JPS631593B2 - - Google Patents
Info
- Publication number
- JPS631593B2 JPS631593B2 JP10800580A JP10800580A JPS631593B2 JP S631593 B2 JPS631593 B2 JP S631593B2 JP 10800580 A JP10800580 A JP 10800580A JP 10800580 A JP10800580 A JP 10800580A JP S631593 B2 JPS631593 B2 JP S631593B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- liquid crystal
- state
- voltage
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 10
- 239000013543 active substance Substances 0.000 claims description 8
- 239000004988 Nematic liquid crystal Substances 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 230000005283 ground state Effects 0.000 claims description 6
- 238000000149 argon plasma sintering Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 2
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 17
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Description
本発明は、いわゆるp型コレステリツク液晶を
使用する記憶型液晶表示装置において、該液晶の
特性を利用して表示された画像を電気的に部分的
に書換える方法に関する。
液晶表示装置は、低電圧、低消費電力という利
点を有する受光型の表示装置として近年広く実用
化され、また更に改良ならびに応用のための開発
研究が活発に進められている。特にコレステリツ
ク型液晶は、記憶作用、すなわち電界を取除いた
のちにも長時間表示を保持する能力を有する。こ
のため、この型の液晶を使用すれば、表示電力の
一層の低下が期待されるほか、マトリツクス型の
液晶表示装置に使用するときに画像のちらつきを
防止するために画面をリフレツシユする必要がな
くなり、また同時に表示できる走査線の数の制約
が飛躍的に緩和されるなどの特徴を有している。
なかでもp型すなわち正の誘電異方性を有するネ
マチツク液晶とコレステリツク液晶あるいはカイ
ラルネマチツク物質等の旋光性物質との混合物で
あるいわゆるp型コレステリツク液晶は、n型す
なわち負の誘電異方性を有するネマチツク液晶と
コレステリツク液晶との混合物であるいわゆるn
型コレステリツク液晶に比べて、コントラスト比
が高く、書き込み時間が短いなどの特長を有する
ため、マトリクス型液晶表示セルを中心としてそ
の利用が広く期待されている。
本発明は、このp型コレステリツク液晶を用い
る記憶X―Yマトリクス型液晶表示装置において
一対の対向電極板にそれぞれ形成された電極列
(本明細書では、各電適板に設けられた電極列を、
便宜的にX―電極列およびY―電極列と称する)
の交叉部分に形成される複数の表示部の一部を選
択的に電気的に書換える方法に関する。このよう
なX―Yマトリクス型液晶表示装置の部分的書換
のための適当な方法は従来知られていなかつた。
それは、一対の帯状X―電極とY―電極の交叉点
からなる特定表示部の書換、すなわち消去および
書込に際しては当該X―電極とY―電極に電位変
化が与えられて特定表示部に電圧が印加される
が、この電位変化が上記特定表示部以外にも上記
の当該X―電極およびY―電極と接する他の表示
部に対しても必然的に電圧変化を生ずるため、他
の表示部における表示の変化を伴わずには特定表
示部の書換ができないと考えられたからである。
しかしながら、本発明者の研究によれば、このよ
うなp型コレステリツク液晶を用いる記憶X―Y
マトリクス型液晶表示装置において、異なる状態
にある液晶の印加電圧に対する応答特性の差異を
適切に利用すれば、このようなマトリクス型液晶
表示装置の部分的書換が可能であることが見出さ
れた。
より詳しくは、本発明の記憶型液晶表示装置の
部分的書換方法は、複数の離間した帯状電極から
なるX―電極列とY―電極列とをそれぞれ表面に
有する一対の垂直配向処理した電極基板を、X―
電極列とY―電極列とが交叉するように対向さ
せ、該一対の電極基板間に正の誘電異方性を有す
るネマチツク液晶と旋光性物質を含む混合液晶を
挾持させてなり、該X―およびY―電極列の電極
交叉部を単位表示部とする記憶X―Yマトリクス
型液晶表示装置を、まず基底状態の液晶からなる
透明表示部とフオーカルコニツク状態の液晶から
なる光散乱部とで形成される低電圧表示状態にお
き、次いで下記の段階を含む操作を行うことによ
りX―電極列に含まれる帯状電極群の一部の帯状
電極に対応する表示を書き換えることを特徴とす
るものである。
(イ) 前記フオーカルコニツク状態の液晶をホメオ
トロピツク状態に移行させるに充分な電圧をX
―電極列中の書換電適とY―電極列中の対向電
極との間に印加し、X―電極列中の非書換電極
には対向電極とほぼ同電位を印加して、前記書
換電極に接する表示部の液晶を選択的にホメオ
トロピツク状態にして消去する段階、
(ロ) 前記X―電極列中の書換電極の少くとも一部
を書込電極と定め、Y―電極列中の少くとも一
電極を走査電極と定めて、各電極を以下の電圧
関係に保持する段階、
a X―電極列中の非書換電極とY―電極列中
の非走査電極とをほぼ同電位とする、
b 走査電極には、フオーカルコニツク状態の
液晶とホメオトロピツク状態の液晶とがとも
に安定ないしは準安定に存在し得る電圧Vに
相当する電位を設定する、
c 書換電極中の、書込電極には走査電極とほ
ぼ同電位を、非書込電極には走査電極と同じ
大きさの逆電位をそれぞれ設定する、
上記a,b,cの関係は、前記書込電極と走
査電極とで挟持される被書込表示部に液晶のグ
ランジエン状態が形成されるに充分な時間で且
つ液晶が電圧Vの印加のもとに基底状態からフ
オーカルコニツク状態に相転移する時間内だけ
保持する。
(ハ) 前記作動電極を零電位とし、前記被書込表示
の液晶に電圧Vを印加してグランジエン状態の
液晶がフオーカルコニツク状態へ転移するに充
分な時間保持する段階。
以下、本発明を更に詳細に説明する。
本発明に使用される記憶型液晶装置ならびにそ
の基本的作動原理は既知である(たとえば、電子
材料、1975年11月号第28―33頁)が、本発明法の
理解のために簡単に繰り返す。
第1図は、本発明に使用される記憶型液晶表示
