JPS63159408A - Preparation of polyethylene of high strength and high modulus of elasticity - Google Patents

Preparation of polyethylene of high strength and high modulus of elasticity

Info

Publication number
JPS63159408A
JPS63159408A JP11533187A JP11533187A JPS63159408A JP S63159408 A JPS63159408 A JP S63159408A JP 11533187 A JP11533187 A JP 11533187A JP 11533187 A JP11533187 A JP 11533187A JP S63159408 A JPS63159408 A JP S63159408A
Authority
JP
Japan
Prior art keywords
polyethylene
polymerization
stretching
ethylene
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11533187A
Other languages
Japanese (ja)
Other versions
JPH075667B2 (en
Inventor
Akira Sano
章 佐野
Seizo Kobayashi
小林 征三
Kazuo Matsuura
一雄 松浦
Shigeki Yokoyama
繁樹 横山
Takeshi Kamiya
神谷 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Publication of JPS63159408A publication Critical patent/JPS63159408A/en
Publication of JPH075667B2 publication Critical patent/JPH075667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To prepare a PE material of a high strength and a high modulus of elasticity, by stretching a specified ultra-high-MW PE at a temperature below its m.p. CONSTITUTION:Ethylene is polymerized in the presence of a catalyst consisting of a solid catalyst ingredient containing at least Mg, Ti and/or V and an organometallic compound at a hydrogen concentration of 0-10mol% and a pressure of 0-70kg/cm<2>G at -20-110 deg.C to give 50-99wt% PE having an intrinsic viscosity of 12-50dl/g (at 135 deg.C in decalin). The PE is further polymerized at a hydrogen concentration of 35-95mol% and a pressure of 1-70kg/cm<2>G at 40-100 deg.C to give 50-0.5wt% PE having an intrinsic viscosity of 0.1-4.9dl/g, whereby an ultra-high-MW PE having an intrinsic viscosity of 5-50dl/g is obtained. The PE is then stretched 2-100 times at a temperature from 20 deg.C to the m.p. of PE.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高強度ならびに高弾性率のポリエチレン材料(
繊維、フィルム等)を製造する方法に関し、さらに詳し
くは特定の触媒と特定の重合方法を組合せることにより
得られる超高分子量ポリエチレン粉末を特定の条件で延
伸することにより高強度・高弾性率ポリエチレン材料を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to high strength and high modulus polyethylene materials (
Regarding the method for producing fibers, films, etc.), in more detail, high-strength, high-modulus polyethylene is produced by stretching ultra-high molecular weight polyethylene powder obtained by combining a specific catalyst and a specific polymerization method under specific conditions. Relating to a method of manufacturing the material.

従来の技術および 発明が解決しようとする問題点 分子量が約100万以上と著しく高いいわゆる超高分子
量ポリエチレンは耐衝撃性、耐摩耗性に優れ、また自己
潤滑性も有するなど特徴のあるエンジニアリングプラス
チックとして、ホッパー、サイロ、各種歯車、ライニン
グ材、スキー裏張りなどの食品機械、土木機械、化学機
械、農業、鉱業、スポーツ争レジャー分野などの幅広い
分野で使用されている。
Problems to be solved by conventional techniques and inventions So-called ultra-high molecular weight polyethylene, which has an extremely high molecular weight of about 1 million or more, is an engineering plastic with features such as excellent impact resistance, abrasion resistance, and self-lubricating properties. It is used in a wide range of fields such as food machinery, civil engineering machinery, chemical machinery, agriculture, mining, sports, leisure, etc., hoppers, silos, various gears, lining materials, ski linings, etc.

そして超高分子量ポリエチレンは汎用のポリエチレンに
比べて遥かに分子量が高いので、高配向させることがで
きれば今までになく高強度で高弾性の延伸物が得られる
可能性があることから、その高配向化が種々検討されて
いる。しかしながら超高分子量ポリエチレンは汎用のポ
リエチレンに比べ極端に溶融粘度が高いので、通常の方
法では殆ど押出成形ができず、また延伸して高配向化す
ることもできないのが現状である。
Ultra-high molecular weight polyethylene has a much higher molecular weight than general-purpose polyethylene, so if it can be highly oriented, it may be possible to obtain a stretched product with unprecedented strength and elasticity. Various changes are being considered. However, since ultra-high molecular weight polyethylene has an extremely high melt viscosity compared to general-purpose polyethylene, it is currently almost impossible to extrude it using normal methods, nor can it be highly oriented by stretching.

ボール・スミス、ピータ−争ヤーン・レムストラ等は超
高分子量ポリエチレンのデカリン溶液(ドープ)から得
たゲルを高倍率に延伸し、高強度・高弾性率の繊維を製
造しうる方法(特開昭56−15408号)を提案して
いる。そのドープ中のポリマー濃度は、重量平均分子量
1.5×106のもので3重量%、4X106のもので
は1重量%と極めて低濃度でしか実施されておらず、実
用化においては多量の溶媒を使用し、かつ高粘度の溶液
の調製方法、取り扱いなど経済性の面で著しく不利であ
る。
Ball-Smith, Peter Jahn-Lemstra, and others have developed a method for producing fibers with high strength and high elastic modulus by stretching a gel obtained from a decalin solution (dope) of ultra-high molecular weight polyethylene to a high magnification (Japanese Patent Application Laid-Open No. 56-15408). The polymer concentration in the dope is 3% by weight for those with a weight average molecular weight of 1.5 x 106, and 1% by weight for those with a weight average molecular weight of 4 x 106, which is only an extremely low concentration. It is extremely disadvantageous in terms of economic efficiency, such as the preparation method and handling of high-viscosity solutions.

上述のような問題点を克服するため、超高分子量ポリエ
チレンをその融点以下で押出、延伸または圧延などの方
法により高度に延伸・高配向化させる方法についても種
々の提案がある[特開昭59−187614号、特開昭
60−15120号、特開昭60−97836号、高分
子学会予稿集、34巻4号873頁(1985年)等]
In order to overcome the above-mentioned problems, various proposals have been made regarding methods for highly stretching and highly oriented ultra-high molecular weight polyethylene by methods such as extrusion, stretching or rolling below its melting point [JP-A-59] -187614, JP-A-60-15120, JP-A-60-97836, Proceedings of the Society of Polymer Science, Vol. 34, No. 4, p. 873 (1985), etc.]
.

しかしながら従来公知の方法では、あらかじめ超高分子
量ポリエチレンをキシレン、デカリン、灯油等の溶媒の
希薄溶液とし、しかるのち冷却や等温結晶化を行って得
られる単結晶マットを用いて固相押出、延伸などを行う
ものであり、この方法では単結晶マット作製時に多量の
溶媒を用いねばならないという問題が解決されていない
However, in conventionally known methods, ultra-high molecular weight polyethylene is made into a dilute solution in a solvent such as xylene, decalin, kerosene, etc., and then cooled or isothermally crystallized to obtain a single crystal mat, which is then solid-phase extruded, stretched, etc. However, this method does not solve the problem that a large amount of solvent must be used when producing a single crystal mat.

