JPS63159271A - Manufacture of ceramic foam - Google Patents

Manufacture of ceramic foam

Info

Publication number
JPS63159271A
JPS63159271A JP30753486A JP30753486A JPS63159271A JP S63159271 A JPS63159271 A JP S63159271A JP 30753486 A JP30753486 A JP 30753486A JP 30753486 A JP30753486 A JP 30753486A JP S63159271 A JPS63159271 A JP S63159271A
Authority
JP
Japan
Prior art keywords
powder
foam
ceramic
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30753486A
Other languages
Japanese (ja)
Other versions
JP2551421B2 (en
Inventor
正佳 臼井
米持 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP61307534A priority Critical patent/JP2551421B2/en
Publication of JPS63159271A publication Critical patent/JPS63159271A/en
Application granted granted Critical
Publication of JP2551421B2 publication Critical patent/JP2551421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、広範囲の温度領域で使用し得、耐熱性・断熱
性にすぐれ、軽量かつ高強度のセラミック発泡体を、一
定成分で任意の形状に容易に安価に製造し得るセラミッ
ク発泡体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a ceramic foam that can be used in a wide temperature range, has excellent heat resistance and insulation properties, is lightweight and has high strength. The present invention relates to a method of manufacturing a ceramic foam that can be easily manufactured into a shape at a low cost.

U従来の技術及び問題点1 従来からセラミック発泡体は、電気絶縁材、熱交換器用
蓄熱材などに使用されており、通常、発泡頁岩、発泡粘
土、天然ガラスなどのような天然産の原料を使用し、こ
れら原料に含有する結晶水やガス類などが、これら原料
を軟化温度乃至溶融温度付近において放出されることに
よっておこす発泡現象を利用して、これら原料を単味も
しくは他のセラミック材料との混合体として製造されて
いる。しかしながら、このような発泡原料は、天然産で
あるために、一定成分のものを得ることが困難であり、
製品の特性にバラツキが多くなり、したがってその利用
範囲が狭いものとなるという問題がある。
U Conventional technology and problems 1 Ceramic foams have traditionally been used as electrical insulation materials, heat storage materials for heat exchangers, etc., and are usually made from natural raw materials such as expanded shale, expanded clay, and natural glass. By utilizing the foaming phenomenon that occurs when the crystal water and gases contained in these raw materials are released at a temperature near the softening or melting temperature of these raw materials, these raw materials can be used alone or with other ceramic materials. It is manufactured as a mixture of However, since such foaming raw materials are naturally produced, it is difficult to obtain them with constant ingredients.
There is a problem in that the characteristics of the product vary widely, and therefore the range of its use becomes narrow.

このために、工業的に精製された発泡剤をセラミック材
に混合して高温度に焼成してセラミック発泡体を製造す
る方法も提案されている。
For this purpose, a method has been proposed in which a ceramic foam is manufactured by mixing an industrially refined foaming agent with a ceramic material and firing the mixture at a high temperature.

しかしながら、これらの製造方法は、いずれも1000
℃以上の温度において焼成して発泡させるものであり、
消費エネルギーが大となり、製造費も嵩み、カリ、均一
な一定成分の製品が得難いなどといった問題がある。
However, all of these manufacturing methods require 1000
It is fired and foamed at a temperature of ℃ or higher,
There are problems such as high energy consumption, high production costs, and difficulty in obtaining products with uniform and constant ingredients.

又、水ガラス系アルカリケイ酸塩の水溶液と金属粉末と
の反応によって発泡させる製造方法が最近いくつか提案
されている。この方法は、1000℃以下の温度で熱処
理する方法であるから、省エネルギー的には好ましい方
法であるが、しかしながら、得られた発泡体には、かな
り多量のアルカリ成分が含有されているものであり、耐
熱性や化学安定性などに問題が残されている方法である
In addition, several manufacturing methods have recently been proposed in which foaming is caused by a reaction between an aqueous solution of a water glass-based alkali silicate and metal powder. This method is a method of heat treatment at a temperature of 1000°C or less, so it is a preferable method from an energy-saving perspective. However, the resulting foam contains a fairly large amount of alkaline components. However, this method still has problems with heat resistance, chemical stability, etc.