装置の一例の概念的断面図であり、これは帯状の
X―電極列1XおよびY―電極列1Yをそれぞれ
一面に設けた少くとも一方が透明な一対の電極基
板1の電極面に垂直配向処理をしてから、その間
にp型コレステリツク液晶2を挾持させ更に両電
極を交流ないし直流電源3に結合して、液晶2に
電界を印加可能に構成したものである。なお電極
配置ならびにその結線の詳細の図示は省略する。
第2図は、p型コレステリツク液晶の光透過率
―電圧特性を示すものである。p型コレステリツ
ク液晶を垂直配向処理した一対の電極基板に最初
に挾持した状態においては、液晶は図のSで示す
基底状態にある。このS状態は顕微鏡観察の結果
から渦状状態ともいわれ、垂直配向処理の結果と
して、電極基板の表面近傍では液晶分子が基板表
面に垂直に配向し、一方表面から離れるに従いp
型コレステリツク液晶固有のらせん状態(グラン
ジエン状態)、すなわち液晶分子が基板表面とほ
ぼ平行に配向し、基板表面から離れるに従いその
分子軸の方向が徐々に変わつている状態を形成し
た複合状態と考えられている。このような分子配
向の結果として、S状態においては液晶は実質的
に透明である。
このS状態にある液晶に、電圧を印加し、それ
を上昇して行くと、液晶は第2図の実線に沿つて
矢印の方向に進み、あるしきい値電圧VLを越え
て、図のFで示すフオーカルコニツク状態に変化
する。このF状態では液晶は光を散乱して白濁し
ている。更に印加電圧を上げると液晶はしきい値
電圧VHを過ぎて、図のHで示すホメオトロピツ
ク状態に移る。このH状態では、液晶分子は加え
られた電界により強制的に電極基板に垂直に配向
され、その透明度は最大となる。ただし、肉眼で
はこのH状態の透明度とS状態のそれとは殆んど
区別がつかない程度である。
次いでH状態にある液晶について印加電圧を
徐々に低下して行くと、ヒステリシスを示し、し
きい値電圧VHを過ぎてもホメオトロピツク状態
が継続し(図のH′状態)、ある電圧値VH′を過ぎ
てF状態へと移行する。F状態から更に電圧を低
下すると、今度はVLを過ぎてもS状態には戻ら
ず、電圧0においてフオーカルコニツク状態のま
ま準安定化する。図にF′で示すこの準安定フオー
カルコニツク状態の液晶は、非常に長時間おけば
徐々にS状態へ移行するが、数日ないし数カ月の
程度では安定であると見なされる。
一方HまたはH′状態にある液晶に対し印加電
圧を急激に0ボルト近傍まで低下し、ここで一定
の緩和時間τHG以上保持すると、今度はF状態に
はならず、コレステリツク液晶固有のグランジエ
ン状態に似たらせん構造を持つG′状態(本明細
書ではこれをグランジエン状態と称する)にな
る。このG′状態の液晶を緩和時間τGS以上印加電
圧0の状態に保持すると基底のS状態に戻るが、
ここでVH′<V<VHの条件にある電圧Vを印加し
て、緩和時間τGF以上保持すると液晶は、再びフ
オーカルコニツク状態になる。ここで各種の状態
変化に伴う緩和時間には、以下の関係が成立する
ことが実験的に確認されている。
τSF=200〜300mS
τHG=1〜20mS
τGF=5〜50mS
τHF=τHG+τGF≒30mS≪τSF
第2図を用いて説明したp型コレステリツク液
晶の光透過率―電圧特性を利用して記憶表示が行
われる。すなわち、一旦全体の液晶をHまたは
H′状態まで移行したのち、表示部については電
圧を徐々に低下してF状態を経てOV近傍で光散
乱状態のF′状態とし、非表示部についてはHまた
はH′状態から電圧を急激に低下して透明なS状
態に移行させると、この両状態は比較的長時間そ
のまま安定表示を続ける。
記憶表示は別の方法により行うこともできる。
これは電圧VH′とVHの間でF状態とH′状態がと
もに安定化し得ることならびにH′状態にある液
晶をある相転移に充分な時間すなわち緩和時間
τHG以上0Vに落し再びVH′とVHの間の電圧に戻す
とF状態で安定化するという事実を利用するもの
である。すなわち、一旦全液晶要素をH′状態と
し、次いで表示部の要素のみを時間τHG以上0Vに
落してからVH′とVHの間の電圧に戻すことによ
り、F状態とH′状態で表示を行うことができる。
このF状態とH′状態は電圧を急激に低下すれば
それぞれF′およびS状態に移行する。この方法に
よれば前記方法に比べて記憶表示が迅速化する利
点がある。
さて、本発明に従う、マトリクス型液晶表示装
置の部分的書換え方法は、前述した各種状態変化
に伴う応答緩和時間の差異、特に
τHF=τHG+τGF≪τSF
の関係を利用して行われる。以下、その方法の実
施例をX―Yマトリクス型液晶表示装置の一例に
ついて説明する。
X1〜X5の5つの帯状電極からなるX―電極列
と、Y1〜Y3の3つの帯状電極からなるY―電極
列が対向基板上に設けられ、各電極の交叉部に15
の表示部が形成された第3図に示すような平面マ
トリクス配置の液晶表示装置を用いるものとす
る。以下の説明では、たとえば、電極X4と電極
Y3との交叉部に形成される表示部をD43と表示す
る。
今、第4図aに示すような表示状態(斜線で示
した表示部が光散乱状態、その他の表示部は透明
状態)にある表示装置中の、X3〜X5の電極を書
換電極と定めて書換操作を行い、最終的に第4図
bの表示状態にするものとする。第4図aの状態
では、全ての電極列中の電位が同等(典型的には
0電位)で、各表示部の液晶にかかる電圧は0で
ある。
本発明に従い、まず各電極に第5図aのような
電位を与える。ここで欄外に示した値が各電極に
与えられる電位であり、各表示部に示した値はそ
の表示部の液晶に印加される電圧(Y電極の電位
―X電極の電位)である。ここで電圧Vは、フオ
ーカルコニツク状態の液晶とホメオトロピツク状
態の液晶がともに安定ないしは準安定に存在し得
る電圧(VH′<V<VH)であり、2Vは準安定フ
オーカルコニツク状態の液晶をホメオトロピツク
状態に移行させるに充分な電圧(2V>VH)とな
る。この状態で時間τSH以上保持すると第5図b
の表示状態、すなわち書換電極X3〜X5の構成す
る表示部D31〜D53の消去が得られ、その時の各
表示部の液晶の状態は第5図cに示す通りであ
る。
次いで、電極X3を書込電極と定め電極Y3を走
査電極と定めて、各電極に第6図aに示す電位を
与え、時間t1(τHG<t1≪τSF)保持する。この結果、
第6図cに示すように表示部D33にはG′状態(グ
ランジエン状態)が形成されるが表示部D23はS
状態に止まり、第6図bの表示状態(表示部D33
の点斜線はG′状態に相当して透明度の幾分低下
した状態を示す)が得られる。なお表示部D32等
にかかる−Vの電圧は液晶に対しては電圧Vと全
く同じ作用を示す。
ここで第7図aに示すように走査電極Y3を0
電位に落し、時間t1′(>τGF)保持すると、第7図
b,cに示すように表示部D33はF状態に変化
し、書込が行われる。
上記一連の操作は、本発明方法の最も基本的な
実施態様であり、第4図aから第7図bの表示状
態へと部分的な書換が行われたことを意味する。
そして、従来は、上記操作の過程で特に第6図a