−万里結晶マットを用いず、超高分子量ポリエチレンを
そのまま固相押出、延伸することも可能ではあるが、通
常用いられる一段重合品では押出時の圧力が著しく高く
なり押出速度が低く、延伸倍率も上げることができず、
得られた成形物の強度、弾性率も低い結果しか得られて
なく、改良が望まれていた。
-Although it is possible to solid-phase extrude and stretch ultra-high molecular weight polyethylene as it is without using a Banri crystal mat, the pressure during extrusion is extremely high in the commonly used one-stage polymer products, the extrusion speed is low, and the stretching ratio is also low. Unable to raise
The strength and modulus of elasticity of the obtained molded products were also low, and improvements were desired.

問題点を解決するための手段 以上のことから、本発明者らは、これらの問題点を解決
すべく鋭意検討した結果、特定の触媒と特定の重合方法
を組合せて得られる超高分子量ポリエチレン粉末を固相
状態で延伸することにより高強度・高弾性率のポリエチ
レン材料が製造できることを見出し、本発明を完成した
ものである。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors have developed an ultra-high molecular weight polyethylene powder obtained by combining a specific catalyst and a specific polymerization method. The present invention was completed based on the discovery that a polyethylene material with high strength and high modulus of elasticity can be produced by drawing the polyethylene material in a solid state.

すなわち、本発明は、135℃、デカリン中における極
限粘度が5〜50d名/g、好ましくは5〜30d名/
gであり、かつ少なくとも下記の2段階の重合反応によ
って得られる超高分子量ポリエチレン粉末を該ポリエチ
レンの融点以下の温度で延伸させることにより高強度・
高弾性率ポリエチレン材料を製造する方法に関する。
That is, in the present invention, the intrinsic viscosity in decalin at 135°C is 5 to 50 d/g, preferably 5 to 30 d/g.
g, and by stretching ultra-high molecular weight polyethylene powder obtained by at least the following two-step polymerization reaction at a temperature below the melting point of the polyethylene,
The present invention relates to a method of manufacturing high modulus polyethylene material.

(第1段階) 少なくともMg、TIおよび/または■を含有する固体
触媒成分と有機金属化合物とよりなる触媒により水素の
不存在下または低められた水素濃度でエチレンを重合さ
せ、135℃、デカリン中における極限粘度が12〜5
0df/gのポリエチレンを50〜99.5重量部生成
させる工程。
(First step) Ethylene is polymerized in the absence of hydrogen or at a reduced hydrogen concentration using a catalyst consisting of a solid catalyst component containing at least Mg, TI and/or ■ and an organometallic compound, at 135°C in decalin. The intrinsic viscosity at is 12-5
A step of producing 50 to 99.5 parts by weight of polyethylene of 0 df/g.

(第2段階) 第1段階より高められた水素濃度下でエチレンを重合さ
せることにより、ポリエチレン50〜0.5重量部生成
させる工程。
(Second stage) A step of producing 50 to 0.5 parts by weight of polyethylene by polymerizing ethylene under a higher hydrogen concentration than in the first stage.

発明の効果 本発明の方法に用いられる超高分子量ポリエチレン粉末
は、下記のごとき効果(特徴)を有する。
Effects of the Invention The ultra-high molecular weight polyethylene powder used in the method of the invention has the following effects (characteristics).

〔1〕加工性に優れるため高倍率の延伸が可能で高強力
で高弾性率のポリエチレン材料(繊維、フィルム等)が
きわめて安定に製造できる。
[1] Due to its excellent processability, it can be stretched at a high magnification, and highly strong and highly elastic polyethylene materials (fibers, films, etc.) can be produced in an extremely stable manner.

(2)加工性に優れるため、より少ない動力および高速
での延伸が可能で、高強力、高弾性率の繊維、フィルム
等をきわめて経済的に製造できる。
(2) Since it has excellent processability, it is possible to draw with less power and at high speed, and it is possible to produce fibers, films, etc. with high strength and high elastic modulus extremely economically.

本発明に使用される超高分子量ポリエチレン粉末のより
具体的製造方法を以下に述べる。
A more specific method for producing the ultra-high molecular weight polyethylene powder used in the present invention will be described below.

まず、第1段階においてエチレンを水素濃度0〜約10
モル%で、溶媒中または気相で重合させることにより、
135℃、デカリン中における極限粘度が12〜50d
ヱ/g、好ましくは12〜32 dヱ/gのポリエチレ
ンを50〜99.5重量部、好ましくは70〜99重量
部生成させる。
First, in the first step, ethylene is mixed with a hydrogen concentration of 0 to about 10
by polymerization in a solvent or in the gas phase, in mol%
Intrinsic viscosity in decalin at 135℃ is 12-50d
50 to 99.5 parts by weight, preferably 70 to 99 parts by weight of polyethylene of 12 to 32 dE/g, preferably 12 to 32 dE/g.

この時使用する重合触媒としては少なくともMg1T1
および/またはVを含有する固体触媒成分と有機金属化
合物よりなるものであり(後述)、重合圧力は0〜70
Kg/Ct・G1重合温度はポリエチレンの融点未満の
温度が用いられ−20〜110°C1好ましくは0〜9
0℃、より好ましくは20〜80°Cで実施する。重合
溶媒としてはチグラー型触媒に不活性な有機溶媒が用い
られる。具体的にはブタン、ペンタン、ヘキサン、ヘプ
タン、オクタン、シクロヘキサン等の飽和炭化水素や、
ベンゼン、トルエン、キシレン等の芳香族炭化水素など
を挙げることができ、さらに得られる超高分子量ポリエ
チレンの成形加工の必要によってはデカリン、テトラリ
ン、デカン、灯油等高沸点の有機溶媒も挙げることがで
きる。
The polymerization catalyst used at this time is at least Mg1T1.
It is composed of a solid catalyst component containing V and/or V and an organometallic compound (described later), and the polymerization pressure is 0 to 70.
Kg/Ct・G1 The polymerization temperature used is a temperature below the melting point of polyethylene, -20 to 110°C1, preferably 0 to 9
It is carried out at 0°C, more preferably at 20-80°C. As the polymerization solvent, an organic solvent inert to the Ziegler type catalyst is used. Specifically, saturated hydrocarbons such as butane, pentane, hexane, heptane, octane, cyclohexane,
Examples include aromatic hydrocarbons such as benzene, toluene, and xylene, and depending on the needs of the molding process of the obtained ultra-high molecular weight polyethylene, high-boiling point organic solvents such as decalin, tetralin, decane, and kerosene may also be used. .

ついで第2段階において水素濃度を35〜95モル%と
し、引き続きエチレンを重合させることにより、ポリエ
チレン50〜0,5重量部、好ましくは30〜1重量部
生成させる。重合圧力は0〜70Kg/c−・G1温度
は40〜100℃、好ましくは60〜90℃であり、触
媒は必要に応じて追加してもよい。また第2段階で生成
するポリエチレンの極限粘度は約0.1〜4. 9 c
le/g(135℃、デカリン中)の範囲にある。
Then, in the second stage, the hydrogen concentration is set to 35 to 95 mol %, and ethylene is subsequently polymerized to produce 50 to 0.5 parts by weight, preferably 30 to 1 part by weight, of polyethylene. The polymerization pressure is 0 to 70 kg/c-.G1 temperature is 40 to 100°C, preferably 60 to 90°C, and a catalyst may be added as necessary. Furthermore, the intrinsic viscosity of the polyethylene produced in the second stage is approximately 0.1 to 4. 9c
le/g (135°C, in decalin).