[問題点を解決するための手段] 本発明者らは、これら前記の問題点を解決し、耐熱性・
断熱性にすぐれ、軽量かつ高強度のセラミック発泡体を
、一定成分で任意形状に容易に安価に製造し得る方法を
得べく研究を重ね、セラミック粉末と金属粉末との混合
物にリン酸を加えて発泡させ乾燥固化させ熱処理するこ
とにより、さらに、発泡処理後、濃クロム酸水溶液を含
浸させて熱処理することによって目的を達し得ることを
見出して本発明を完成するに至った。すなわち、本発明
の第1の発明は、セラミック粉末と少量の金属粉末との
混合物にリン酸を加えて糊状乃至泥漿状にし、これを型
に充填して発泡させた後、乾燥固化し、熱処理をするセ
ラミック発泡体の製造方法であり、第2の発明は、セラ
ミック粉末と少量の金属粉末との混合物にリン酸を加え
て糊状乃至泥漿状にし、これを型に充填して発泡させた
後、200〜300℃で乾燥して発泡体を形成する工程
と、前記発泡体に濃クロム酸水溶液を含浸させた後、熱
処理して発泡体を強化する工程とからなるセラミック発
泡体の製造方法である。
[Means for Solving the Problems] The present inventors have solved the above-mentioned problems and have developed heat resistant and
We conducted extensive research to find a method to easily and inexpensively manufacture lightweight, high-strength ceramic foam with excellent heat insulation properties in arbitrary shapes using fixed ingredients, and by adding phosphoric acid to a mixture of ceramic powder and metal powder. The present inventors have completed the present invention by discovering that the object can be achieved by foaming, drying, solidifying, and heat-treating, and further, after foaming, by impregnating with a concentrated chromic acid aqueous solution and heat-treating. That is, the first aspect of the present invention is to add phosphoric acid to a mixture of ceramic powder and a small amount of metal powder to form a paste or slurry, fill it into a mold, foam it, and then dry and solidify it. The second invention is a method for producing a ceramic foam that undergoes heat treatment, and the second invention is to add phosphoric acid to a mixture of ceramic powder and a small amount of metal powder to form a paste or slurry, and then fill the mixture into a mold and foam it. and drying at 200 to 300°C to form a foam; and after impregnating the foam with a concentrated chromic acid aqueous solution, the foam is strengthened by heat treatment. It's a method.

本発明において使用するセラミック粉末としては、天然
産鉱物から合成品までの広い範囲の原料を使用目的に応
じて使用することができる。すなわち、たとえば、シリ
カ類、粘土鉱物類、シリマナイト、輝石、ホルステライ
トなどのケイ酸塩類、アルミナ、ムライト、コープイラ
イト、ジルコニア、ジルコン、スピネル、クロミア、炭
化ゲイ素、窒化ゲイ素やこれらの混合物などがあげられ
、とくに限定されるものではない。又、セラミック粉末
の粒度についてもとくに制限されないが、通常、44μ
m以下の粉末とし、粒度の分布幅(粒子サイズの範囲〉
を狭く抑えることが、製造時に生成する気泡の大きさや
その分布を一様にするために好ましい。さらに、粉末と
して短繊維を一部混ぜて使用することもできる。
As the ceramic powder used in the present invention, a wide range of raw materials from naturally occurring minerals to synthetic products can be used depending on the purpose of use. That is, for example, silicas, clay minerals, silicates such as sillimanite, pyroxene, and holsterite, alumina, mullite, copillite, zirconia, zircon, spinel, chromia, silicon carbide, silicon nitride, and mixtures thereof. Examples include, but are not particularly limited to. Furthermore, the particle size of the ceramic powder is not particularly limited, but is usually 44μ.
m or less powder, and particle size distribution width (particle size range)
It is preferable to keep the value narrow in order to uniformize the size and distribution of bubbles generated during manufacturing. Furthermore, it is also possible to use a powder mixed with some short fibers.

金属粉末としては、アルミニウム、鉄、マンガン、亜鉛
及びこれらの任意の混合物、さらに、これらを主成分と
する金属間化合物を含む合金類などがあげられ、これら
の一種以上を用いるものである。その粉末の粒度は、と
くに制約されるものではないが、15μm以下とするこ
とが好ましい。
Examples of the metal powder include aluminum, iron, manganese, zinc, arbitrary mixtures thereof, and alloys containing intermetallic compounds having these as main components, and one or more of these may be used. Although the particle size of the powder is not particularly limited, it is preferably 15 μm or less.