の電圧状態が表示部D23の変化を起すので、この
ようなX―Yマトリクス型液晶表示装置の部分的
書換は不可であると考えられたのに対して、本発
明では、第6図aの電圧状態をτHG<t1<τSFの条
件を満す時間t1だけ保持することにより、表示部
D23(あるいは表示部D13がもともとS状態であつ
たときはこれも含めて)の変化を伴うことなく選
択的に表示部D33への書込が可能となつたのであ
る。
既に述べたように上記一連の操作により、本発
明法の実施は一応完結する。しかし、第4図bの
表示状態へと書換を行うためには、更に以下の操
作を行う。すなわち、第6図の状態から、第7図
の状態を経ずに、今度は電極X4およびX5を書込
電極、電極Y2を走査電極と定めて連続して各電
極に第8図aの電位を与え、時間t2(τHG<t2≪τSF)
保持する。これにより第8図b,cで表わす表示
状態が得られる。すなわち、電極Y3についての
み云えば、0電位が与えられて、表示部D33に対
してG′状態からF状態への変化、すなわち書込
操作が行われ、一方、作動電極Y2に対応して表
示部D42およびD52ではG′状態への書換、すなわ
ち書込予備操作が行われていることになる。
更に、電極X5を書込電極、Y1を走査電極と定
めて、各電極に第9図aの電位を与え時間t3(τHG
<t3≪τSF)保持する。これにより第9図b,cの
表示状態が得られる。ここにおける変化は第8図
において説明したと実質的に同じである。
次いで第10図aに示すように走査電極Y1の
電位を0として時間t3′(>τGF)保持すれば、第7
図を用いて説明したように表示部D51に書込みが
行われ、第10図b,cの表示状態が得られる。
なお、第8図、第9図において保持時間t2,t3が
τGFより大でないと表示部D33(第8図b,c)や
表示部D42,D52(第9図b,c)はG′状態に止ま
り、図示の状態変化が起つていない可能性があ
る。しかし、いずれにしてもその後の操作でこれ
ら表示部には電圧Vが印加されるので時点の差は
あれ、F状態への変化は確保される。
以上で第4図aから第4図b、すなわち第10
図bの表示状態への一連の書換操作が行われたこ
とになる。
このようにして得られた書換画像を記憶画像と
して定着させるためには、X―電極列およびY―
電極列の表示に関与する電極間を第11図aに示
すように同電位(典型的には0電位)とすればよ
い。これにより第11図b,cのような表示状態
の記憶画像が得られる。
上記においては、平行直線状の帯状X―,Y―
電極の組合せからなる直交マトリクス型液晶表示
装置について説明した。しかしながら、帯状電極
の形状は任意であり、斜交マトリクスはもちろ
ん、曲線帯状X―,Y―電極の組合せからなる7
セグメント・デイジタル表示マトリクス等につい
ても適用できることは容易に理解できよう。ま
た、応用として本発明に用いる表示装置を一対の
偏光板に挾むことにより、散乱部と透過部とで異
なる複屈折状態を利用して色対比を行うこともで
きる。
なお、電極間に印加する電圧は、交流電圧でも
直流電圧でもよい。但し、VH,VH′等のしきい値
電圧ならびに緩和時間は多少、交流と直流とで異
り得る。一般的に云つて、実際には、直流では容
量成分の影響を受けて、応答緩和速度が遅くなる
傾向にある。上述した数値は30Hz〜10KHz程度の
交流の値である。
上述したように、本発明で用いるp型コレステ
リツク液晶はp型ネマチツク液晶と旋光性物質と
の混合液昌であり、ここで旋光性物質とはコレス
テリツク液晶に加えてネマチツク液晶の分子鎖に
不斉炭素を有するカイラル・ネマチツク物質を含
むものであり、ネマチツク液晶にらせんを誘導す
る効果を持つ他の光学活性物質も使用できる。
本発明で用いる混合液晶は、一般には旋光性物
質を5〜35重量%含み残部が実質的にp型ネマチ
ツク液晶であつて、らせんピツチが約1〜約5μm
のものが好ましく用いられる。らせんピツチが上
限を超えると、らせんピツチが大きすぎるため、
電極間隙が10μ程度の表示装置では充分なコント
ラストが得られず、また記憶時間も短くなり、実
用性に乏しい。電極間隙が15μを超える表示装置
ではピツチ5μ以上のものが用いうるが、応答速
度の低下、電圧の上昇が著しく実用性に乏しい。
また下限未満ではコントラストは高く、記憶時間
は長くなるが、HまたはH′状態からのS状態へ
の移行に時間がかかりすぎ実用性に乏しい。電極
間隙が3μより薄い表示装置はコントラストが低
くまた製作技術の点からも均一な厚みのコントロ
ールが困難で実用性に乏しい。
適当な混合液晶の一例として以下の組成(重量
比)を有するものが挙げられる。
The present invention relates to a method for electrically rewriting a displayed image in a storage type liquid crystal display device using so-called p-type cholesteric liquid crystal by utilizing the characteristics of the liquid crystal. Liquid crystal display devices have been widely put into practical use in recent years as light-receiving display devices that have the advantages of low voltage and low power consumption, and research and development for further improvements and applications are actively underway. In particular, cholesteric liquid crystals have a memory effect, ie, the ability to maintain a display for a long time even after the electric field is removed. Therefore, if this type of liquid crystal is used, it is expected that the display power will be further reduced, and there will be no need to refresh the screen to prevent image flickering when used in matrix type liquid crystal display devices. , and has the feature that restrictions on the number of scanning lines that can be displayed simultaneously are dramatically relaxed.