エチレン以外のα−オレフィンをコモノマーとして共重
合させることは生成ポリマーの分子量の低下をひき起し
やすく望ましくないが、第2段階での重合の際に0.1
〜5モル96の少塁のα−オレフィンを使用してもさし
つかえない。この時のα−オレフィンとしては、プロピ
レン、ブテン−1,4−メチルペンテン−1、ヘキサン
−1、オクテン−1など通常のチグラー型触媒によるエ
チレンの共重合に使用されるものを用いることができる
Copolymerizing α-olefins other than ethylene as a comonomer is undesirable because it tends to cause a decrease in the molecular weight of the resulting polymer;
~5 mol 96 of a small α-olefin may be used. As the α-olefin at this time, those used in the copolymerization of ethylene using a normal Ziegler type catalyst, such as propylene, butene-1,4-methylpentene-1, hexane-1, and octene-1, can be used. .

さらに第3段階以後の工程として、より高分子量重合体
成分またはより低分子量重合体成分を適宜つけ加えるこ
とは何ら差しつかえない。
Furthermore, as a step after the third step, there is no problem in adding a higher molecular weight polymer component or a lower molecular weight polymer component as appropriate.

次に、本発明の超高分子量ポリエチレン粉末の製造に用
いる触媒は、少なくともMg、Tiおよび/またはVを
含有する固体触媒成分と有機アルミニウム化合物からな
るものである。
Next, the catalyst used for producing the ultra-high molecular weight polyethylene powder of the present invention is composed of a solid catalyst component containing at least Mg, Ti and/or V, and an organoaluminum compound.

ここに、該固体触媒成分は、マグネシウムを含む無機質
固体化合物にチタン化合物を公知の方法により担持させ
たものである。
Here, the solid catalyst component is one in which a titanium compound is supported on an inorganic solid compound containing magnesium by a known method.

マグネシウムを含む無機質固体化合物は、金属マグネシ
ウム、水酸化マグネシウム、炭酸マグネシウム、酸化マ
グネシウム、塩化マグネシウムなど、およびケイ素、ア
ルミニウム、カルシウムから選択された金属とマグネシ
ウム原子とを含有する複塩、複合酸化物、炭酸塩、塩化
物あるいは水酸化物など、さらにはこれらの無機質固体
化合物を、水、アルコール、フェノール、ケトン、アル
デヒド、カルボン酸、エステル、ポリシロキサン、酸ア
ミドなどのを機の含酸素化合物;金属アルコキシド、金
属のオキシ酸塩などの無機の含酸素化合物;チオール、
チオエーテルなどの有機の含硫黄化合物;二酸化硫黄、
三酸化硫黄、硫黄などの無機含硫黄化合物;ベンゼン、
トルエン、キシレン、アントラセン、フェナンスレンな
どの単環および多環の芳香族炭化水素化合物;塩素、塩
化水素、金属塩化物、有機ハロゲン化物などの/\ロゲ
ン含有化合物で処理または反応させたものである。
Inorganic solid compounds containing magnesium include metal magnesium, magnesium hydroxide, magnesium carbonate, magnesium oxide, magnesium chloride, etc., and double salts and complex oxides containing magnesium atoms and metals selected from silicon, aluminum, and calcium. Oxygenated compounds such as carbonates, chlorides or hydroxides, as well as these inorganic solid compounds, water, alcohols, phenols, ketones, aldehydes, carboxylic acids, esters, polysiloxanes, acid amides; metals Inorganic oxygenated compounds such as alkoxides and metal oxyaltates; thiols,
Organic sulfur-containing compounds such as thioethers; sulfur dioxide,
Inorganic sulfur-containing compounds such as sulfur trioxide and sulfur; benzene,
Monocyclic and polycyclic aromatic hydrocarbon compounds such as toluene, xylene, anthracene, and phenanthrene; treated or reacted with /\ halogen-containing compounds such as chlorine, hydrogen chloride, metal chlorides, and organic halides.

この無機質固体化合物に担持させるチタン化合物として
は、チタンのハロゲン化物、アルコキシハロゲン化物、
アルコキシド、ハロゲン化酸化物゛などであり、四価ま
たは三価のチタン化合物が好適である。四価のチタン化
合物としては、具体的には一般式 %式% (ここで、Rは炭素数1〜20のアルキル基、アリール
基、またはアラルキル基を示し、Xはハロゲン原子を示
し、nは0≦n≦4である。)で示されるものが好まし
く、四塩化チタン、四臭化チタン、四状化チタン、モノ
メトキシトリクロロチタン、ジメトキシジクロロチタン
、トリメトキシモノクロロチタン、テトラメトキシチタ
ン、モノエトキシトリクロロチタン、ジェトキシジクロ
ロチタン、トリエトキシモノクロロチタン、テトラエト
キシチタン、モノイソプロポキシトリクロロチタン、ジ
イソプロポキシジクロロチタン、トリイソプロポキシモ
ノクロロチタン、テトライソプロポキシチタン、モノブ
トキシトリクロロチタン、ジブトキシジクロロチタン、
モノペントキシトリクロロチタン、モノフェノキジトリ
クロロチタン、ジフェノキシジクロロチタン、トリフエ
ノキシモノクロロチタン、テトラフェノキシチタンなど
の四価のチタン化合物が挙げられる。また、三価のチタ
ン化合物としては、四塩化チタン、四臭化チタン等の四
ハロゲン化チタンを水素、アルミニウム、チタンあるい
は周期律表I〜■族金属の有機金属化合物により還元し
て得られる三価のチタン化合物−一般式 %式% (ここで、Rは炭素数1〜20のアルキル基、アリール
基、またはアラルキル基を示し、Xはハロゲン原子を示
し、IはO<m<4である。)で表わされる四価のハロ
ゲン化アルコキシチタンを周期律表1〜■族金属の有機
金属化合物により還元して得られる三価のチタン化合物
が挙げられる。これらのチタン化合物のうち、四価のチ
タン化合物が特に好ましい。また、バナジウム化合物と
しては、四塩化バナジウムのような四価のバナジウムの
化合物、オキシ三塩化バナジウム、オルソアルキルバナ
デートのような三価のバナジウム化合物、三塩化バナジ
ウムのような三価のバナジウムの化合物が挙げられる。
The titanium compounds supported on this inorganic solid compound include titanium halides, alkoxy halides,
These include alkoxides, halogenated oxides, etc., and tetravalent or trivalent titanium compounds are preferred. Specifically, the tetravalent titanium compound has the general formula % (where R represents an alkyl group, aryl group, or aralkyl group having 1 to 20 carbon atoms, X represents a halogen atom, and n represents 0≦n≦4), titanium tetrachloride, titanium tetrabromide, titanium tetrachloride, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxy Trichlorotitanium, jetoxydichlorotitanium, triethoxymonochlorotitanium, tetraethoxytitanium, monoisopropoxytrichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium,
Examples include tetravalent titanium compounds such as monopentoxytrichlorotitanium, monophenokiditrichlorotitanium, diphenoxydichlorotitanium, triphenoxymonochlorotitanium, and tetraphenoxytitanium. Trivalent titanium compounds include trivalent titanium compounds obtained by reducing titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide with hydrogen, aluminum, titanium, or organometallic compounds of metals from groups I to II of the periodic table. titanium compound - general formula % formula % (where R represents an alkyl group, aryl group, or aralkyl group having 1 to 20 carbon atoms, X represents a halogen atom, and I represents O<m<4 Examples include trivalent titanium compounds obtained by reducing a tetravalent alkoxy titanium halide represented by . Among these titanium compounds, tetravalent titanium compounds are particularly preferred. In addition, vanadium compounds include tetravalent vanadium compounds such as vanadium tetrachloride, trivalent vanadium compounds such as oxyvanadium trichloride and orthoalkylvanadate, and trivalent vanadium compounds such as vanadium trichloride. can be mentioned.