しかして、この金属粉末は、前記のセラミック粉末に少
量添加混合され、常温において後述のように添加される
リン酸と反応して水素ガスを発生するための発泡剤とな
るものであり、又、この反応によって生成した添加金属
のリン酸塩の水溶液が乾燥及び熱処理によってセラミッ
ク粉末と結合してセラミック粉末相互を強固に結合して
強固なセラミック発泡体を形成するものである。
Therefore, this metal powder is added and mixed in a small amount to the above-mentioned ceramic powder, and becomes a foaming agent for reacting with phosphoric acid added as described below at room temperature to generate hydrogen gas, and The aqueous solution of phosphate of the added metal produced by this reaction is combined with the ceramic powder by drying and heat treatment, thereby firmly binding the ceramic powders together to form a strong ceramic foam.

リン酸水溶液としては、濃度が24〜28%t+3po
As a phosphoric acid aqueous solution, the concentration is 24-28%t+3po
.

(比重1,14〜1.17)が適当であり、前記の発泡
反応及びセラミック粉末の結合を強化するものであり、
リン酸水溶液は、糊状乃至泥漿にしたとき適度の粘度と
なり、かつ、熱処理されたとき発泡体の強固な結合ボン
ドとなるようにその濃度及び量を実験的に決定する。
(specific gravity 1.14 to 1.17) is suitable, and strengthens the foaming reaction and the bonding of the ceramic powder,
The concentration and amount of the phosphoric acid aqueous solution are determined experimentally so that it will have an appropriate viscosity when formed into a paste or slurry, and will form a strong bond for the foam when heat treated.

本発明の第2の発明方法において使用するセラミック粉
末、金属粉末及びリン酸水溶液などは、前記と全く同一
仕様の材料を用いるものである。
The ceramic powder, metal powder, phosphoric acid aqueous solution, etc. used in the second method of the present invention have exactly the same specifications as those described above.

第2の発明方法において使用する濃クロム酸水溶液は、
三酸化クロム(Cr(1,)100重量部を水75重量
部に溶解し、少量の水で薄めて比重1.4以上、好まし
くは、1.45〜1.6に調節したものを使用する。瀧
クロム酸水溶液は、発泡体の強化に用いるものであって
、比重1.4以下の溶液を用いることもできるが、濃ク
ロム酸水溶液の含浸及び加熱によるセラミックスの結合
の強化には、その処理凹数を多く反復して行なうことが
必要であって不都合であるので比重1.4以上であるこ
とが好ましい。
The concentrated chromic acid aqueous solution used in the second invention method is
Dissolve 100 parts by weight of chromium trioxide (Cr(1,) in 75 parts by weight of water, dilute with a small amount of water, and adjust the specific gravity to 1.4 or more, preferably 1.45 to 1.6.) .Taki Chromic acid aqueous solution is used to strengthen the foam, and a solution with a specific gravity of 1.4 or less can also be used. It is preferable that the specific gravity is 1.4 or more, since it is necessary to repeat the treatment with a large number of depressions, which is inconvenient.

次に、これらの諸材料を使用する本発明の第1の方法は
、先ず、セラミック粉末100重量部に対して金属粉末
3〜10重量部を添加して乾式又は湿式でよく混合した
混合物を調整する。この混合を湿式で行なう場合には、
金属粉末が酸化されないように非酸化性溶液たとえばア
ルコール類やミネラルスピリットなどを用いて混合し、
混合終了後これら溶液を除去するようにすることが好ま
しい。
Next, the first method of the present invention using these materials is to first add 3 to 10 parts by weight of metal powder to 100 parts by weight of ceramic powder and prepare a well-mixed mixture by dry or wet method. do. If this mixing is done wet,
Mix the metal powder with a non-oxidizing solution such as alcohol or mineral spirits to prevent it from oxidizing.
It is preferable to remove these solutions after the mixing is completed.

ついで、粉末混合物100重量部に対してリン酸を6〜
14重量部加えて混和して糊状乃至泥漿状として任意形
状の成形型に充填し、常温において発泡させ、100℃
前後で乾燥−固化させた後に離型する。発泡−乾燥−固
化に要する時間は、使用する型の大きさその他の条件に
よって異なるが十分に発泡−乾燥−固化させることが好
ましい。
Then, 6 to 6 parts of phosphoric acid was added to 100 parts by weight of the powder mixture.
Add 14 parts by weight, mix, fill in a mold of any shape as a paste or slurry, foam at room temperature, and heat to 100°C.
After drying and solidifying before and after, the mold is released. The time required for foaming, drying, and solidification varies depending on the size of the mold used and other conditions, but it is preferable to sufficiently foam, dry, and solidify.