Among them, the so-called p-type cholesteric liquid crystal, which is a mixture of a p-type nematic liquid crystal, which has a positive dielectric anisotropy, and an optically active substance such as a cholesteric liquid crystal or a chiral nematic substance, The so-called n
Compared to cholesteric liquid crystals, it has features such as a higher contrast ratio and shorter writing time, so it is widely expected to be used mainly in matrix-type liquid crystal display cells. The present invention relates to a storage XY matrix type liquid crystal display device using this p-type cholesteric liquid crystal. ,
(referred to as X-electrode array and Y-electrode array for convenience)
The present invention relates to a method of selectively electrically rewriting a part of a plurality of display sections formed at the intersection portion of the present invention. A suitable method for partially rewriting such an XY matrix type liquid crystal display device has not been known in the past.
When a specific display section consisting of a pair of strip-shaped X-electrodes and a Y-electrode intersects is rewritten, that is, erased or written, a potential change is applied to the X-electrode and the Y-electrode, and a voltage is applied to the specific display section. is applied, but this potential change inevitably causes a voltage change not only to the specific display section but also to other display sections that are in contact with the X-electrode and Y-electrode. This is because it was thought that the specific display section could not be rewritten without a change in the display.
However, according to the research of the present inventor, the memory XY using such p-type cholesteric liquid crystal
It has been found that in a matrix type liquid crystal display device, partial rewriting of such a matrix type liquid crystal display device is possible by appropriately utilizing differences in response characteristics to applied voltages of liquid crystals in different states. More specifically, the partial rewriting method for a memory type liquid crystal display device of the present invention uses a pair of vertically aligned electrode substrates each having an X-electrode array and a Y-electrode array on their surfaces, each consisting of a plurality of spaced apart strip-shaped electrodes. ,X-
The electrode array and the Y-electrode array are arranged so as to intersect with each other, and a mixed liquid crystal containing a nematic liquid crystal having positive dielectric anisotropy and an optically active substance is sandwiched between the pair of electrode substrates, and the X- A storage XY matrix type liquid crystal display device in which the electrode intersections of the Y-electrode rows are used as unit display parts is first constructed by combining a transparent display part made of liquid crystal in a ground state and a light scattering part made of liquid crystal in a focal conic state. It is characterized by rewriting the display corresponding to a part of the band-shaped electrodes of the band-shaped electrode group included in the X-electrode array by placing the display in the low-voltage display state that is formed, and then performing operations including the following steps. be. (b) Applying a voltage X sufficient to shift the focal conic state liquid crystal to a homeotropic state.
-Apply between the rewriting voltage in the electrode row and the counter electrode in the Y-electrode row, apply approximately the same potential as the counter electrode to the non-writing electrode in the X-electrode row, and apply to the rewriting electrode. (b) determining at least a part of the rewrite electrodes in the X-electrode array as write electrodes, and at least one of the Y-electrode arrays; Defining the electrodes as scanning electrodes and maintaining each electrode in the following voltage relationship: a. Setting the non-writing electrode in the X-electrode row and the non-scanning electrode in the Y-electrode row to approximately the same potential; b. Scanning. The electrodes are set with a potential corresponding to a voltage V at which both the focalconic state liquid crystal and the homeotropic state liquid crystal can exist stably or metastablely. Almost the same potential is set for the non-writing electrode, and an opposite potential of the same magnitude as that of the scanning electrode is set for the non-writing electrode. The liquid crystal is maintained for a sufficient time to form a graminian state in the display section and for a time period for the liquid crystal to undergo a phase transition from the ground state to the focal conic state under the application of the voltage V. (c) Setting the operating electrode to zero potential, applying a voltage V to the liquid crystal of the display to be written, and maintaining the voltage for a time sufficient for the liquid crystal in the grunge state to transition to the focal conic state. The present invention will be explained in more detail below. Although the memory type liquid crystal device used in the present invention and its basic operating principle are known (e.g., Electronic Materials, November 1975 issue, pages 28-33), they will be briefly repeated for understanding of the method of the present invention. . FIG. 1 is a conceptual cross-sectional view of an example of a memory-type liquid crystal display device used in the present invention, in which at least one side is provided with a strip-shaped X-electrode array 1X and a Y-electrode array 1Y, respectively. After vertically aligning the electrode surfaces of a pair of transparent electrode substrates 1, a p-type cholesteric liquid crystal 2 is sandwiched between them, and both electrodes are connected to an AC or DC power source 3 to apply an electric field to the liquid crystal 2. This is possible. Note that detailed illustrations of the electrode arrangement and their connections are omitted. FIG. 2 shows the light transmittance-voltage characteristics of a p-type cholesteric liquid crystal. When a p-type cholesteric liquid crystal is initially sandwiched between a pair of vertically aligned electrode substrates, the liquid crystal is in the ground state shown by S in the figure. This S state is also called a vortex state based on the results of microscopic observation, and as a result of the vertical alignment process, near the surface of the electrode substrate, liquid crystal molecules are aligned perpendicularly to the substrate surface, while as they move away from the surface, the