具体的な固体触媒成分としては、特公昭51−3514
号公報、特公昭50−23864号公報、特公昭51−
152号公報、特公昭52−15111号公報、特開昭
49−106581号公報、特公昭52−11710号
公報、特公昭51−153号公報、特開昭56−959
09号公報などに具体的に例示したものが挙げられる。
As a specific solid catalyst component, Japanese Patent Publication No. 51-3514
Publication No. 50-23864, Special Publication No. 51-
No. 152, Japanese Patent Publication No. 52-15111, Japanese Patent Application Publication No. 49-106581, Japanese Patent Publication No. 11710-1980, Japanese Patent Publication No. 51-153, Japanese Patent Application Publication No. 1987-959
Examples include those specifically exemplified in Publication No. 09 and the like.

また、その他の固体触媒成分として、到来ばグリニアル
化合物とチタン化合物との反応生成物も使用でき、特公
昭50−39470号公報、特公昭54−12953号
公報、特公昭54−12954号公報、特開昭57−7
9009号公報などに具体的に記載のものが挙げられ、
その他に、特開昭56−47407号公報、特開昭57
−187305号公報、特開昭58−21405号公報
などに記載の任意に用いる有機カルボン酸エステルと共
に無機酸化物が併用された固体触媒成分も使用できる。
In addition, as other solid catalyst components, reaction products of Grignard compounds and titanium compounds can also be used. Kaisho 57-7
Examples include those specifically described in Publication No. 9009, etc.
In addition, JP-A-56-47407, JP-A-57
A solid catalyst component in which an inorganic oxide is used together with an optionally used organic carboxylic acid ester as described in Japanese Patent Laid-open No. 187305 and Japanese Patent Application Laid-Open No. 58-21405 can also be used.

本発明の有機アルミニウム化合物としては、一般式 %式% R2A名OR,RA名(OR)X  およびR,Aヱ2
 x。
As the organoaluminum compound of the present invention, the general formula % formula % R2A name OR, RA name (OR)
x.

(ここでRは炭素数1〜20のアルキル基、アリール基
またはアラルキル基を示し、Xはハロゲン原子を示し、
Rは同一であってもまた異なっていてもよい。) で表わされる化合物が好ましく、トリエチルアルミニウ
ム、トリイソブチルアルミニウム、トリヘキシルアルミ
ニウム、トリオクチルアルミニウム、ジエチルアルミニ
ウムクロリド、ジエチルアルミニウムエトキシド、エチ
ルアルミニウムセスキクロリド、およびこれらの混合物
などが挙げられる。
(Here, R represents an alkyl group, aryl group, or aralkyl group having 1 to 20 carbon atoms, and X represents a halogen atom,
R may be the same or different. ) Preferable compounds include triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminium chloride, diethylaluminium ethoxide, ethylaluminum sesquichloride, and mixtures thereof.

有機アルミニウム化合物の使用量は特に制限されないが
、通常、チタン化合物に対して0.1〜1000モル倍
使用することができる。
The amount of the organoaluminum compound to be used is not particularly limited, but it can usually be used in an amount of 0.1 to 1000 times the amount of the titanium compound.

以上の触媒系を用いて、本発明の超高分子量ポリエチレ
ン粉末を合成する。
Using the above catalyst system, the ultra-high molecular weight polyethylene powder of the present invention is synthesized.

本発明の重合反応に先立って、α−オレフィンと本発明
の触媒系とを接触させた後、重合反応を行うことにより
、未処理の場合よりも一層安定に重合反応をすることも
できる。
Prior to the polymerization reaction of the present invention, by bringing the α-olefin into contact with the catalyst system of the present invention and then carrying out the polymerization reaction, the polymerization reaction can be carried out more stably than in the case of no treatment.

なお、本発明にいうポリエチレンの融点とは、上述の如
くして得られた超高分子量ポリエチレン粉末に特に加熱
処理を施さず、示差走査熱量測定法(DSC1昇温速度
5℃/min、試料量4〜5Il1g)による最高融点
(主ピーク温度)をいう。
In addition, the melting point of polyethylene as used in the present invention refers to the ultra-high molecular weight polyethylene powder obtained as described above, which was measured by differential scanning calorimetry (DSC1 heating rate of 5°C/min, sample amount) without any particular heat treatment. 4-5Il1g) refers to the highest melting point (main peak temperature).

また、本発明では、得られた超高分子量ポリエチレンを
そのまま使用することが重要であり、一度加熱溶融させ
たものでは本発明の効果は得られない。
Further, in the present invention, it is important to use the obtained ultra-high molecular weight polyethylene as it is, and the effects of the present invention cannot be obtained if it is heated and melted once.

延伸は、例えば押出延伸、引張延伸などの常法で行うこ
とができる。しかし、より高い延伸比と引張弾性率の延
伸物を得るには押出延伸を行い、ついで引張延伸を行う
2段階による延伸が好ましい。
Stretching can be carried out by conventional methods such as extrusion stretching and tension stretching. However, in order to obtain a drawn product with a higher drawing ratio and tensile modulus, it is preferable to carry out two-step drawing, in which extrusion drawing is performed and then tension drawing is performed.

押出延伸としては例えば固相押出、ロール圧延などが挙
げられる。
Examples of extrusion stretching include solid phase extrusion and roll rolling.

固相押出としては例えば下部にダイスを取付けた固相押
出装置のシリンダーに前述の超高分子量ポリエチレン粉
末を入れ、20℃以上、該超高分子量ポリエチレン粉末
の融点未満、好ましくは90℃以上、該超高分子量ポリ
エチレン粉末の融点未満の温度で圧力0.01〜0.1
GPaで予備加圧後、20℃以上、該超高分子量ポリエ
チレン粉末の融点未満、好ましくは90℃以上、該超高
分子量ポリエチレン粉末の融点未満で押出す方法が挙げ
られる。延伸倍率(押出比)は、ポリマーの分子量、第
1段階および第2段階の重合量(組成比)によって異な
るが、ダイス径を変えることにより任意に選択でき、通
常は2〜100倍、好ましくは3〜50倍、より好まし
くは3〜25倍で行われる。
For solid-phase extrusion, for example, the ultra-high molecular weight polyethylene powder described above is placed in a cylinder of a solid-phase extrusion device equipped with a die at the bottom, and heated at a temperature of 20°C or higher, below the melting point of the ultra-high molecular weight polyethylene powder, preferably 90°C or higher. Pressure 0.01-0.1 at a temperature below the melting point of ultra-high molecular weight polyethylene powder
An example is a method of extruding at 20° C. or higher and below the melting point of the ultra-high molecular weight polyethylene powder, preferably 90° C. or higher and below the melting point of the ultra-high molecular weight polyethylene powder after pre-pressurizing at GPa. The stretching ratio (extrusion ratio) varies depending on the molecular weight of the polymer and the polymerization amount (composition ratio) of the first and second stages, but can be arbitrarily selected by changing the die diameter, and is usually 2 to 100 times, preferably It is carried out at a magnification of 3 to 50 times, more preferably 3 to 25 times.