ついで、熱処理を行なって製品のセラミック発泡体が得
られる。この熱処理の雰囲気や加熱速度などは特に制限
されないが、通常、酸化乃至中性雰囲気において、昇温
速度4〜b あげ700℃以上、好ましくは、750〜850℃に3
0〜60分間焼成するものである。この熱処理によって
、熱的に安定な金属のリン酸塩によって強固に結合され
たセラミック発泡体を製造できる。
A heat treatment is then carried out to obtain a ceramic foam product. The atmosphere and heating rate of this heat treatment are not particularly limited, but usually, in an oxidizing or neutral atmosphere, the heating rate is 4 to 700°C or higher, preferably 750 to 850°C.
It is fired for 0 to 60 minutes. This heat treatment allows the production of ceramic foams that are strongly bonded by thermally stable metal phosphates.

本発明の第2の発明方法は、前述のように2工程からな
り、第1工程のセラミック粉末と金属粉末との混合物の
調製−リン酸添加−糊状乃至泥漿状物の調製−成形型へ
の充填−発泡−100℃前後での乾燥・固化−離型など
の操作及びその条件は、第1の発明方法と全く同様であ
る。次に、離型後、さらに、200〜300℃において
30〜60分間乾燥処理を行なう。この乾燥温度が20
0℃以下では、次の工程において発泡体を濃クロム酸処
理したときに、濃クロム酸と反応して崩壊する場合があ
るので不都合であり、300℃以上の加熱は、セラミッ
クの結合がクロム酸から変換してなる酸化クロム(Cr
203)によって強化されるので無用である。
As mentioned above, the second method of the present invention consists of two steps: preparation of a mixture of ceramic powder and metal powder in the first step - addition of phosphoric acid - preparation of a paste-like or slurry-like material - transfer to a mold. The operations and conditions such as filling, foaming, drying and solidifying at around 100° C., and mold release are exactly the same as in the first invention method. Next, after releasing the mold, a drying process is further performed at 200 to 300°C for 30 to 60 minutes. This drying temperature is 20
If the temperature is below 0°C, it is inconvenient that when the foam is treated with concentrated chromic acid in the next step, it may react with the concentrated chromic acid and collapse.Heating above 300°C is disadvantageous because the ceramic bonds may be damaged by the chromic acid. Chromium oxide (Cr
203), so it is useless.

次に、第2工程は、前工程で形成した発泡固化体に、濃
クロム酸水溶液を含浸させる。含浸は、濃クロム酸水溶
液中に発泡固化体を浸漬するか、スプレー法などによっ
て注ぎかけるなど適宜の方法で行ない、発泡固化体の気
孔中に詰った余分の濃クロム酸水溶液をたとえば遠心分
離器を用いて除去し、これを50〜70°Cで十分に乾
燥する。
Next, in the second step, the foamed solidified body formed in the previous step is impregnated with a concentrated chromic acid aqueous solution. Impregnation is performed by an appropriate method such as immersing the foamed solidified material in a concentrated chromic acid aqueous solution or pouring it on by spraying, etc., and removes the excess concentrated chromic acid aqueous solution stuck in the pores of the foamed solidified material using a centrifugal separator, for example. and thoroughly dry this at 50 to 70°C.

ついで、500℃以上で熱処理を行なうが、雰囲気は制
限されない。
Next, heat treatment is performed at 500° C. or higher, but the atmosphere is not limited.

なお、高強度のセラミック発泡体を得るためには、前記
の濃クロム酸水溶液による含浸及び熱処理をさらに2〜
4回反復して行なうことが好ましく、これによって非常
に強度の大きいセラミック発泡体を製造することができ
る。
In addition, in order to obtain a high-strength ceramic foam, the impregnation with the concentrated chromic acid aqueous solution and heat treatment are further repeated for 2 to 30 minutes.
Preferably, four repetitions are carried out, which makes it possible to produce a very strong ceramic foam.