It is considered to be a complex state in which the liquid crystal molecules are aligned almost parallel to the substrate surface, and the direction of the molecular axis gradually changes as the distance from the substrate surface increases. It is being As a result of this molecular orientation, liquid crystals are substantially transparent in the S state. When a voltage is applied to the liquid crystal in the S state and the voltage is increased, the liquid crystal moves in the direction of the arrow along the solid line in Figure 2, and exceeds a certain threshold voltage V L , as shown in the figure. The state changes to a focal conic state indicated by F. In this F state, the liquid crystal scatters light and becomes cloudy. When the applied voltage is further increased, the liquid crystal passes the threshold voltage V H and shifts to the homeotropic state indicated by H in the figure. In this H state, the liquid crystal molecules are forcibly aligned perpendicular to the electrode substrate by the applied electric field, and their transparency is maximized. However, with the naked eye, the transparency of the H state and that of the S state are almost indistinguishable. Next, when the applied voltage is gradually lowered to the liquid crystal in the H state, it exhibits hysteresis, and the homeotropic state continues even after passing the threshold voltage V H (H' state in the figure), until a certain voltage value V H ' and moves to F state. When the voltage is further lowered from the F state, it does not return to the S state even after passing V L , but remains in the focal conic state and becomes metastable at voltage 0. This metastable focal conic liquid crystal, indicated by F' in the figure, gradually shifts to the S state if left for a very long time, but is considered stable for several days to several months. On the other hand, if the voltage applied to a liquid crystal in the H or H' state is suddenly lowered to near 0 volts and maintained for a certain relaxation time τ HG or longer, it will not enter the F state this time and will not reach the grunge range unique to cholesteric liquid crystals. The state becomes the G' state (herein referred to as the grandien state), which has a helical structure similar to that of the G' state. If the liquid crystal in the G′ state is kept at an applied voltage of 0 for a relaxation time τ GS , it will return to the base S state, but
Here, when a voltage V under the condition of V H '<V<V H is applied and the relaxation time τ GF or longer is maintained, the liquid crystal returns to the focal conic state. It has been experimentally confirmed that the following relationship holds true for relaxation times associated with various state changes. τ SF = 200 to 300 mS τ HG = 1 to 20 mS τ GF = 5 to 50 mS τ HF = τ HG + τ GF ≒30 mS≪τ SF The light transmittance-voltage characteristics of the p-type cholesteric liquid crystal explained using Fig. 2 are as follows. It is used to display the memory. In other words, once the entire liquid crystal is set to H or
After transitioning to the H' state, the voltage for the display area is gradually lowered, passing through the F state and reaching the F' state, which is a light scattering state near OV, and for the non-display area, the voltage is suddenly decreased from the H or H' state. When the voltage decreases to the transparent S state, stable display continues in both states for a relatively long period of time. Memory display can also be done in other ways.
This is because both the F state and the H' state can be stabilized between the voltages V H ' and V H , and the liquid crystal in the H' state is dropped to 0 V for a time sufficient for a certain phase transition, that is, the relaxation time τ HG , and then V This takes advantage of the fact that when the voltage is returned to between H ' and VH , it stabilizes in the F state. That is, once all the liquid crystal elements are in the H' state, then only the elements in the display section are dropped to 0 V for more than τ HG , and then returned to the voltage between V H ' and V H , thereby changing between the F state and the H' state. Can be displayed.
If the voltage is rapidly reduced, the F state and H' state will transition to the F' and S states, respectively. This method has the advantage that storage and display can be done more quickly than the above-mentioned method. Now, the partial rewriting method of a matrix type liquid crystal display device according to the present invention is performed by utilizing the difference in response relaxation time due to the various state changes described above, especially the relationship τ HF = τ HG + τ GF ≪ τ SF . . An example of this method will be described below using an example of an XY matrix type liquid crystal display device. An X-electrode array consisting of five strip-shaped electrodes X 1 to X 5 and a Y-electrode array consisting of three strip-shaped electrodes Y 1 to Y 3 are provided on the opposing substrate, and 15
It is assumed that a liquid crystal display device having a flat matrix arrangement as shown in FIG. 3 in which a display section is formed is used. In the following description, for example, electrodes X 4 and electrodes
The display section formed at the intersection with Y3 is indicated as D43 . Now, the electrodes X 3 to X 5 in the display device in the display state shown in Figure 4a (the shaded display area is in the light scattering state and the other display parts are in the transparent state) are used as rewriting electrodes. The display state shown in FIG. 4b is finally obtained by performing a rewriting operation. In the state shown in FIG. 4a, the potentials in all electrode rows are equal (typically 0 potential), and the voltage applied to the liquid crystal of each display section is 0. According to the present invention, each electrode is first given a potential as shown in FIG. 5a. The values shown in the margins here are the potentials applied to each electrode, and the values shown in each display section are the voltages (potential of the Y electrode - potential of the X electrode) applied to the liquid crystal of that display section. Here, the voltage V is the voltage at which both the focalconic state liquid crystal and the homeotropic state liquid crystal can exist stably or metastablely (V H ′<V< VH ), and 2V is the voltage at which the focalconic state liquid crystal and the homeotropic state liquid crystal can exist stably or metastablely. The voltage is sufficient to shift the liquid crystal to a homeotropic state (2V> VH ). If this state is maintained for more than time τ SH , Figure 5b
The display state of , that is, erasure of the display sections D 31 to D 53 formed by the rewriting electrodes X 3 to X 5 is obtained, and the state of the liquid crystal of each display section at that time is as shown in FIG. 5c. Next, the electrode X 3 is set as a write electrode and the electrode Y 3 is set as a scan electrode, and the potential shown in FIG. 6a is applied to each electrode and held for a time t 1 (τ HG <t 1 <<τ SF ). As a result,
As shown in FIG. 6c, the G' state (grandien state) is formed in the display area D33 , but the display area D23 is in the S state.
The display state shown in Fig. 6b (display section D 33
The dotted diagonal line corresponds to the G' state and indicates a state with somewhat reduced transparency). Note that the voltage -V applied to the display section D32 and the like has exactly the same effect as the voltage V on the liquid crystal. Here, as shown in FIG. 7a, scan electrode Y3 is set to 0.
When the potential is lowered and held for a time t 1 '(>τ GF ), the display portion D 33 changes to the F state as shown in FIGS. 7b and 7c, and writing is performed. The series of operations described above is the most basic embodiment of the method of the present invention, and means that a partial rewriting has been performed from the display state of FIG. 4a to the display state of FIG. 7b.