ロール圧延の場合も、固相押出と同様の温度範囲で常法
にしたがって行うことができる。
Roll rolling can also be carried out in the same temperature range as solid phase extrusion according to a conventional method.

押出延伸についで行われる引張延伸としてはニップ延伸
、ロール延伸などが挙げられるが、こイらのうちニップ
延伸がより好ましい。
Examples of the tensile stretching performed subsequent to extrusion stretching include nip stretching and roll stretching, and among these, nip stretching is more preferred.

引張延伸における温度は20°C以上、該超高分子量ポ
リエチレン粉末の融点未満、好ましくは90℃以上、該
超高分子量ポリエチレン粉末の融点未満で行われる。
The temperature in the tensile stretching is 20° C. or higher and lower than the melting point of the ultra-high molecular weight polyethylene powder, preferably 90° C. or higher and lower than the melting point of the ultra-high molecular weight polyethylene powder.

引張速度はポリマーの分子量、組成比によって異なるが
1〜100a+m/a+in、好ましくは5〜50 a
+a/ winである。
The tensile speed varies depending on the molecular weight and composition ratio of the polymer, but is 1 to 100 a+m/a+in, preferably 5 to 50 a
+a/ It's a win.

延伸倍率は高倍率にするほど高強度で高弾性率が達成で
きるため、でるきかぎり延伸倍率を高めることが望まし
いが、本発明の超高分子量ポリエチレンでは20〜60
倍の延伸が可能である。
The higher the stretching ratio, the higher the strength and the higher the modulus of elasticity. Therefore, it is desirable to increase the stretching ratio as much as possible.
It is possible to stretch twice as much.

以上のような延伸方法により引張弾性率120GPa以
上、強度20Pa以上の繊維またはフィルムが得られる
By the above stretching method, a fiber or film having a tensile modulus of 120 GPa or more and a strength of 20 Pa or more can be obtained.

以下に具体的に実施例により本発明を詳述するが、本発
明はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

実施例 実施例1 (a)固体触媒成分の製造 1/2インチ直径を有するステンレススチール製ボール
が25コ入った内容積400m名のステンレススチール
製ポットに市販の無水塩化マグネシウム10gおよびア
ルミニウムトリエトキシド1.7gを入れ窒素雰囲気下
、室温で5時間ボールミリングを行い、その後四塩化チ
タン2.2gを加え、さらに16時間ボールミリングを
行った。
Examples Example 1 (a) Preparation of solid catalyst component 10 g of commercially available anhydrous magnesium chloride and aluminum triethoxide were placed in a 400 m stainless steel pot containing 25 stainless steel balls each having a diameter of 1/2 inch. After adding 1.7 g of titanium tetrachloride, ball milling was performed at room temperature for 5 hours under a nitrogen atmosphere, and then 2.2 g of titanium tetrachloride was added, and ball milling was performed for an additional 16 hours.

ボールミリング後得られた固体触媒成分1gには39a
+gのチタンが含まれていた。
1 g of solid catalyst component obtained after ball milling contains 39a
+g of titanium was included.

(b)重合 2名のステンレススチール製誘導攪拌機付きオートクレ
ーブを窒素置換しヘキサン1000a4を入れ、トリエ
チルアルミニウム1ミリモルおよび前記固体触媒成分1
0a+gを加え、攪拌しながら60℃に昇温した。ヘキ
サンの蒸気圧で系は1゜5Kg/c12・ゲージ圧(以
下、Kg/Ct−Gと表わす。)になるが、エチレンを
全圧が10Kg/(12・Gになるまで張り込んで重合
を開始した。5℃のエチレン計量槽よりオートクレーブ
の全圧が10Kg/c−・Gになるようにエチレンを連
続的に導入し、計量槽の圧力が7Kg/c−分減少する
まで重合を行った(第1段階)。
(b) Polymerization A two-person stainless steel autoclave equipped with an induction stirrer was purged with nitrogen, and 1000a4 of hexane was added, followed by 1 mmol of triethylaluminum and 1 of the solid catalyst component.
0a+g was added, and the temperature was raised to 60°C while stirring. The vapor pressure of hexane brings the pressure of the system to 1.5 Kg/c12.gauge (hereinafter referred to as Kg/Ct-G), but ethylene is charged until the total pressure reaches 10 kg/(12.G) to initiate polymerization. Ethylene was continuously introduced into the autoclave from an ethylene measuring tank at 5°C so that the total pressure was 10 kg/c-G, and polymerization was carried out until the pressure in the measuring tank decreased by 7 kg/c-min. (Stage 1).

この時の重合体の極限粘度[ηコは18.9clヱ/g
であった。その後すばやく系内のエチレンをパージし、
水素を全圧が7Kg/cm2・Gになるまで張り込みつ
いでエチレンを全圧が10Kg/Cl2−Gになるまで
張り込んで60℃で再び重合を開始した。全圧が10K
g/clII2・Gになるようにエチレンを連続的に導
入し、計量槽の圧力が3Kg/c1分減少するまで重合
を行った(第2段階)。
The intrinsic viscosity of the polymer at this time [η is 18.9 cl/g
Met. After that, quickly purge the ethylene in the system,
Hydrogen was charged until the total pressure reached 7 kg/cm2.G, and then ethylene was charged until the total pressure reached 10 kg/Cl2-G, and polymerization was started again at 60°C. Total pressure is 10K
Ethylene was continuously introduced at a rate of 1 g/clII2.G, and polymerization was carried out until the pressure in the metering tank decreased by 3 kg/c1 minute (second stage).

重合終了後重合体スラリニをビーカーに移し、ヘキサン
を減圧除去し、白色ポリエチレン62gを得た。第1段
階の生成ポリマー量は70重量部、第2段階の生成ポリ
マー量は30重量部であり全体のポリマーの極限粘度[
ηコは11.7dl!、/g (デカリン中、135℃
)であった。
After the polymerization was completed, the polymer slurry was transferred to a beaker, and hexane was removed under reduced pressure to obtain 62 g of white polyethylene. The amount of polymer produced in the first stage was 70 parts by weight, and the amount of polymer produced in the second stage was 30 parts by weight.
η is 11.7dl! ,/g (in decalin, 135°C
)Met.

(c)固相押出および引張延伸 一部改造を行ったインストロン社製キャピラリーレオメ
ータ−(シリンダー内径0.9525c+++)に内径
0.39CI%長さIC1のダイスを取付け、(b)で
得られた重合体を約10g充てんした。
(c) A die with an inner diameter of 0.39 CI% and a length of IC1 was attached to an Instron capillary rheometer (cylinder inner diameter: 0.9525c+++) that had been partially modified by solid phase extrusion and tensile stretching, and the resultant obtained in (b) was attached. Approximately 10 g of polymer was filled.

90℃で0.010Paの圧力で10分間圧縮後、同温
度で0. 06cm/sinの一定速度で押出した。
After compressing at 90°C for 10 minutes at a pressure of 0.010 Pa, it was compressed at 90°C for 10 minutes at the same temperature. It was extruded at a constant speed of 0.6 cm/sin.

変形比(延伸倍率)はシリンダー断面積とダイス断面積
の比で表わしこの場合は6倍であった。なお押出時の圧
力を表1に示した。
The deformation ratio (stretching ratio) is expressed as the ratio of the cross-sectional area of the cylinder to the cross-sectional area of the die, and in this case was 6 times. The pressure during extrusion is shown in Table 1.