[発明の効果] 本発明は、セラミック粉末と金属粉末とを混合しリン酸
を添加して常温で発泡させ熱処理するものであり(第1
の発明)、発泡後に乾燥して濃クロム酸水溶液を含浸さ
せて熱処理するものく第2の発明)であるから、金属粉
末とリン酸との反応によって発泡させ得、同時にこの反
応によって生成した金属のリン酸塩の熱処理によるセラ
ミックスの強固な結合ボンドとなし得、さらに第2の発
明では、金属のリン酸塩による結合に加えクロム酸から
変換してなる酸化クロムの結合作用との相乗効果によっ
て一段と高強度なセラミック発泡体を製造し得、又、原
料のセラミック粉末はとくに制限されず使用目的に応じ
た特性の材質のものを選択し得、広い温度範囲での軽量
かつ断熱性のすぐれた電気絶縁材、抵抗材、熱交換器用
蓄熱材、ろ過材その他店範囲の工業材料として使用し得
る。
[Effects of the Invention] The present invention mixes ceramic powder and metal powder, adds phosphoric acid, foams at room temperature, and heat-treats the mixture (first step).
(2nd invention), after foaming, it is dried and then impregnated with a concentrated chromic acid aqueous solution and heat treated (2nd invention), so it is possible to foam by the reaction of the metal powder and phosphoric acid, and at the same time, the metal produced by this reaction can be foamed. A strong bond of ceramics can be achieved by heat treatment of the phosphate, and further, in the second invention, due to the synergistic effect of the bonding by the metal phosphate and the bonding action of chromium oxide converted from chromic acid. It is possible to manufacture ceramic foams with even higher strength, and there are no particular restrictions on the raw material ceramic powder, and materials with characteristics depending on the purpose of use can be selected. It can be used as electrical insulation materials, resistance materials, heat storage materials for heat exchangers, filtration materials, and other industrial materials.

さらに、常温で発泡させ乾燥して硬化して離型するので
稚々の型を用いて任意な複雑形状の成形ができ得、熱処
理による膨張・収縮による寸法変化がほとんどないとい
う利点があり、なお、熱処理温度が1000°C以下で
よく、省エネルギー的であり、さらに高度な製造設備が
不要であり、又、工程が簡慴であって、製造費が低置で
あるなど、きわめてすぐれた効果が認められ、セラミッ
ク発泡体の工業的製造方法としてきわめて有利な方法で
ある。
Furthermore, since it is foamed at room temperature, dried, hardened, and released from the mold, it is possible to mold any complex shape using a small mold, and has the advantage that there is almost no dimensional change due to expansion or contraction due to heat treatment. , the heat treatment temperature can be lower than 1000°C, it is energy saving, does not require sophisticated manufacturing equipment, the process is simple and the manufacturing cost is low, and it has extremely excellent effects. This is recognized as an extremely advantageous method for industrially producing ceramic foams.

[実施例1 次に、本発明の実施例を述べる。[Example 1 Next, examples of the present invention will be described.

実施例1 アルミナ粉末(α−A1203、粒度範囲5〜20μm
)100重量部にアルミニウム粉末(粒度15μm以下
)5重量部とエタノールを加えボールミルを用いて6時
間子分に混合した後、120℃で40分間乾燥しな。こ
の乾燥粉末100重量部にリン酸水溶液(27%H3P
0. )8.5重量部を加えて混練して糊状とし、これ
を紙を内張すした金型に充填して常温で数分間発泡させ
、85℃で60分間乾燥して発泡固化体を形成した。次
に、この発泡固化体を離型後、電気炉を用いて昇温速度
5.5℃/分で温度をあげて850℃において30分間
加熱処理してセラミック発泡体を製造した。
Example 1 Alumina powder (α-A1203, particle size range 5-20 μm
) 5 parts by weight of aluminum powder (particle size 15 μm or less) and ethanol were added to 100 parts by weight, mixed with the particles using a ball mill for 6 hours, and then dried at 120° C. for 40 minutes. To 100 parts by weight of this dry powder was added a phosphoric acid aqueous solution (27% H3P).
0. ) 8.5 parts by weight was added and kneaded to form a paste, which was then filled into a paper-lined mold and foamed for several minutes at room temperature, and dried at 85°C for 60 minutes to form a foamed solidified product. did. Next, after releasing this foamed solidified body from the mold, the temperature was increased using an electric furnace at a heating rate of 5.5°C/min, and heat treatment was performed at 850°C for 30 minutes to produce a ceramic foamed body.

得られた製品セラミック発泡体は、比較的均一な気孔が
形成されていることが認められ、外径寸法より計算した
容積に対する乾燥重量としてのカサ密度は、0.54 
g /cx”、アムスラー型耐圧試験機によって測定し
た圧縮強さは、31 kg/cd、JTSA−1412
平板比較法によって測定した熱伝導率は、0.075K
cal 7m −h −’Cであった。
It was observed that relatively uniform pores were formed in the obtained product ceramic foam, and the bulk density as a dry weight relative to the volume calculated from the outer diameter was 0.54.
g/cx”, compressive strength measured by Amsler pressure tester is 31 kg/cd, JTSA-1412
Thermal conductivity measured by the flat plate comparison method is 0.075K
cal 7m-h-'C.