Conventionally, in the process of the above operation, in particular,
It was thought that partial rewriting of such an XY matrix type liquid crystal display device was impossible because the voltage state of FIG . By maintaining the voltage state of τ HG < t 1 < τ SF for the time t 1 satisfying the condition, the display section
It is now possible to selectively write to the display portion D 33 without changing D 23 (or including this when the display portion D 13 is originally in the S state). As already mentioned, the above series of operations completes the implementation of the method of the present invention. However, in order to rewrite to the display state shown in FIG. 4b, the following operations are additionally performed. That is, from the state shown in FIG. 6, without passing through the state shown in FIG. 7, electrodes X 4 and X 5 are defined as write electrodes and electrode Y 2 is defined as a scan electrode, and each electrode is successively exposed to the state shown in FIG. 8. Apply the potential of a and time t 2 (τ HG < t 2 ≪ τ SF )
Hold. As a result, the display states shown in FIGS. 8b and 8c are obtained. That is, speaking only about the electrode Y3 , 0 potential is applied, and the display section D33 changes from the G' state to the F state, that is, a writing operation is performed, while the corresponding electrode Y2 This means that the display sections D42 and D52 are being rewritten to the G' state, that is, a preliminary write operation is being performed. Furthermore , the electrode
<t 3 ≪τ SF ) held. As a result, the display states shown in FIGS. 9b and 9c are obtained. The changes here are substantially the same as those described in FIG. Next, as shown in FIG .
Writing is performed on the display section D51 as explained using the figures, and the display states shown in FIGS. 10b and 10c are obtained.
In addition, in FIGS. 8 and 9, if the holding times t 2 and t 3 are not greater than τ GF , the display portion D 33 (FIG. 8 b, c) and the display portion D 42 , D 52 (FIG. 9 b, c) may remain in the G' state and the illustrated state change may not have occurred. However, in any case, since the voltage V is applied to these display sections in the subsequent operation, the change to the F state is ensured, although there may be a difference in time. This completes the steps from Figure 4a to Figure 4b, that is, Figure 10.
This means that a series of rewriting operations to the display state shown in FIG. b have been performed. In order to fix the rewritten image obtained in this way as a memory image, it is necessary to
The electrodes involved in the display of the electrode array may be set at the same potential (typically 0 potential) as shown in FIG. 11a. As a result, stored images in display states as shown in FIGS. 11b and 11c are obtained. In the above, parallel straight strips X-, Y-
An orthogonal matrix type liquid crystal display device consisting of a combination of electrodes has been described. However, the shape of the strip electrode is arbitrary, and it can be made of not only an oblique matrix but also a combination of curved strip X-, Y-electrodes.
It is easy to understand that the present invention can also be applied to segment digital display matrices, etc. Further, as an application, by sandwiching the display device used in the present invention between a pair of polarizing plates, color contrast can be performed using different birefringence states in the scattering portion and the transmission portion. Note that the voltage applied between the electrodes may be an alternating current voltage or a direct current voltage. However, threshold voltages such as V H , V H ′, etc. and relaxation times may differ somewhat between alternating current and direct current. Generally speaking, in reality, with direct current, the response relaxation speed tends to be slow due to the influence of the capacitance component. The above-mentioned values are AC values of about 30Hz to 10KHz. As mentioned above, the p-type cholesteric liquid crystal used in the present invention is a mixture of a p-type nematic liquid crystal and an optically active substance, and the optically active substance is a mixture of a p-type nematic liquid crystal and an optically active substance, in addition to the cholesteric liquid crystal. It contains a chiral nematic substance having carbon, and other optically active substances having the effect of inducing a helix in a nematic liquid crystal can also be used. The mixed liquid crystal used in the present invention generally contains 5 to 35% by weight of an optically active substance, the remainder being substantially p-type nematic liquid crystal, and has a helical pitch of about 1 to about 5 μm.
Those are preferably used. If the helix pitch exceeds the upper limit, the helix pitch will be too large.
A display device with an electrode gap of about 10 μm cannot provide sufficient contrast and has a short storage time, making it impractical. Display devices with an electrode gap of more than 15μ can use a display device with a pitch of 5μ or more, but the response speed decreases and the voltage increases significantly, making it impractical.
Further, below the lower limit, the contrast is high and the storage time is long, but the transition from the H or H' state to the S state takes too much time and is impractical. Display devices with an electrode gap of less than 3 μm have low contrast and are difficult to control evenly in terms of manufacturing technology, making them impractical. An example of a suitable mixed liquid crystal is one having the following composition (weight ratio).
【表】【table】
【表】
本発明で用いる電極基板は、電極面においてこ
れと接する液晶分子を、少くとも表面近傍におい
て垂直に配向させるものである必要がある。電極
面にこのような性質を付与するためには直鎖アル
キル基を有するアミン類、または直鎖アルキル基
を有するシラン類、またポリジメチルシロキサン
あるいはそのメチル基の一部をフエニル基その他
に置換したシリコーン系垂直配向処理剤の塗布が
挙げられるが、これに限らず酸化硅素等の無機系
被膜等任意の垂直配向処理が可能である。
なお、応用としてこのように形成された液晶表
示装置を一対の偏光板に挾むあるいは位相差板を
間に併用し、または前面に偏光板を裏面に位相差
板と反射板を用いることにより、散乱部と透過部
とで異なる複屈折状態を利用して色対比を行うこ
ともできる。
上述したように本発明によれば、表示に利用さ
れる各種液晶状態の印加電圧に対する応答特性の
差異、特に状態変化に伴う緩和時間の差異を利用
することにより、記憶X―Yマトリクス型液晶表
示装置の部分的書換を行うための好適な方法が提
供される。
本発明者は、同様にしてp型コレステリツク液
晶の各種状態変化に伴う緩和時間の差異を利用し
て記憶X―Yマトリクス型液晶表示装置の部分的
書換を行うための別方法を併せて開発し、別途特
許出願している(同日の特許願(1))。しかしなが
ら、その方法では書換電極中に作動電極ないしは
走査電極を選択することに伴つて、一連の書換操
作の間、非書換電極に継続的に電圧Vがかかるた
め、多数の帯状電極を使用する広面積マトリクス
表示装置では、途中で書換操作を中断する必要が
生ずる。これに対し、本発明方法でどのような大
面積表示装置でも永続的に書換え操作を継続でき
る利点がある。[Table] The electrode substrate used in the present invention must have liquid crystal molecules in contact with the electrode surface vertically aligned at least in the vicinity of the surface. In order to impart such properties to the electrode surface, amines having a straight-chain alkyl group, silanes having a straight-chain alkyl group, polydimethylsiloxane or some of its methyl groups are substituted with phenyl groups, etc. An example of this is application of a silicone-based vertical alignment treatment agent, but the present invention is not limited to this, and any vertical alignment treatment such as an inorganic coating such as silicon oxide is also possible. In addition, as an application, by sandwiching the liquid crystal display device formed in this way between a pair of polarizing plates, or using a retardation plate between them, or using a polarizing plate on the front side and a retardation plate and a reflection plate on the back side, Color contrast can also be performed by utilizing different birefringence states in the scattering part and the transmitting part. As described above, according to the present invention, a storage XY matrix type liquid crystal display is produced by utilizing the difference in response characteristics to applied voltage of various liquid crystal states used for display, especially the difference in relaxation time accompanying state changes. A preferred method for performing a partial rewrite of a device is provided. The inventor of the present invention also developed another method for partially rewriting a storage XY matrix type liquid crystal display device by utilizing the difference in relaxation time accompanying various state changes of p-type cholesteric liquid crystal. A separate patent application has been filed (patent application (1) on the same day). However, in this method, when a working electrode or a scanning electrode is selected among the rewriting electrodes, a voltage V is continuously applied to the non-rewriting electrode during a series of rewriting operations. In the area matrix display device, it is necessary to interrupt the rewriting operation in the middle. In contrast, the method of the present invention has the advantage that rewriting operations can be continued permanently on any large-area display device.
第1図は本発明法を適用する記憶マトリクス型
液晶表示装置の例を概念的に示す断面図、第2図
はp型コレステリツク液晶の光透過率―電圧曲
線、第3図〜第11図は表示装置の表示マトリク
ス一例の概念的平面図であり、第3図は電極およ
び単位表示部の配置図、第4図a,bはそれぞれ
本発明法による部分的書換の前後の表示状態図で
ある。第5図a〜第11図aはいずれも、各電極
への電位分布ならびに各表示部への電圧分布を示
す図であり、第5図b〜第11図bは、対応する
表示状態図、第5図c〜第11図cは対応する各
表示部での液晶の存在状態を示す図である。
1…電極基板、2…p型コレステリツク液晶、
1X,1Y…それぞれX―電極列およびY―電極
列を形成する透明電極、3…電源、S…基底状
態、F…フオーカルコニツク状態、H…ホメオト
ロピツク状態、H′…準ホメオトロピツク状態、
F′…準フオーカルコニツク状態、G′…グランジエ
ン状態、VL…S→F状態変化のしきい値電圧、
VH′…H′→F状態変化のしきい値電圧、VH…F
→H状態変化のしきい値電圧、V…ホメオトロピ
ツク状態とフオーカルコニツク状態が共に安定な
いし準安定に存在し得る電圧又はこれに相当する
電位。
FIG. 1 is a cross-sectional view conceptually showing an example of a memory matrix type liquid crystal display device to which the method of the present invention is applied, FIG. 2 is a light transmittance-voltage curve of p-type cholesteric liquid crystal, and FIGS. 3 to 11 are 3 is a conceptual plan view of an example of a display matrix of a display device, FIG. 3 is a layout diagram of electrodes and unit display parts, and FIGS. 4a and 4b are diagrams of display states before and after partial rewriting according to the method of the present invention, respectively. . 5a to 11a are diagrams showing the potential distribution to each electrode and the voltage distribution to each display section, and FIGS. 5b to 11b are diagrams showing the corresponding display state, FIG. 5c to FIG. 11c are diagrams showing the presence state of liquid crystal in each corresponding display section. 1... Electrode substrate, 2... P-type cholesteric liquid crystal,
1X, 1Y...Transparent electrodes forming X-electrode array and Y-electrode array, respectively, 3...Power supply, S...Ground state, F...Focalconic state, H...Homeotropic state, H'...Quasi homeotropic state,
F'...quasi-focalconic state, G'...grangene state, V L ...threshold voltage of S→F state change,
V H ′…H′→F Threshold voltage for state change, V H …F
→Threshold voltage for H state change, V...Voltage at which both the homeotropic state and the focal conic state can exist stably or metastablely, or a potential equivalent thereto.
Claims (1)
とY―電極列とをそれぞれ表面に有する一対の垂
直配向処理した電極基板を、X―電極列とY―電
極列とが交叉するように対向させ、該一対の電極
基板間に正の誘電異方性を有するネマチツク液晶
と旋光性物質を含む混合液晶を挾持させてなり、
該X―およびY―電極列の電極交叉部を単位表示
部とする記憶X―Yマトリクス型液晶表示装置
を、まず基底状態の液晶からなる透明表示部とフ
オーカルコニツク状態の液晶からなる光散乱部と
で形成される低電圧表示状態におき、次いで下記
の段階を含む操作を行うことによりX―電極列に
含まれる帯状電極群の一部の帯状電極に対応する
表示を書き換えることを特徴とする、記憶型液晶
表示装置の部分的書換方法。 (イ) 前記フオーカルコニツク状態の液晶をホメオ
トロピツク状態に移行させるに充分な電圧をX
―電極列中の書換電極とY―電極列中の対向電
極との間に印加し、X―電極列中の非書換電極
には対向電極とほぼ同電位を印加して、前記書
換電極に接する表示部の液晶を選択的にホメオ
トロピツク状態にして消去する段階、 (ロ) 前記X―電極列中の書換電極の少くとも一部
を書込電極と定め、Y―電気列中の少くとも一
電極を走査電極と定めて、各電極を以下の電圧
関係に保持する段階、 a X―電極列中の非書換電極とY―電極列中
の非走査電極とをほぼ同電位とする、 b 走査電極には、フオーカルコニツク状態の
液晶とホメオトロピツク状態の液晶とがとも
に安定ないしは準安定に存在し得る電圧Vに
相当する電位を設定する、 c 書換電極中の、書込電極には走査電極とほ
ぼ同電位を、非書込電極には走査電極と同じ
大きさの逆電位をそれぞれ設定する、 上記a,b,cの関係は、前記書込電極と走
査電極とで挟持される被書込表示部に液晶のグ
ランジエン状態が形成されるに充分な時間で且
つ液晶が電圧Vの印加により基底状態からフオ
ーカルコニツク状態に相転移するに要する時間
以内だけ保持する。 (ハ) 前記走査電極を零電位とし、前記被書込表示
部の液晶に電圧Vを印加して液晶がフオーカル
コニツク状態へ転移するに充分な時間保持する
段階。 2 X―電極列中の書換電極から前記書込電極と
同一又は異なる新たな書込電極を定め、且つY―
電極列中の前記走査電極と異なる電極を新たな走
査電極と定め、前記段階(ロ)を繰り返し、このよう
にY電極列を走査してX―電極列中の書換電極と
接触する液晶表示部に順次に書込操作を行う、特
許請求の範囲第1項に記載の記憶型液晶表示装置
の部分的書換方法。 3 前記(ハ)の段階の後にX―電極列とY―電極列
の電極間を同電位にして、記憶画像とする段階を
含む、特許請求の範囲第1項または第2項に記載
の記憶型液晶表示装置の部分的書換方法。[Claims] 1. A pair of vertically aligned electrode substrates each having an X-electrode array and a Y-electrode array on their surfaces, each consisting of a plurality of spaced apart strip-shaped electrodes. a mixed liquid crystal containing a nematic liquid crystal having positive dielectric anisotropy and an optically active substance is sandwiched between the pair of electrode substrates so that the electrodes intersect,
A storage XY matrix type liquid crystal display device in which the electrode intersections of the X- and Y-electrode arrays are used as unit display parts is first constructed using a transparent display part made of liquid crystal in a ground state and a light scattering part made of liquid crystal in a focal conic state. and a low voltage display state formed by the X-electrode array, and then performs operations including the following steps to rewrite the display corresponding to a part of the strip electrodes of the strip electrode group included in the X-electrode array. A method for partially rewriting a memory type liquid crystal display device. (b) Applying a voltage X sufficient to shift the focal conic state liquid crystal to a homeotropic state.
- Applied between the rewriting electrode in the electrode row and the counter electrode in the Y-electrode row, and approximately the same potential as the counter electrode is applied to the non-rewriting electrode in the X-electrode row so that it is in contact with the rewriting electrode. (b) determining at least a part of the rewriting electrodes in the X-electrode array as write electrodes, and at least one electrode in the Y-electrode array; are defined as scanning electrodes, and each electrode is held in the following voltage relationship: a. The non-writing electrode in the X-electrode row and the non-scanning electrode in the Y-electrode row are held at approximately the same potential; b. The scanning electrode In this case, a potential corresponding to a voltage V at which both the focal conic state liquid crystal and the homeotropic state liquid crystal can exist stably or metastablely is set. The same potential is set for the non-writing electrode, and an opposite potential of the same magnitude as that of the scanning electrode is set for the non-writing electrode. The liquid crystal is held for a sufficient period of time to form a graminian state in the liquid crystal, and for a period of time required for the liquid crystal to undergo a phase transition from the ground state to the focal conic state by application of the voltage V. (c) Setting the scanning electrode to zero potential, applying a voltage V to the liquid crystal of the written display area, and maintaining the voltage for a time sufficient for the liquid crystal to transition to a focal conic state. 2. Determine a new write electrode that is the same as or different from the write electrode from the rewrite electrodes in the X-electrode row, and
An electrode different from the scanning electrode in the electrode array is set as a new scanning electrode, and the step (b) is repeated, and the Y electrode array is scanned in this way to contact the rewriting electrode in the X-electrode array. 2. A partial rewriting method for a storage type liquid crystal display device according to claim 1, wherein a writing operation is sequentially performed on a memory type liquid crystal display device. 3. The memory according to claim 1 or 2, which includes a step of setting the electrodes of the X-electrode array and the Y-electrode array at the same potential after the step (c) to create a stored image. A method for partially rewriting a type liquid crystal display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10800580A JPS5732493A (en) | 1980-08-06 | 1980-08-06 | Method of partly rewriting memory type liquid crystal display unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10800580A JPS5732493A (en) | 1980-08-06 | 1980-08-06 | Method of partly rewriting memory type liquid crystal display unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5732493A JPS5732493A (en) | 1982-02-22 |
JPS631593B2 true JPS631593B2 (en) | 1988-01-13 |
Family
ID=14473562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10800580A Granted JPS5732493A (en) | 1980-08-06 | 1980-08-06 | Method of partly rewriting memory type liquid crystal display unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5732493A (en) |
-
1980
- 1980-08-06 JP JP10800580A patent/JPS5732493A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5732493A (en) | 1982-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6186732A (en) | Liquid crystal element for time division drive | |
Sikharulidze | Nanoparticles: an approach to controlling an electro-optical behavior of nematic liquid crystals | |
JPS60156046A (en) | Driving method of optical modulating element | |
JP2008545161A (en) | Driving method of liquid crystal display element | |
JPH0623818B2 (en) | Liquid crystal bistable storage | |
JP2002357851A (en) | Liquid crystal display device | |
JPH0453405B2 (en) | ||
JPS6243167B2 (en) | ||
JP2006065330A (en) | Optically compensated bend (ocb) mode liquid crystal display and method for driving the same | |
US5278684A (en) | Parallel aligned chiral nematic liquid crystal display element | |
US6744418B2 (en) | Cholesteric liquid crystal display | |
JPS631592B2 (en) | ||
JPS631593B2 (en) | ||
JP5620493B2 (en) | Rapid migration of large area cholesteric displays | |
JP2006085097A (en) | Method for driving electrophoretic display device | |
JPS63244021A (en) | Driving device | |
JPH0578803B2 (en) | ||
JPS63316024A (en) | Optical modulating element | |
JP2760354B2 (en) | LCD driving method | |
JPH06194625A (en) | Driving method for ferroelectric liquid crystal display element | |
JPH0792562B2 (en) | Driving method for liquid crystal display device | |
JP2002014325A (en) | Method for driving memory cholesteric liquid crystal display device | |
JPH0799415B2 (en) | Liquid crystal device | |
JPS62239127A (en) | Optical modulating element | |
JPS6360428A (en) | Driving method for optical modulating element |