得られた押出物を恒温槽つき引張試験機によって120
℃、40 ■/ winのクロスヘッドスピードで延伸
を行い35倍の延伸が可能であった。
The obtained extrudate was tested at 120°C using a tensile tester with a constant temperature bath.
Stretching was carried out at a crosshead speed of 40 °C/win, and it was possible to stretch the film 35 times.

1)られた延伸物は常法に従って弾性率および強度を測
定した。結果を表1に示した。
1) The elastic modulus and strength of the stretched product were measured according to conventional methods. The results are shown in Table 1.

比較例1 2℃のステンレススチール製誘導攪拌機付きオートクレ
ーブを窒素置換し、ヘキサン1℃0011℃を入れ、ト
リエチルアルミニウム1ミリモルおよび実施例1(a)
で得られた固体触媒成分110ll1を加え攪拌しなが
ら60℃に昇温した。ヘキサンの蒸気圧で1.5Kg/
cff12・Gになるがエチレンを全圧が10Kg/C
ll12・Gになるまで張り込んで重合を開始した。全
圧が10Kg/c−・Gになるようにエチレンを連続的
に導入し、20分間重合を行い白色ポリエチレン72g
を得た。極限粘度[η]は18.5d名/gであった。
Comparative Example 1 A 2°C stainless steel autoclave equipped with an induction stirrer was purged with nitrogen, hexane was added at 1°C, 0011°C, 1 mmol of triethylaluminum, and Example 1(a).
110 liters of the solid catalyst component obtained in step 1 was added, and the temperature was raised to 60° C. with stirring. The vapor pressure of hexane is 1.5Kg/
cff12・G, but the total pressure of ethylene is 10Kg/C
The polymerization was started by filling the solution until it reached 112·G. Ethylene was continuously introduced so that the total pressure was 10 kg/c-・G, and polymerization was performed for 20 minutes to produce 72 g of white polyethylene.
I got it. The intrinsic viscosity [η] was 18.5 d/g.

この重合体を実施例1(C)に従って固相押出を行った
ところ、変形比4倍で押出せた。ついで引張延伸を行っ
たところ、22倍の延伸が可能であった。得られた延伸
物の弾性率、強度を表1に示した。実施例1と比較して
弾性率が低く、また押出圧がきわめて高かった。
When this polymer was subjected to solid phase extrusion according to Example 1(C), it was possible to extrude it at a deformation ratio of 4 times. When the film was then subjected to tensile stretching, it was possible to stretch it 22 times. Table 1 shows the elastic modulus and strength of the stretched product obtained. Compared to Example 1, the elastic modulus was lower and the extrusion pressure was extremely high.

比較例2 比較例1において重合温度を85℃で行うことを除いて
は比較例1と同様の方法で重合を行い白色ポリエチレン
92gを得た。極限粘度[η]は11.5d名/gであ
った・ この重合体を実施例1(C)に従って6倍で固相押出を
行い、その後引張延伸を行った。延伸倍率は13倍であ
った。
Comparative Example 2 Polymerization was carried out in the same manner as in Comparative Example 1 except that the polymerization temperature was 85° C. to obtain 92 g of white polyethylene. The intrinsic viscosity [η] was 11.5 d/g. This polymer was subjected to solid phase extrusion at 6 times the extrusion according to Example 1 (C), and then subjected to tensile stretching. The stretching ratio was 13 times.

この時の弾性率、強度は表1に示した。The elastic modulus and strength at this time are shown in Table 1.

比較例3 実施例1(C)において、試料として実施例1(b)で
得られたポリマーを200℃、0.020Paで15分
間圧縮成形したものを用いた以外は実施例1(C)と同
様に行った、押出物(延伸倍率6倍)をさらに引張延伸
したが2゜5倍しか延伸できなかった。延伸物の弾性率
、強度は表1に示した。
Comparative Example 3 In Example 1(C), except that the polymer obtained in Example 1(b) was compression-molded at 200°C and 0.020 Pa for 15 minutes as a sample. The extrudate (stretching ratio: 6 times) carried out in the same manner was further stretched under tension, but it could only be stretched 2.5 times. The elastic modulus and strength of the stretched product are shown in Table 1.

実施例2 実施例1(b)において第1段階重合のエチレン計量槽
の圧力減少を9.0Kg/caP分とすることおよび第
2段階重合においてエチレン計量槽の圧力減少を1.0
Kg/c1分とすることを除いては実施例1(b)と同
様の方法で重合を行い、白色ポリエチレン63gを得た
。第1段階の生成ポリマー量は90重量部、第2段階の
生成ポリマー量は10重量部であり、全体のポリマーの
極限粘度[ηコは15.1d名/gであった。
Example 2 In Example 1(b), the pressure decrease in the ethylene metering tank in the first stage polymerization was set to 9.0 Kg/caP, and the pressure decrease in the ethylene metering tank in the second stage polymerization was set to 1.0.
Polymerization was carried out in the same manner as in Example 1(b), except that the weight was adjusted to Kg/c1 min, to obtain 63 g of white polyethylene. The amount of polymer produced in the first stage was 90 parts by weight, the amount of polymer produced in the second stage was 10 parts by weight, and the intrinsic viscosity of the entire polymer [η] was 15.1 d/g.

この重合体を実施例1(c)に従って固相押出(120
℃、延伸倍率6倍)および引張延伸(120℃、延伸倍
率28倍)を行った。延伸物の弾性率および強度を表1
に示した。
This polymer was subjected to solid phase extrusion (120
℃, stretching ratio 6 times) and tensile stretching (120° C., stretching ratio 28 times). Table 1 shows the elastic modulus and strength of the stretched product.
It was shown to.

実施例3 実施例1(b)において第1段階重合のエチレン計量槽
の圧力減少を8.0Kg/ct分とすることおよび第2
段階重合においてエチレン計量槽の圧力減少を2.0K
g/C−分とすることを除いては実施例1(b)と同様
の方法で重合を行い、白色ポリエチレン62gを得た。
Example 3 In Example 1(b), the pressure reduction in the ethylene measuring tank in the first stage polymerization was set to 8.0 Kg/ct, and the second
Pressure reduction in ethylene measuring tank during stepwise polymerization by 2.0K
Polymerization was carried out in the same manner as in Example 1(b), except that the ratio was adjusted to g/C-min, to obtain 62 g of white polyethylene.

第1段階の生成ポリマー量は80重二部、第2段階の生
成ポリマー量は20重量部であり全体のポリマーの極限
粘度[ηコは13.Odヱ/gであった。
The amount of polymer produced in the first stage was 80 parts by weight, and the amount of polymer produced in the second stage was 20 parts by weight, and the intrinsic viscosity of the entire polymer [η was 13. It was Od/g.

この重合体を実施例1(C)に従って固相押出(90℃
、延伸倍率6倍)および引張延伸(120℃、延伸倍率
32倍)を行った。延伸物の弾性率および強度を表1に
示した。
This polymer was subjected to solid phase extrusion (90°C) according to Example 1(C).
, stretching ratio 6 times) and tensile stretching (120° C., stretching ratio 32 times). Table 1 shows the elastic modulus and strength of the stretched product.