実施例2 コープイライト粉末(合成2M(Jo ・2^1203
・5Si095%以上含有、粒度40μm以下)100
重量部、アルミニウム粉末(15μm以下)3重量部及
び亜鉛粉末(15μm以下)4重量部を実施例1と同様
にして混合粉末とし、これにリン酸水溶液(27%+1
3PO4) 12重量部を加えかきまぜて泥漿状とし、
これを実施例1と同様にして発泡−乾燥及び熱処理を行
なってセラミック発泡体を製造した。
Example 2 Copeillite powder (Synthetic 2M (Jo 2^1203
・Contains 5Si095% or more, particle size 40μm or less) 100
3 parts by weight of aluminum powder (15 μm or less) and 4 parts by weight of zinc powder (15 μm or less) were prepared in the same manner as in Example 1, and a phosphoric acid aqueous solution (27%+1
3PO4) Add 12 parts by weight and stir to form a slurry.
This was foamed, dried and heat treated in the same manner as in Example 1 to produce a ceramic foam.

得られた製品について実施例1と同様にして諸試験を行
なった。その結果は、カサ密度は、0.38g/csn
” 、圧縮強さ27kg/i、熱伝導率0.0068K
al 7m  −h −℃であった。
Various tests were conducted on the obtained product in the same manner as in Example 1. As a result, the bulk density is 0.38g/csn
”, compressive strength 27kg/i, thermal conductivity 0.0068K
al 7m −h −°C.

実施例3 粘土質シャモット粉末(粒度40μm以下)100重量
部、鉄粉末(炭素鋼質15.czm以下)10重量部、
リン酸水溶液(27%H3P0. ’) 8重量部を用
いて実施例1と同様に処理して泥漿状とし、発泡−乾燥
−熱処理を行なってセラミック発泡体を製造した。
Example 3 Clay chamotte powder (particle size 40 μm or less) 100 parts by weight, iron powder (carbon steel 15.czm or less) 10 parts by weight,
Using 8 parts by weight of an aqueous phosphoric acid solution (27% H3P0.'), the mixture was treated in the same manner as in Example 1 to form a slurry, and subjected to foaming-drying-heat treatment to produce a ceramic foam.

得られた製品について実施例1と同様にして諸試験を行
なった。その結果は、カサ密度0.43 g /13、
圧縮強さ36kg/cJ、熱伝導率0.088Kal/
m・h ・℃であった。
Various tests were conducted on the obtained product in the same manner as in Example 1. The results were that the bulk density was 0.43 g/13,
Compressive strength 36kg/cJ, thermal conductivity 0.088Kal/
It was m・h・℃.

実施例4 アルミナ粉末(α−A1203.5〜20μm)70重
量部、天然産シリカ粉末(非晶質、20μm以下)30
重量部に、マンガン粉末(15μm以下)7重量部を用
いて実施例1と同様にして混合粉末にし、これにリン酸
水溶液(27%t13PO,> 7重量部を混ぜ合せて
、実施例1と同様にして型内で発泡させ、約80℃にお
いて60分間乾燥し、脱型した後、さらに、250℃で
40分間乾燥して発泡固化体を形成した。次に、この発
泡固化体を、三酸化クロム(Cry、> 100重量部
を水100重量部に溶解した濃クロム酸水溶液(H2C
rO4、比重的1.5)に浸漬して、発泡固化体の空孔
部に溶液を含浸させ、ついで、遠心分離器を用いて空孔
内に詰っている余分の溶液を除去し、これを約65℃で
約1時間乾燥した後、電気炉を用い昇温速度6℃/分で
温度をあげ、550℃において30分間熱処理を行ない
、さらに、前記の濃クロム酸水溶液処理及び熱処理を前
記と同様にして2回繰り返して行なって製品セラミック
発泡体を製造しな。
Example 4 70 parts by weight of alumina powder (α-A120 3.5 to 20 μm), 30 parts by weight of naturally produced silica powder (amorphous, 20 μm or less)
A mixed powder was prepared in the same manner as in Example 1 using 7 parts by weight of manganese powder (15 μm or less), and an aqueous phosphoric acid solution (27% t13PO, > 7 parts by weight) was mixed with this to form a mixed powder as in Example 1. Similarly, foaming was performed in the mold, dried at about 80°C for 60 minutes, removed from the mold, and further dried at 250°C for 40 minutes to form a foamed solidified product.Next, this foamed solidified product was Concentrated aqueous chromic acid solution (H2C
rO4, specific gravity 1.5) to impregnate the pores of the foamed solidified body with the solution, and then use a centrifuge to remove excess solution clogging the pores. After drying at about 65°C for about 1 hour, the temperature was raised using an electric furnace at a heating rate of 6°C/min, and heat treatment was performed at 550°C for 30 minutes, followed by the concentrated chromic acid aqueous solution treatment and heat treatment described above. Repeat the same process twice to produce a finished ceramic foam.

