second tank reactor. and polymerize at 140°C, and in a second polymerization tank hestyrene monomer stock solution 10
0 parts of 2,4-diphenyl-4-methyl-1-pentene were continuously fed. Note that here, the first
When the weight conversion rates of the polymerization tank and the second polymerization detection port were measured, they were 21% and 43%, respectively. Thereafter, it was extracted from the second polymerization tank at a rate of 7 Q/hour, and polymerized while being sequentially supplied to and extracted from the third (145°C) and fourth (165°C) polymerization tanks. After that, the polymerization liquid is transferred to a heat exchanger for 2
After heating to 30°C and removing volatile components under a reduced pressure of 50IIIHg, the mixture was melted and kneaded using an extruder and pelletized to obtain a rubber-modified styrenic resin.Next, various physical properties were measured.

なお、各重合槽の回転数は第1重合槽1100rp。Note that the rotation speed of each polymerization tank was 1100 rpm in the first polymerization tank.

第2重合槽70rp1m+第3重合槽50rpm 、第
4重合槽を3Orpmとした。測定結果を第3表に示す
6比較例5 ゴム貿重合体として、5%スチレン溶液の30℃におけ
る溶液粘度が30センチボイズなる9部のポリブタジェ
ンを使用し、 スチレン単量体原液100部に対してミ
ネラルオイルを3.5部添加するとともに、2,4−ジ
フェニル−4−メチル−1−ペンテンを初期に添加し、
かつゴム粒子系が実施例4と同一とするべく、第1重合
槽の撹拌回転数を85rpmとした以外は、実施例4と
同様の条件で重合し、ペレットを得、次いで各種物性の
H1’l定を行った。測定結果を第3表に示す。
The speed of the second polymerization tank was 70 rpm + the third polymerization tank was 50 rpm, and the fourth polymerization tank was set to 3 Orpm. The measurement results are shown in Table 3. 6 Comparative Example 5 As a rubber trade polymer, 9 parts of polybutadiene with a solution viscosity of 30 centivoids in a 5% styrene solution at 30°C was used, and While adding 3.5 parts of mineral oil, 2,4-diphenyl-4-methyl-1-pentene was added initially,
In addition, in order to have the same rubber particle system as in Example 4, polymerization was carried out under the same conditions as in Example 4, except that the stirring rotation speed of the first polymerization tank was set to 85 rpm, and pellets were obtained. I made a determination. The measurement results are shown in Table 3.

比較例6 第1重合槽の回転数を5Orpmにした以外は、実施例
4と同様の条件で重合し、ペレットを得、次いで各種物
性の測定を行った。測定結果を第3表に示す。
Comparative Example 6 Pellets were obtained by polymerization under the same conditions as in Example 4, except that the rotation speed of the first polymerization tank was set to 5 Orpm, and then various physical properties were measured. The measurement results are shown in Table 3.

第3表 〔発明の効果〕 本発明の方法によって得られたゴム変性スチレン系樹脂
は、熱溶融時即ち射出成形時における流動性が極めて良
好であるため、突起部、薄肉部。
Table 3 [Effects of the Invention] The rubber-modified styrenic resin obtained by the method of the present invention has extremely good fluidity during hot melting, that is, during injection molding, and therefore does not easily form protrusions or thin walls.

歯車部等複雑な形状を有する金型を用いて射出成形する
場合でも容易に成形することができる。又、食品容器2
日用品等を成形する場合、低い成形温度でも成形が可能
となりエネルギー省カ化によるコストダウンをもたらす
、一方、染顔料による着色ペレットを生産する場合、従
来ではあらがじめ染顔料濃度の高いマスターペレットを
調製し、該マスターペレットとナチュラルペレット(未
着色ペレット)をブレンド混練して着色ペレットを生産
するのが通常であるが、本発明の方法によって得られた
ゴム変性スチレン系樹脂は、染顔料の分散効果を品める
ことから樹脂着色用マスターペレットにも有益に使用さ
れるものである。
Even when injection molding is performed using a mold having a complicated shape such as a gear part, molding can be easily performed. Also, food container 2
When molding daily necessities, etc., it is possible to mold at low molding temperatures, resulting in cost reductions due to energy savings.On the other hand, when producing colored pellets using dyes and pigments, conventionally master pellets with a high concentration of dyes and pigments are used. Usually, the master pellets and natural pellets (uncolored pellets) are blended and kneaded to produce colored pellets, but the rubber-modified styrenic resin obtained by the method of the present invention is Because of its excellent dispersion effect, it is also usefully used as master pellets for resin coloring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スパイラルフロー射出成形法により得られた
流動特性の!rt依存性を示す。 特許出願人 大日本インキ化学工業株式会社代理人  
 弁理士  水 野 喜 夫第1図(流動特性の温度依
存性) 18020022c) 射出成形温度(’C) 手厳た?10正響じ(自発)        7昭和6
2年2月す日
Figure 1 shows the flow characteristics obtained by the spiral flow injection molding method! Shows rt dependence. Patent applicant Dainippon Ink & Chemicals Co., Ltd. Agent
Patent Attorney Yoshio Mizuno Figure 1 (Temperature dependence of flow characteristics) 18020022c) Injection molding temperature ('C) Tough? 10 positive echo (spontaneous) 7 Showa 6
February 2nd

Claims (1)

【特許請求の範囲】 5%スチレン溶液における溶液粘度が50〜100セン
チポイズのゴム質重合体及びミネラルオイルの存在下で
スチレン系単量体をグラフト重合し、(i)スチレン系
重合体連続相の重量平均分子量(那)が、11×10^
4〜18×10^4で、(ii)前記ゴム質重合体にス
チレン系単量体がグラフト重合して生成する前記スチレ
ン系重 合体連続相中に分散されたグラフト化ゴム 質重合体粒子の重量平均粒子径(D_w)が、1.8〜
5μで、 (iii)グラフト重合生成物中の前記ゴム質重合体含
有濃度が、4〜10重量%で、かつ (iv)グラフト重合生成物のメタノール可溶分が、3
〜6重量%である ゴム変性スチレン系樹脂組成物を製造するに際して、ス
チレン系単量体の重合転化率が10〜50重量%の範囲
内で連鎖移動定数(C_s)が0.15〜0.4の値を
有する分子量調整剤を前記スチレン系単量体100重量
部に対して0.05〜0.5重量部添加することを特徴
とする熱溶融時の流動特性に優れたゴム変性スチレン系
樹脂組成物の製造法。
[Claims] A styrenic monomer is graft-polymerized in the presence of a rubbery polymer having a solution viscosity of 50 to 100 centipoise in a 5% styrene solution and mineral oil, and (i) a styrenic polymer continuous phase is obtained. Weight average molecular weight (na) is 11 x 10^
4 to 18 x 10^4, (ii) grafted rubbery polymer particles dispersed in the styrenic polymer continuous phase produced by graft polymerization of a styrenic monomer to the rubbery polymer. Weight average particle diameter (D_w) is 1.8~
5μ, (iii) the concentration of the rubbery polymer in the graft polymerization product is 4 to 10% by weight, and (iv) the methanol soluble content of the graft polymerization product is 3
When manufacturing a rubber-modified styrenic resin composition having a concentration of 6% by weight, a chain transfer constant (C_s) of 0.15-0. A rubber-modified styrene-based rubber-modified styrene-based material having excellent fluidity properties during hot melting, characterized in that 0.05 to 0.5 parts by weight of a molecular weight regulator having a value of 4 is added to 100 parts by weight of the styrene-based monomer. Method for producing resin composition.
JP30525986A 1986-12-23 1986-12-23 Preparation of rubber-modified styrene resin composition having excellent flow property Pending JPS63159414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30525986A JPS63159414A (en) 1986-12-23 1986-12-23 Preparation of rubber-modified styrene resin composition having excellent flow property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30525986A JPS63159414A (en) 1986-12-23 1986-12-23 Preparation of rubber-modified styrene resin composition having excellent flow property

Publications (1)

Publication Number Publication Date
JPS63159414A true JPS63159414A (en) 1988-07-02

Family

ID=17942944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30525986A Pending JPS63159414A (en) 1986-12-23 1986-12-23 Preparation of rubber-modified styrene resin composition having excellent flow property

Country Status (1)

Country Link
JP (1) JPS63159414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117447A (en) * 1990-09-06 1992-04-17 Idemitsu Petrochem Co Ltd Styrene resin composition
JPH05170839A (en) * 1991-12-18 1993-07-09 Nippon Steel Chem Co Ltd Rubber-modified styrene resin composition
EP0609061A2 (en) * 1993-01-29 1994-08-03 Tokuyama Corporation Polymerizable composition, polymer, organic glass and ophthalmic lens
JP2002079623A (en) * 2000-09-05 2002-03-19 Toyo Styrene Co Ltd Multilayered sheet and container
JP2013040260A (en) * 2011-08-12 2013-02-28 Ps Japan Corp Rubber-modified styrenic resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117447A (en) * 1990-09-06 1992-04-17 Idemitsu Petrochem Co Ltd Styrene resin composition
JPH07119347B2 (en) * 1990-09-06 1995-12-20 出光石油化学株式会社 Styrene resin composition
JPH05170839A (en) * 1991-12-18 1993-07-09 Nippon Steel Chem Co Ltd Rubber-modified styrene resin composition
EP0609061A2 (en) * 1993-01-29 1994-08-03 Tokuyama Corporation Polymerizable composition, polymer, organic glass and ophthalmic lens
EP0609061A3 (en) * 1993-01-29 1995-05-24 Tokuyama Soda Kk Polymerizable composition, polymer, organic glass and ophthalmic lens.
US5475074A (en) * 1993-01-29 1995-12-12 Tokuyama Corporation Polymerizable composition, organic glass and ophthalmic lens
JP2002079623A (en) * 2000-09-05 2002-03-19 Toyo Styrene Co Ltd Multilayered sheet and container
JP2013040260A (en) * 2011-08-12 2013-02-28 Ps Japan Corp Rubber-modified styrenic resin composition

Similar Documents

Publication Publication Date Title
JPS63159414A (en) Preparation of rubber-modified styrene resin composition having excellent flow property
KR20190095880A (en) Method for preparing graft copolymer and thermoplastic resin article
KR20110039706A (en) Thermoplastic resin composition applicable to two cavities blow molding
KR100375814B1 (en) Method for preparing thermoplastic resin composition having excellent impact resistance
KR20000055262A (en) Method for preparing thermoplastic resin with good impact resistance and natural color property
KR102653406B1 (en) Thermoplastic resin composition and method for preparing the same
JP2993338B2 (en) Rubber-modified polystyrene resin composition, method for producing the same, and injection molded article
KR100515592B1 (en) Thermoplastic resin composition
JP4327198B2 (en) Thermoplastic resin composition
KR100423873B1 (en) A process for preparing transparent thermoplastic resin composition
KR100528779B1 (en) Thermoplastic Resin Composition Having Excellent Heat Resistance and Low Gloss
JP3344201B2 (en) Method for producing styrenic polymer
KR100419230B1 (en) Manufacturing method of thermoplastic resin with excellent whiteness and impact resistance
KR100453875B1 (en) Method of Preparing the New Grafted Copolymer Having High Rubber Contents and High Performance
KR100455101B1 (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
KR102642821B1 (en) Thermoplastic resin composition and method for preparing the same
KR100188529B1 (en) The preparation of thermoplastic resin composition having high glossness and high impact strength at low temperature
KR20040094211A (en) Thermoplastic Resin Composition with Reduced Cold Stress Whitening
KR940004853B1 (en) Preparation of thermoplastic resin composition
JPH0684409B2 (en) Method for producing heat-resistant thermoplastic resin
KR100198104B1 (en) Process for production of high molecular weight styrene-acrylonitrile copolymer resins
KR19980029660A (en) Method for producing a thermoplastic resin composition excellent in natural color and impact resistance.
KR100369378B1 (en) Process for preparing thermoplastic resin composition having excellent impact resistance and tensile property
JPH0234611A (en) Rubber-modified styrene resin
US3658944A (en) Process for the preparation of impactresisting polystyrenic polymers