実施例4 (a)固体触媒成分の製造 実施例1(a)においてアルミニウムトリエトキシド1
.7gのかわりにアルミニウムトリエトキシド2.2g
およびシリコンテトラエトキシド3.2gを使用するこ
とを除いては実施例1(a)と同様の方法で固体触媒成
分を製造した。得られた固体触媒成分1gには32+a
gのチタンが含まれていた。
Example 4 (a) Preparation of solid catalyst component In Example 1 (a), aluminum triethoxide 1
.. 2.2g of aluminum triethoxide instead of 7g
A solid catalyst component was produced in the same manner as in Example 1(a) except that 3.2 g of silicon tetraethoxide was used. 1 g of the obtained solid catalyst component contains 32+a
It contained g of titanium.

(b)重合 実施例1(b)と同様のオートクレーブを使用し、ヘキ
サン10100Oを入れ、ジエチルアルミニウムクロリ
ド2ミリモルおよび前記固体触媒成分10mgを加え、
攪拌しながら40℃に昇温した。ヘキサンの蒸気圧で1
.3Kg/ce2・Gになるが、エチレンを全圧10K
g/c1120Gになるまで張り込んで重合を開始した
。5℃のエチレン計量槽よりオートクレーブの全圧が1
0Kg/C12・Gになるようにエチレンを連続的に導
入し、計lJ6の圧力が5Kg/c−分減少するまで重
合を行った(第1段階)。
(b) Using the same autoclave as in Polymerization Example 1(b), add 10,100 O of hexane, add 2 mmol of diethylaluminium chloride and 10 mg of the solid catalyst component,
The temperature was raised to 40°C while stirring. The vapor pressure of hexane is 1
.. It becomes 3Kg/ce2・G, but the total pressure of ethylene is 10K.
The polymerization was started by straining until g/c reached 1120G. The total pressure of the autoclave is 1 from the 5℃ ethylene measuring tank.
Ethylene was continuously introduced so that the pressure was 0 Kg/C12.G, and polymerization was carried out until the total pressure of 1J6 decreased by 5 Kg/c-min (first stage).

この時の重合体の極限粘度[η]は26. 1  d、
5/gであった。
The intrinsic viscosity [η] of the polymer at this time is 26. 1 d,
It was 5/g.

その後すばやく系内のエチレンをパージし、温度を80
℃まで昇温し、水素を8Kg/C−・Gに張り込みつい
でエチレンを全圧が10Kg/cIN2・Gになるまで
張り込んで再び重合を開始した。全圧が10Kg/Ct
−Gになるように連続的に導入し、計量槽の圧力が4K
g/cs2分減少するまで重合を行った(第2段階)。
After that, quickly purge the ethylene in the system and lower the temperature to 80.
The temperature was raised to .degree. C., hydrogen was charged to 8 kg/C-.G, and ethylene was charged until the total pressure reached 10 kg/cIN2.G to start polymerization again. Total pressure is 10Kg/Ct
-G, and the pressure in the measuring tank is 4K.
Polymerization was carried out until g/cs decreased by 2 minutes (second stage).

重合終了後、重合体スラリーをビーカーに移し、ヘキサ
ンを減圧除去し白色ポリエチレン62gを得た。
After the polymerization was completed, the polymer slurry was transferred to a beaker, and hexane was removed under reduced pressure to obtain 62 g of white polyethylene.

第1段階の生成ポリマー量は60重量部、第2段階の生
成ポリマー量は40重量部であり、全体のポリマーの極
限粘度[η]は12. 2 dJ!/gであった。
The amount of polymer produced in the first stage was 60 parts by weight, the amount of polymer produced in the second stage was 40 parts by weight, and the intrinsic viscosity [η] of the entire polymer was 12. 2 dJ! /g.

この重合体を実施例1(c)に従って固相押出(90℃
、延伸倍率6倍)および引張延伸(120℃、延伸倍率
32倍)を行った。延伸物の弾性率および強度を表1に
示した。
This polymer was subjected to solid phase extrusion (90°C) according to Example 1(c).
, stretching ratio 6 times) and tensile stretching (120° C., stretching ratio 32 times). Table 1 shows the elastic modulus and strength of the stretched product.

実施例5 (a)固体触媒成分の製造 実施例1(a)において四塩化チタン2.0gノカワリ
l::Vo (OC2H5)! 0.5gおよび四塩化
チタン2.Ogを使用することを除いては、実施例1(
a)と同様の方法で固体触媒成分を製造した。得られた
固体触媒成分1gには7.6mgのバナジウムおよび3
0.6mgのチタンが含まれていた。
Example 5 (a) Preparation of solid catalyst component In Example 1 (a), 2.0 g of titanium tetrachloride was added: Vo (OC2H5)! 0.5g and titanium tetrachloride2. Example 1 (
A solid catalyst component was produced in the same manner as in a). 1 g of the obtained solid catalyst component contains 7.6 mg of vanadium and 3
It contained 0.6 mg of titanium.

(b)重合 実施例1(b)と同様のオートクレーブを使用し、ヘキ
サン1000a+fを入れ、トリエチルアルミニウム1
ミリモルおよび前記固体触媒成分10a+gを加え、攪
拌しながら60℃に昇温した。
(b) Polymerization Using the same autoclave as in Example 1(b), add 1000a+f of hexane, and add 1% triethylaluminum.
mmol and the solid catalyst component 10a+g were added, and the temperature was raised to 60°C while stirring.

ヘキサンの蒸気圧で1.5Kg/cIl12・Gになる
が、エチレンを全圧10Kg/d−Gになるまで張り込
んで重合を開始した。5iのエチレン計量槽よりオート
クレーブの全圧が10Kg/−・Gになるようにエチレ
ンを連続的に導入し、計量槽の圧力が7Kg/C112
分減少するまで重合を行った(第1段階)。
The vapor pressure of hexane was 1.5 Kg/cIl12.G, but ethylene was charged until the total pressure reached 10 Kg/d-G to initiate polymerization. Ethylene was continuously introduced from the 5i ethylene measuring tank so that the total pressure of the autoclave was 10 Kg/-・G, and the pressure in the measuring tank was 7 Kg/C112.
Polymerization was carried out until the amount decreased (first stage).

この時の重合体の極限粘度[η]は20. 5  dl
/gであった。
The intrinsic viscosity [η] of the polymer at this time is 20. 5 dl
/g.

その後すばやく系内のエチレンをパージし、水素を7K
g/CI’・Gに張り込みついでエチレンを全圧が10
Kg/co+2・Gになるまで張り込んで再び重合を開
始した。全圧が10Kg/cl・Gになるように連続的
に導入し、計量槽の圧力が3KgZj分減少するまで重
合を行った(第2段階)。
After that, quickly purge the ethylene in the system and remove hydrogen by 7K.
g/CI'・G and then add ethylene to a total pressure of 10
The pressure was increased to Kg/co+2.G, and polymerization was started again. The mixture was introduced continuously so that the total pressure was 10 Kg/cl.G, and polymerization was carried out until the pressure in the metering tank decreased by 3 KgZj (second stage).

重合終了後、重合体スラリーをビーカーに移し、ヘキサ
ンを減圧除去し白色ポリエチレン60gを得た。
After the polymerization was completed, the polymer slurry was transferred to a beaker, and hexane was removed under reduced pressure to obtain 60 g of white polyethylene.

第1段階の生成ポリマー量は70重量部、第2段階の生
成ポリマー量は30重量部であり、全体のポリマーの極
限粘度[η]は13.864/gであった。
The amount of polymer produced in the first stage was 70 parts by weight, the amount of polymer produced in the second stage was 30 parts by weight, and the intrinsic viscosity [η] of the entire polymer was 13.864/g.

この重合体を実施例1(c)に従って固相押出(110
℃、延伸倍率6倍)および引張延伸(120℃、延伸倍
率25倍)を行った。延伸物の弾性率および強度を表1
に示した。
This polymer was prepared by solid phase extrusion (110
℃, stretching ratio 6 times) and tensile stretching (120° C., stretching ratio 25 times). Table 1 shows the elastic modulus and strength of the stretched product.
It was shown to.

実施例6 実施例2において第1段階の重合温度を20℃にした以
外は実施例2と同様に行い、[η]30゜1  d、e
/gのポリマーを得た。このポリマーを実施例1(c)
に従って固相押出(120℃、延伸倍率6倍)および引
張延伸(120℃、延伸倍率26倍)を行った。延伸物
の弾性率および強度を表1に示した。
Example 6 The same procedure as Example 2 was carried out except that the polymerization temperature in the first stage was changed to 20°C, and [η] 30°1 d, e
/g of polymer was obtained. This polymer was prepared as Example 1(c)
Solid-phase extrusion (120° C., stretch ratio 6 times) and tensile stretching (120° C., stretch ratio 26 times) were performed according to the following. Table 1 shows the elastic modulus and strength of the stretched product.

表1Table 1

Claims (1)

【特許請求の範囲】 〔1〕135℃、デカリン中における極限粘度が5〜5
0dl/gであり、かつ少なくとも下記の2段階の重合
反応によって得られる超高分子量ポリエチレン粉末を該
ポリエチレンの融点以下の温度で延伸させることにより
高強度・高弾性率ポリエチレン材料を製造する方法。 (第1段階) 少なくともMg、Tiおよび/またはVを含有する固体
触媒成分と有機金属化合物とよりなる触媒により、水素
の不存在下または低められた水素濃度でエチレンを重合
させ、135℃、デカリン中における極限粘度が12〜
50dl/gのポリエチレンを50〜99.5重量部生
成させる工程。 (第2段階) 第1段階より高められた水素濃度下でエチレンを重合さ
せることにより、ポリエチレン50〜0.5重量部生成
させる工程。
[Scope of Claims] [1] Intrinsic viscosity in decalin at 135°C is 5 to 5
0 dl/g, and a method for producing a high-strength, high-modulus polyethylene material by stretching an ultra-high molecular weight polyethylene powder obtained by at least the following two-stage polymerization reaction at a temperature below the melting point of the polyethylene. (First step) Ethylene is polymerized in the absence of hydrogen or at a reduced hydrogen concentration using a catalyst consisting of a solid catalyst component containing at least Mg, Ti, and/or V and an organometallic compound. The intrinsic viscosity inside is 12~
A step of producing 50 to 99.5 parts by weight of polyethylene of 50 dl/g. (Second stage) A step of producing 50 to 0.5 parts by weight of polyethylene by polymerizing ethylene under a higher hydrogen concentration than in the first stage.
JP11533187A 1986-06-17 1987-05-12 High-strength, high-modulus polyethylene material manufacturing method Expired - Lifetime JPH075667B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP14064786 1986-06-17
JP61-140647 1986-06-17
JP18591886 1986-08-07
JP61-185918 1986-08-07

Publications (2)

Publication Number Publication Date
JPS63159408A true JPS63159408A (en) 1988-07-02
JPH075667B2 JPH075667B2 (en) 1995-01-25

Family

ID=26473096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11533187A Expired - Lifetime JPH075667B2 (en) 1986-06-17 1987-05-12 High-strength, high-modulus polyethylene material manufacturing method

Country Status (1)

Country Link
JP (1) JPH075667B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996011A (en) * 1988-07-09 1991-02-26 Nippon Oil Co., Ltd. Production of polyethylene materials having improved strength and modulus qualities
JPH03205151A (en) * 1989-05-08 1991-09-06 Nippon Oil Co Ltd Laminate
JPH0477232A (en) * 1990-07-19 1992-03-11 Nippon Oil Co Ltd Colored and oriented polyethylene material and manufacture thereof
WO2010074073A1 (en) * 2008-12-26 2010-07-01 三井化学株式会社 Ethylene polymer composition, manufacturing method therefor, and molded article obtained using same
JP2020532614A (en) * 2017-08-29 2020-11-12 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn Olefin polymerization catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996011A (en) * 1988-07-09 1991-02-26 Nippon Oil Co., Ltd. Production of polyethylene materials having improved strength and modulus qualities
JPH03205151A (en) * 1989-05-08 1991-09-06 Nippon Oil Co Ltd Laminate
JPH0477232A (en) * 1990-07-19 1992-03-11 Nippon Oil Co Ltd Colored and oriented polyethylene material and manufacture thereof
WO2010074073A1 (en) * 2008-12-26 2010-07-01 三井化学株式会社 Ethylene polymer composition, manufacturing method therefor, and molded article obtained using same
JP5351178B2 (en) * 2008-12-26 2013-11-27 三井化学株式会社 Ethylene polymer composition, process for producing the same, and molded article obtained using the same
JP2020532614A (en) * 2017-08-29 2020-11-12 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn Olefin polymerization catalyst

Also Published As

Publication number Publication date
JPH075667B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
CA1331264C (en) Production of polyethylene materials having improved strength and modulus qualities
US4879076A (en) Process for the production of polyethylene materials
US4923935A (en) Process for producing polyethylene of ultrahigh molecular weight
FI71325B (en) FOERFARANDE FOER PRODUKTION AV ALFA-OLEFINPOLYMERER ELLER -COPOLYMERER OCH DAERI ANVAEND FAST TITANKATALYSATORKONPONENT
US4335224A (en) Polymer compositions comprising ethylene polymer blends
US4495334A (en) Ethylene polymer blend compositions
US5756660A (en) Process for producing polyethylene material of high strength and high plastic modulus
JPS61218606A (en) Production of alpha-olefin polymer
JPS603323B2 (en) Polymerization method of olefins
JPH02175137A (en) Production of high-orientation polyethylene material
JPS62243634A (en) Ultra-high-molecular weight polyethylene crosslinked product
US3740383A (en) Process for the production of fibrillated structures
JP2011195988A (en) Polypropylene fiber, method for producing the same, and product using the same
JPS62141006A (en) Readily soluble polyethylene powder for production of high-strength, high-modulus fiber or film
JPS63159408A (en) Preparation of polyethylene of high strength and high modulus of elasticity
JPS6341512A (en) Production of polyethylene material having high strength and high modulus of elasticity
US5026511A (en) Process for the production of polyethylene materials
JPS6366207A (en) Production of high-strength and high-modulus polyethylene material
JP3311780B2 (en) Method for producing olefin polymer
JPS6351409A (en) Manufacture of butene-1 polymer
JPH03126704A (en) Polybutene-1 for pipe and pipe of the same resin
JPS61283606A (en) Easily soluble ultrahigh-molecular weight polyethylene powder
JP3768327B2 (en) Ethylene polymer
JPH0819283B2 (en) Polyolefin composition
JPH0645659B2 (en) Manufacturing method of ultra high molecular weight ethylene-gen copolymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 13