得られた製品について、実施例1と同様にして諸試験を
行なった。その結果は、カサ密度0.78g/個3、圧
縮強さ85kg/clv、熱伝導率0.094Kal/
m−h ・°Cであった。
Various tests were conducted on the obtained product in the same manner as in Example 1. The results were: bulk density 0.78g/piece3, compressive strength 85kg/clv, and thermal conductivity 0.094Kal/3.
It was m−h ·°C.

実施例5 ジルコニア粉末(CaO安定化Z r02、粒度15メ
trn以下)100重量部、アルミニウム粉末(15μ
m以下)4重量部、亜鉛粉末(15μm以下)2重量部
及びマンガン粉末(15μm以下)3重量部、リン酸水
溶液(27%H3P0.)10重量部を用いて、実施例
4と同様にして発泡−乾燥一離型一乾燥の各処理を行な
って発泡固化体を形成し、ついで実施例4と同様にして
、濃クロム酸水溶液(比重上4)の含浸及び熱処理をそ
れぞれ3回繰返し行なって製品セラミック発泡体を製造
しな。
Example 5 100 parts by weight of zirconia powder (CaO stabilized Z r02, particle size 15 m trn or less), aluminum powder (15 μm
In the same manner as in Example 4, using 4 parts by weight of zinc powder (15 μm or less), 3 parts by weight of manganese powder (15 μm or less), and 10 parts by weight of phosphoric acid aqueous solution (27% H3P0.). A foamed solidified product was formed by performing the foaming, drying, mold release, and drying processes, and then impregnation with a concentrated chromic acid aqueous solution (specific gravity: 4) and heat treatment were repeated three times in the same manner as in Example 4. Manufacture products ceramic foam.

得られた製品について、実施例1と同様に諸試験を行な
った。その結果は、カサ密度0.96g/cs3、圧縮
強さ74kg10&、熱伝導率0.052Kal/m 
−h −°Cであった。
Various tests were conducted on the obtained product in the same manner as in Example 1. The results were: bulk density 0.96g/cs3, compressive strength 74kg10&, thermal conductivity 0.052Kal/m
-h -°C.

実施例6 炭化ケイ素粉末(GC−3iC1粒度20μm以下)1
00重量部、アルミニウム粉末(15μm以下)3重量
部、鉄粉末(炭素鋼質、15μm以下)3重量部、及び
リン酸水溶液(27%1I3PO,> 9重量部を用い
て、実施例4と同様にして発泡−乾燥一離型−乾燥の各
処理を行なって発泡固化体を形成し、これを実施例4と
同様にして、濃クロム酸水溶液(比重1.5)の含浸及
び熱処理をそれぞれ3回繰返し行なって製品セラミック
発泡体を製造した。
Example 6 Silicon carbide powder (GC-3iC1 particle size 20 μm or less) 1
Same as Example 4 using 00 parts by weight, 3 parts by weight of aluminum powder (15 μm or less), 3 parts by weight of iron powder (carbon steel, 15 μm or less), and phosphoric acid aqueous solution (27% 1I3PO, >9 parts by weight) A foamed solidified body was formed by performing the following treatments: foaming, drying, mold release, and drying.This was impregnated with a concentrated chromic acid aqueous solution (specific gravity 1.5) and heat treated for 3 times in the same manner as in Example 4. The process was repeated several times to produce a finished ceramic foam.

得られた製品について、実施例1と同様にして諸試験を
行なった。その結果は、カサ密度0.73g/cm” 
、圧縮強さ95kg/J、熱伝導率0.092Kal/
m−h  ・℃であった。
Various tests were conducted on the obtained product in the same manner as in Example 1. The result was a bulk density of 0.73g/cm”
, compressive strength 95kg/J, thermal conductivity 0.092Kal/
It was m−h·℃.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミック粉末と少量の金属粉末との混合物にリ
ン酸を加えて糊状乃至泥漿状にし、これを型に充填して
発泡させた後、乾燥固化し、熱処理することを特徴とす
るセラミック発泡体の製造方法。
(1) A ceramic characterized by adding phosphoric acid to a mixture of ceramic powder and a small amount of metal powder to form a paste or slurry, filling it into a mold, foaming it, drying it, solidifying it, and heat-treating it. Method of manufacturing foam.
(2)セラミック粉末と少量の金属粉末との混合物にリ
ン酸を加えて糊状乃至泥漿状にし、これを型に充填して
発泡させた後、200〜300℃で乾燥して発泡体を形
成する工程と、前記発泡体に濃クロム酸水溶液を含浸さ
せた後、熱処理して発泡体を強化する工程とよりなるこ
とを特徴とするセラミック発泡体の製造方法。
(2) Phosphoric acid is added to a mixture of ceramic powder and a small amount of metal powder to form a paste or slurry, which is filled into a mold and foamed, and then dried at 200-300°C to form a foam. A method for manufacturing a ceramic foam, comprising the steps of: impregnating the foam with a concentrated aqueous chromic acid solution and then heat-treating the foam to strengthen the foam.
JP61307534A 1986-12-23 1986-12-23 Method for manufacturing ceramic foam Expired - Fee Related JP2551421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307534A JP2551421B2 (en) 1986-12-23 1986-12-23 Method for manufacturing ceramic foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307534A JP2551421B2 (en) 1986-12-23 1986-12-23 Method for manufacturing ceramic foam

Publications (2)

Publication Number Publication Date
JPS63159271A true JPS63159271A (en) 1988-07-02
JP2551421B2 JP2551421B2 (en) 1996-11-06

Family

ID=17970248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307534A Expired - Fee Related JP2551421B2 (en) 1986-12-23 1986-12-23 Method for manufacturing ceramic foam

Country Status (1)

Country Link
JP (1) JP2551421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472868B2 (en) 2013-09-25 2016-10-18 Thomas & Betts International Llc Permanent ground point for splicing connectors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128814A (en) * 1974-09-06 1976-03-11 Akira Katayanagi Funenseikeiryozai no seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128814A (en) * 1974-09-06 1976-03-11 Akira Katayanagi Funenseikeiryozai no seizohoho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472868B2 (en) 2013-09-25 2016-10-18 Thomas & Betts International Llc Permanent ground point for splicing connectors

Also Published As

Publication number Publication date
JP2551421B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
EP0016789B1 (en) Novel method of making foundry molds and adhesively bonded composites
US2992930A (en) Low density refractory oxide
US8235092B2 (en) Insulated investment casting mold and method of making
JP6868026B2 (en) Manufacturing method of refractory composite particles and feeder members for the casting industry, equivalent feeder members and use
KR20150006024A (en) Method for producing moulds and cores for metal casting and moulds and cores produced according to this method
JPS6291448A (en) Burnt hollow ceramic sphere
US2914413A (en) Cement composition and method of preparation
CN106238670A (en) Foundry facing and preparation method and application
JP2023002651A (en) Abrasive articles and methods for forming the same
CN104496522A (en) Method for preparing aluminum oxide/mullite foamed ceramic
CN107721448A (en) A kind of preparation method of the mullite porous ceramic rich in whisker structure
JPS63159271A (en) Manufacture of ceramic foam
EP3225327B1 (en) An inorganic binder system for foundries
JPH0262103B2 (en)
CN114956840B (en) High-strength high-micropore mullite refractory material based on coal gangue and preparation method thereof
JPH06135776A (en) Foamed porous ceramic and its production
JPS60161368A (en) Manufacture of high strength calcium phosphate sintered body
JPH0292880A (en) Production of heat resistant and porous acoustical material
JPH0725684A (en) Fine ceramic sintered compact having microvoid and production thereof
JPH06157173A (en) Production of high corrosion resistant refractory material
JPH06219860A (en) Foamed porous ceramics and its production
JPS6140874A (en) Adhesive for ceramic member and bonding method
JP3315370B2 (en) Low melting point metal casting equipment constituent materials
JP3230697B2 (en) Method for manufacturing highly airtight aluminum structure
JPH0388787A (en) Porous refractory material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees