JPS63158971A - Image compression system - Google Patents

Image compression system

Info

Publication number
JPS63158971A
JPS63158971A JP61306815A JP30681586A JPS63158971A JP S63158971 A JPS63158971 A JP S63158971A JP 61306815 A JP61306815 A JP 61306815A JP 30681586 A JP30681586 A JP 30681586A JP S63158971 A JPS63158971 A JP S63158971A
Authority
JP
Japan
Prior art keywords
circuit
color
color difference
signal
luminance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61306815A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yuasa
湯浅 啓義
Akira Yasuda
晃 安田
Yoshihiko Tokunaga
吉彦 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61306815A priority Critical patent/JPS63158971A/en
Publication of JPS63158971A publication Critical patent/JPS63158971A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To compress a color image and to shorten a transmission time, by applying quantization on the predicted remainder of a luminance signal and plural color difference signals. CONSTITUTION:In an image compressing and encoding circuit 10, the compressive encoding of the luminance signal and each of the color difference signals are performed. In such case, at a differential circuit 35, a first-order difference between the lines of the restored value of a preceding line or the predicted value of a present line from a prediction circuit 36 and the sample of the present line, is taken, and the first-order difference is encoded in a line direction by a variable sample density compression circuit 37. At this time, a second difference between the picture elements between a present sample and a preceding sample or the predicted value of the present sample can be obtained, and encoding is performed based on size relation with a quantization level. Therefore, since the directions of the first-order difference between the lines and the second- order difference between the picture elements are set in an orthogonal direction, correlation in a vertical and a horizontal directions can be eliminated.

Description

【発明の詳細な説明】 【技術分野1 本発明は画像情報を狭帯域伝送する画像伝送方式に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to an image transmission method for transmitting image information in a narrow band.

【背景技術] 色情報について国際照明委員会(CIE)の表色系XY
Zは、X:波長”700.Onmの赤、Y二λ=546
.  in−の縁、Z:λ=435. 8n−の青の単
光色となっているが、一般のテレビ受像機で用いられる
N T S C方式の3原色のRGBは波長成分が分布
しており、ピークの波長がおよそR:610nm、G:
540nm、B:470n−である。以下、RGBの3
原色はこのNTSC方式の3原色とする。
[Background technology] Regarding color information, the International Commission on Illumination (CIE) color system XY
Z is,
.. In-edge, Z:λ=435. Although it is a single light color of 8n- blue, the three primary colors RGB of the NTSC system used in general television receivers have wavelength components distributed, and the peak wavelength is approximately R: 610 nm. G:
540 nm, B: 470n-. Below, RGB 3
The primary colors are the three primary colors of this NTSC system.

さてNTSC方式のテレビ放送では、人の視覚の色度差
視力が輝度視力の40%以下で、色度がG−Bの差の色
に対し、輝度差視力の19%に過ぎないというBedf
ordの研究等に基づいて輝度46号(Y)を Y=0.30R+0.59G+0.11B・・・(1)
とし、色差信号(Cn)を C+=(R−Y)/1.14       ・・・(2
)Cz=(B −Y )/ 2 、03       
・・・(3)に変換して、輝度信号を4 M Hzの帯
域のAM変調で伝送し、色差信号を色副搬送波3.57
9454MHz、直角2相変調して、輝度信号の凡そ、
 1/3の帯域に圧縮して伝送している。
Now, in NTSC television broadcasting, the chromaticity difference visual acuity of a person's vision is less than 40% of the luminance visual acuity, and the chromaticity is only 19% of the luminance difference visual acuity for a color with a G-B difference.
Based on research by ord, brightness No. 46 (Y) is determined as Y=0.30R+0.59G+0.11B...(1)
and the color difference signal (Cn) is C+=(RY)/1.14...(2
)Cz=(B-Y)/2,03
...(3), the luminance signal is transmitted by AM modulation in the 4 MHz band, and the color difference signal is transmitted using the color subcarrier of 3.57 MHz.
9454MHz, quadrature two-phase modulation, approximately the luminance signal,
It is compressed and transmitted to 1/3 of the band.

受信機では輝度信号(Y)と色差信号(CI)、(C2
)より色差信号C3を C,=(G−Y)X 1.42      −(4)に
復調して結局NTSC方式のRGBの3原色を復元して
いる。
In the receiver, the luminance signal (Y), color difference signal (CI), (C2
), the color difference signal C3 is demodulated into C,=(G-Y)X1.42-(4), and the three primary colors of RGB of the NTSC system are finally restored.

これは輝度信号(Y)に(1)式のようにRGBの3原
色が含まれでいるために可能となる。
This is possible because the luminance signal (Y) includes the three primary colors RGB as shown in equation (1).

カラーテレビカメラは一般にこのNTSC方式の輝度信
号、色差信号、同期信号、色副搬送波の色同期用のカラ
ーパースト信号を変調合成したカラーテレビコンボノッ
ト信号を出力するものが多く、VTRにもこのカメラ入
力端子が設けられている 更に一般のカラーテレビカメ
ラはRGBの3原色と同M信号とを出力するものや、N
TSC方式の輝度信号(Y)と色差信号(R−Y )、
CG −Y )と同期信号を出力するものがある。RG
Bと色差信号の相互変換や、色副搬送波による変調、復
調及びカラーテレビコンボノット信号の変調・復調の専
用ICがテレビカメラや受像槻用に市販されている。
Color television cameras generally output color television combo knot signals that are modulated and synthesized from NTSC luminance signals, color difference signals, synchronization signals, and color burst signals for color synchronization of color subcarriers, and VTRs also use this camera. In addition, general color television cameras output the three primary colors of RGB and the same M signal, and
TSC method luminance signal (Y) and color difference signal (R-Y),
CG-Y) and outputs a synchronization signal. RG
Dedicated ICs for mutual conversion between B and color difference signals, modulation and demodulation using color subcarriers, and modulation and demodulation of color TV combo knot signals are commercially available for use in television cameras and image receivers.

このように一般の受像機では人間に見せるためには視覚
の特性によって、情報量をNTSC方位のRGBの3j
;(色の1/2程度に圧縮していると言える。
In this way, in general television receivers, in order to show it to humans, the amount of information is reduced to 3J of RGB in the NTSC direction due to the characteristics of visual perception.
(It can be said that the color is compressed to about 1/2.

一方一般のアナログ電話回線でカラーの静止画を伝送す
る場合にはNTSC方式のRGBの3原色を順にFM変
調する方式があるが、圧縮しないため伝送に時間がかか
るという問題がある。例えば256X256画素で45
秒程度である。
On the other hand, when transmitting color still images over a general analog telephone line, there is a method of sequentially FM modulating the three primary colors of RGB in the NTSC system, but there is a problem that it takes time to transmit because it is not compressed. For example, 256x256 pixels is 45
It is about seconds.

【発明の目的1 本発明は上述の問題点に鑑みて為されたもので、その目
的とするところはカラーの画像を圧縮して短い時間で伝
送することができる画像圧縮方式を提供するにある。
[Objective of the Invention 1] The present invention has been made in view of the above-mentioned problems, and its purpose is to provide an image compression method that can compress color images and transmit them in a short time. .

【発明の開示J 本発明は画像の輝度情報と色情報とを圧縮する画像圧縮
方式において、輝度信号(Y)と、複数の色差信号をラ
イン間の予測残差のライン内の2次の予測残差を可変標
本密度や、DPCM等の量子化手法により圧縮すること
を特徴とする。
DISCLOSURE OF THE INVENTION J The present invention is an image compression method that compresses luminance information and color information of an image. It is characterized by compressing the residual using a variable sampling density or a quantization method such as DPCM.

K1九り 第1図は本発明方式を用いた画像伝送システムの全体回
路構成を示しており、カラーテレビカメラ1からのNT
SC方式のRGBの3原色を、色差計算回路2により輝
度信号(Y)と、色差信号(R−Y)、(B−Y)とに
分けるようになっている。
Figure 1 shows the overall circuit configuration of an image transmission system using the method of the present invention.
The three primary colors of RGB in the SC system are divided into a luminance signal (Y) and color difference signals (R-Y) and (B-Y) by a color difference calculation circuit 2.

A/Dコンバータ3は色差計算回路2で変換されて輝度
信号(Y)を6〜8ピツ)/ml素のディジタル値に変
換するもので、Y7レームメモリ4にその変換したディ
ジタル値を記憶させる。
The A/D converter 3 converts the luminance signal (Y) into a digital value of 6 to 8 pixels)/ml by the color difference calculation circuit 2, and stores the converted digital value in the Y7 frame memory 4. .

このY7レームメモリ4は512X512画素或いは2
56X256m素の画像を記憶する0例えば512X5
12FW素の場合にはインターレースされたテレビカメ
ラを使用した時に奇数と偶数の両フイルードの画像を記
憶し、256X256画素の場合には奇数フィールドの
画像を記憶する。
This Y7 frame memory 4 has 512x512 pixels or 2
For example, 512X5 to store an image of 56X256m elements.
In the case of 12FW pixels, images of both odd and even fields are stored when an interlaced television camera is used, and in the case of 256×256 pixels, images of odd fields are stored.

ローパスフィルタ6 a、 6 bは夫々500KHz
のローパスフィルタを構成しており、色差計算回路2か
らの色差信号(R−Y)、(B−Y)から高周波成分を
カットするものであり、高周波成分がカットされた色差
信号(R−Y)、(B−Y)は夫々A/Dコンバータ7
 m、 7 bで4〜8ビット/画素にディノタル化さ
れ、(R−Y )、(B −Y )の7レームメモリ8
 m、 8 bに記憶されるこのR−Y、B−Yのフレ
ームメモリ8m、8bのrs!素は輝度信号が512X
512Kji素のときは256X256画素というよう
に輝度信号に対して縦、横半分づつの画素数でよい。但
し圧縮回路を輝度信号用と共通にして簡単化したり、D
/Aコンバータで復元表示するために、色差用の7レー
ムメモリを輝度用と同じ画素数にすることも考えられる
Low-pass filters 6a and 6b each have a frequency of 500KHz
It constitutes a low-pass filter, which cuts high frequency components from the color difference signals (RY) and (B-Y) from the color difference calculation circuit 2. ), (B-Y) are A/D converter 7 respectively.
Dinotalized to 4 to 8 bits/pixel by m, 7b, 7-frame memory 8 of (RY), (B-Y)
rs of this frame memory 8m, 8b of this R-Y, BY stored in m, 8b! The brightness signal is 512X
In the case of 512 Kji elements, the number of pixels may be half each in the vertical and horizontal directions for the luminance signal, such as 256×256 pixels. However, it is possible to simplify the compression circuit by making it common for the luminance signal, or
In order to perform restored display using the /A converter, it is also possible to make the 7-frame memory for color difference have the same number of pixels as that for luminance.

ここでタイミング回路13はカラーテレビカメラ1から
のクロック信号CLKと同期信号5YNCでりイミング
信号を作成し、このタイミング信号に基づいて書込トリ
〃回路14により各A/Dコンバータ3,7a、7bの
取り込みタイミングを設定し、更に7ドレスカウンタ1
5により各7レームメモ’74.8m、8bの書込アド
レスを設定する。
Here, the timing circuit 13 creates a timing signal using the clock signal CLK from the color television camera 1 and the synchronization signal 5YNC, and based on this timing signal, the write trigger circuit 14 sends each A/D converter 3, 7a, 7b. Set the import timing of 7 dress counter 1.
5 to set the write address of each 7 frame memo '74.8m and 8b.

さて11図実施例では輝度信号(Y)と色差信号(R−
Y)と(B−Y)とをライン毎にセレクタ9により選択
して順次画像圧縮符号化回路10により圧縮符号化して
、変調装置l!11により変調し、9600ビット/秒
の伝送速度で一般の電話口a1で伝送するようになって
いる。
Now, in the embodiment shown in FIG. 11, the luminance signal (Y) and the color difference signal (R-
Y) and (B-Y) are selected line by line by the selector 9 and sequentially compressed and encoded by the image compression encoding circuit 10, and the modulation device l! 11, and is transmitted at a transmission rate of 9,600 bits/second through an ordinary telephone port a1.

圧縮符号はコンピュータの記憶装置や、ディスクファイ
ル等に記憶させることもで評、記憶スペースを少なくで
きる。又電話口111!で伝送する場合もコンピュータ
のデータ通信と変調、復lII装置を共通化でき、種々
の制御監視の応答時間の短縮や、誤り訂正による信頼性
向上のために、画像も圧縮して符号伝送する方が、FM
変調するようなアナログ伝送に比べて利用価値が高く、
画質も劣るものではない。
Compressed codes can also be stored in computer storage devices, disk files, etc., reducing storage space. Call number 111 again! It is also possible to use the same computer data communication, modulation and decoding equipment when transmitting data using a computer, reduce response times for various control and monitoring systems, and improve reliability through error correction. But, FM
It has higher utility value than analog transmission that requires modulation.
The image quality is not inferior either.

さて電話口mlを介して電送された圧縮符号は復調装f
i16により復調され、更に画像復号伸張回路1゛1で
復号され、輝度信号(Y)と、色差信号(R−Y )、
(B −Y ’)とを復元する。セレクタ18は復元さ
れた輝度信号(Y)と、色差信号(R−Y)。
Now, the compressed code transmitted via the telephone ml is transmitted to the demodulator f.
It is demodulated by i16 and further decoded by the image decoding and expansion circuit 1'1 to produce a luminance signal (Y), a color difference signal (R-Y),
(B - Y') is restored. The selector 18 receives the restored luminance signal (Y) and the color difference signal (RY).

(B−Y)とを選択してYフレームメモリ19、R−Y
7レームメモリ20 a IB −Y 7レームメモリ
20bのアドレスカウンタ73で指定されたアドレスに
夫々記憶させる。
(B-Y) and select Y frame memory 19, R-Y
7-frame memory 20a IB-Y are respectively stored in the addresses designated by the address counter 73 of the 7-frame memory 20b.

これらの7レームメモリ19.20m、20bに格納さ
れたディジタル値の画像データをD/Aコンバータ21
,22a、22&でアナログ値に変換し、その変換した
内の色Mfff号(R−Y )、(B −Y )はロー
パスフィルタ23a、23bで滑らかにし、色差変調回
路24においでバースト発生器33からの色副搬送波で
変調し、コンポジット回路25で同期信号発生器32か
らの同期信号と共にカラーテレビコンポジット信号に変
換し、通常のカラーモニタテレビ26で表示したり、V
 i’ Hに記録するようになっている。同期信号発生
器32がらの同wi信号は読出トリ〃回路34に入って
、D/Aコンバータ21 *22m−22bの読出トリ
〃となり、またアドレスカウンタ73のクロックとなる
The digital value image data stored in these 7-frame memories 19.20m and 20b is transferred to the D/A converter 21.
, 22a, 22& convert into analog values, and the converted colors Mfff (R-Y), (B-Y) are smoothed by low-pass filters 23a, 23b, and then sent to a color difference modulation circuit 24 and a burst generator 33. It is modulated with the color subcarrier from the sync signal generator 32 and converted into a color television composite signal in the composite circuit 25 together with the sync signal from the sync signal generator 32, and can be displayed on a normal color monitor television 26 or
It is designed to be recorded in i'H. The wi signal from the synchronizing signal generator 32 enters the read trigger circuit 34, serves as a read trigger for the D/A converter 21*22m-22b, and also serves as a clock for the address counter 73.

ところで色復元回路27では輝度信号(Y)と、色差信
号(R−Y )、(B −Y )より、色差信号(G−
Y)を復元し、NTSC方式のRGBの3原色を復元す
る。
By the way, the color restoration circuit 27 generates a color difference signal (G-Y) from the luminance signal (Y), color difference signals (R-Y), and (B-Y).
Y) and restore the three primary colors of RGB of the NTSC system.

ここで色差信号(G −Y )は G−Y= −0,51(R−Y)−0,19(B−Y)
   ・・・(5)と表せる。
Here, the color difference signal (G-Y) is G-Y=-0,51(RY)-0,19(B-Y)
...It can be expressed as (5).

尚カラーテレビカ/う1として一般のカラーテレビコン
ポ72148号を出力するカラーテレビカメラを使用す
る場合には、第1図回路の色差計算回路2の代わりに第
2図のようにカラーテレビカメラ1゛より出力されるカ
ラーテレビカメラコンポジット信号からアンプ28を通
じて輝度信号(Y)を得るとともに同期分離回路31に
より垂直同期信号(SV)と水平同期信号(SH)とか
らなる同期信号を分離し、更に色同期回路29に上り色
MIJ11;1虚 ル抽屯 1    簀 め岳 閤湘
面歇 9 匂 為−L 消贋徘で色復調回路30により
色差信号(R−Y)、(G−Y )、(B −Y )を
作る。
When using a color television camera that outputs a general color television component No. 72148 as the color television camera/unit, the color difference calculation circuit 2 shown in FIG. 2 is replaced by the color television camera 1 as shown in FIG. A luminance signal (Y) is obtained from the color TV camera composite signal outputted from the amplifier 28, and a synchronization signal consisting of a vertical synchronization signal (SV) and a horizontal synchronization signal (SH) is separated by a synchronization separation circuit 31. Color difference signal (R-Y), (G-Y), Make (B-Y).

ところで輝度信号(Y)のθ〜4MHzの帯域に対し、
視覚の特性上、色差信号は0〜500KH2の帯域で良
いとぎわれでいるのは周知の通りであるので、輝度情報
が入ったNTSC方式のRGBの3原色を輝度信号(Y
)と同じ帯域で伝送することにより、輝度信号(Y)よ
り狭い帯域で色差イバ号を伝送した方が伝送帯域が狭く
できるのは明らかである。このことはNTSC方式のR
GBの3原色を圧縮伝送する場合にはRGB夫々に輝度
信号(Y)と同じN素数のフレームメモリを要し、符号
量としてRGBの3原色夫々が輝度信号(Y)と同じ程
度必要であるに対して、色差信号の場合には画素数が輝
度信号(Y)の1/4程度で良いことになり、輝度信号
(Y)と2つの色差信号(R−Y)。
By the way, for the θ~4MHz band of the luminance signal (Y),
It is well known that due to the characteristics of visual perception, color difference signals are well defined in the band from 0 to 500 KH2.
) It is clear that the transmission band can be made narrower by transmitting the color difference signal in the same band as the luminance signal (Y). This is true for the R of the NTSC system.
When compressing and transmitting the three primary colors of GB, each of RGB requires a frame memory of the same N prime number as the luminance signal (Y), and the amount of code for each of the three primary colors of RGB is the same as that of the luminance signal (Y). On the other hand, in the case of a color difference signal, the number of pixels may be about 1/4 of the luminance signal (Y), which means that the luminance signal (Y) and two color difference signals (R-Y) are used.

(B−Y)の情報量を加えたものは、輝度信号(Y)の
1.5倍程度で、NTSC方式のRGBの3原色の1/
2程度で良いことが分かる。
The amount of information added to (B-Y) is about 1.5 times the luminance signal (Y), which is 1/1/2 of the three primary colors of RGB in the NTSC system.
It turns out that around 2 is good.

第1図実施例は輝度信号(Y)より少ない画素数の色差
信号(R−Y)、(B−Y)をアナログ値にD/A変換
したあとローパスフィルタ23m、23bで滑らかに補
間して輝度信号(Y)よりN ’r S C方式のRG
Bの3原色を復元することになる。
In the embodiment shown in FIG. 1, the color difference signals (R-Y) and (B-Y), which have fewer pixels than the luminance signal (Y), are D/A converted into analog values and then smoothly interpolated using low-pass filters 23m and 23b. RG of N'r SC method from luminance signal (Y)
The three primary colors of B will be restored.

勿論R−Y7レームノモリ20a%B−Y7レームメモ
リ20bを輝度信号(Y)と同じ画素数にし、画像復号
伸張回路17で色差(Ft号(R−Y)、(B−Y)を
補間復元する場合にはローパスフィルタ23m、23b
は不姿となる。
Of course, the R-Y7 frame memory 20a%B-Y7 frame memory 20b is set to the same number of pixels as the luminance signal (Y), and the image decoding and expansion circuit 17 interpolates and restores the color difference (Ft (R-Y), (B-Y)). In this case, low-pass filters 23m and 23b
becomes invisible.

第3図(a)は輝度信号(Y)や、色差信号(R−Y)
、(B −Y )を圧縮符号化する画像圧縮符号化回路
10の構成例を示している。ここで輝度信号(Y)と同
様に色差信号(R−Y )、(B −Y )も、IR横
の2次元方向に相関を有しているので、この相関を除去
した2次の差分は零を中心とした度数分布を有し、1次
の差分より零に集中している。従って、この2次差分を
2のべきで非線形に量子化した場合、零に近い量子化レ
ベルが大きくなって画質が向上するとともに、可変長符
号化や、零符号圧縮の場合の圧縮率が高くなる。
Figure 3 (a) shows the luminance signal (Y) and color difference signal (R-Y).
, (B-Y) is shown. Here, like the luminance signal (Y), the color difference signals (R-Y) and (B-Y) also have a correlation in the two-dimensional direction horizontal to the IR, so the second-order difference after removing this correlation is It has a frequency distribution centered on zero, and is more concentrated at zero than the first-order difference. Therefore, when this second-order difference is nonlinearly quantized using a power of 2, the quantization level close to zero becomes larger, improving image quality, and the compression rate becomes higher when using variable-length encoding or zero-code compression. Become.

更には可変標本密度符号化では表2に示したように量子
化レベルの小さな部分の時間差値が大きくできて、標本
間隔を長くできるので、圧縮率を高くすることができる
Furthermore, with variable sample density encoding, as shown in Table 2, it is possible to increase the time difference value of a portion with a small quantization level, making it possible to lengthen the sample interval, thereby increasing the compression ratio.

そこで第3図(@)に示すように画像圧縮符号化回路1
0では、差分回路35で、予測回路36からの前ライン
の復元値或いは現ラインの予測値と現ラインの標本との
ライン間の1次差分をとり、この1次差分をライン方向
に可変標本密度圧縮回路37により可変標本密度符号化
する。可変標本密度圧縮回路37はラインバッフy37
aと、可変標本密度符号化回路37bとから構成される
Therefore, as shown in Fig. 3 (@), the image compression encoding circuit 1
0, the difference circuit 35 takes the line-to-line linear difference between the restored value of the previous line or the predicted value of the current line from the prediction circuit 36 and the sample of the current line, and uses this primary difference as a variable sample in the line direction. The density compression circuit 37 performs variable sampling density encoding. The variable sample density compression circuit 37 is a line buffer y37.
a, and a variable sample density encoding circuit 37b.

さてこの可変標本密度符号化回路37bにおける符号化
は表2に示したような量子化特性によって符号化するも
ので、現標本と、前標本か現標本の予測値との間の画素
間の2次差分をとって、この2次差号の値が時間差値”
1″の量子化レベルの最小値よりも小さな場合には標本
間隔を扱くして、時間差値が2″の場合には2画素間の
2次差分をとって、標本の振幅の範囲に対応する量子化
レベルの符号に符号化するものである。
Now, the encoding in this variable sample density encoding circuit 37b is performed using the quantization characteristics shown in Table 2. Take the second order difference, and the value of this second order difference sign is the time difference value.
If it is smaller than the minimum value of the quantization level of 1", the sample interval is treated, and if the time difference value is 2", the quadratic difference between the two pixels is taken, which corresponds to the range of sample amplitude. It is encoded into a quantization level code.

このライン間の1次差分と画素間の2次差分の方向が直
角方向であるため、縦横方向の相関が除去されることに
なる。
Since the directions of the first-order difference between lines and the second-order difference between pixels are perpendicular, the correlation in the vertical and horizontal directions is removed.

次のラインのライン間の1次差分をとるために量子化レ
ベルと時間差値により、ラインバッフT41からの値と
、可変標本密度復号化回路39m及びラインバッファ3
9bからなる可変標本密度伸張回路39からの伸張復号
された値とからライン上の1次差分を補間復元し、補間
合成回路40で現ラインの標本を復元する。
In order to obtain the first-order difference between the lines of the next line, the value from the line buffer T41 is combined with the variable sample density decoding circuit 39m and the line buffer 3 according to the quantization level and time difference value.
The linear difference on the line is interpolated and restored from the decompressed and decoded value from the variable sample density expansion circuit 39 consisting of 9b, and the sample of the current line is restored in the interpolation synthesis circuit 40.

而して可変標本密度符号の圧縮が表4の零符号圧縮回路
38或いは可変長符号化等で符号での冗長度を除去する
ことにより、画質を下げずにある程度可能となる。
By removing redundancy in the code using the zero code compression circuit 38 of Table 4 or variable length coding, compression of the variable sampling density code becomes possible to some extent without degrading the image quality.

第3図(b)は画像復号伸張回路17の構成を示してお
り、零符号伸張回路62によっで零符号を復号するか可
変長符号を固定長の可変標本密度符号に可変標本密度復
号化回路63で復号してラインバッファ64に取り込み
、次いで画素が粗い場合にはやはり表5の補闇表によっ
て、補間合成回路65でラインバッフ167、予測回路
66を用いてライン間で補間し、現ラインの標本に復元
する。
FIG. 3(b) shows the configuration of the image decoding and expansion circuit 17, in which the zero code expansion circuit 62 decodes a zero code or converts a variable length code into a fixed length variable sampling density code by variable sampling density decoding. The circuit 63 decodes it and loads it into the line buffer 64. Then, when the pixel is coarse, it is interpolated between lines in the interpolation synthesis circuit 65 using the line buffer 167 and the prediction circuit 66 using the compensation table shown in Table 5. Restore to line specimen.

表1は時間差値が”1″ばかりの量子化特性の例で、こ
の場合は可変標本密度符号化がDPCMと等価になり、
第3図回路はtlSS図の回路と等しくなる。
Table 1 shows an example of quantization characteristics where the time difference value is around "1". In this case, variable sample density encoding is equivalent to DPCM,
The circuit of FIG. 3 is equivalent to the circuit of the tlSS diagram.

このMS5図(、)の画像圧縮符号化回路10において
レジスタ42は1ii!11素分のレジスタ(或いは遅
延用の記憶素子)、レジスタ43は1ライン分のレジス
タ(或いは遅延用の記憶素子)で、第3図(a)の予測
回路36と同じである。つまり標本とレジスタ43がら
の前フィンの復元値との1次差分を差分回路44で得、
この1次差分と復元された前ラインの1画素分との間で
2次差号を差分回路45で得、量子化回路46で量子化
し、符号圧縮回路47で圧縮符号化する。また伸張回路
4日で復元した2次差分をレジスタ42からの1画素分
で補間回路49により補間し各レジスタ42゜43へ記
憶させる。第5図(b)は画像復号伸張回路17の回路
構成を示しており、この画像復号伸張回路17では第3
図(b)″の零符号伸張回路62に対応し符号伸張回路
68で伸張し、レジスタ69と補間回路70とでIR素
の1次差分を復元し、更にレノスタフ1で現在の1ライ
ン分を復元する。
In the image compression encoding circuit 10 of this MS5 diagram (,), the register 42 is 1ii! The register 43, which is a register for 11 elements (or a memory element for delay), is a register for one line (or a memory element for delay), and is the same as the prediction circuit 36 in FIG. 3(a). That is, the first difference between the sample and the restored value of the front fin in the register 43 is obtained by the difference circuit 44,
A second-order difference signal is obtained between this first-order difference and one pixel of the restored previous line in a difference circuit 45, quantized in a quantization circuit 46, and compressed and encoded in a code compression circuit 47. Further, the second order difference restored by the expansion circuit 4 days is interpolated by an interpolation circuit 49 using one pixel from the register 42 and stored in each register 42 and 43. FIG. 5(b) shows the circuit configuration of the image decoding and expansion circuit 17. In this image decoding and expansion circuit 17, the third
Corresponding to the zero-code expansion circuit 62 shown in FIG. Restore.

表2は時rWI差値″2”の量子化特性で、この場合は
第3図(a)の画像圧縮符号化回路10と第4図(a)
の回路とは等価になる。N#)第4図(、)の回路では
標本は1ライン2画素すのフィンバッフr50からの前
ラインの復元値が差分回路51で引かれて1大差ラナと
なり、レジスタ53で1画素号が記憶される。量子化回
路52は時間差値″1″について11素分遅れた画素で
比較し、差分回路54からの2次差分が最小の量子化レ
ベルより小さな場合は1画素分次の画素の2次差分の標
本の振幅の符号を出力する。この符号は符号圧縮回路5
5で圧縮される。またこの符号は伸張回路56で復号さ
れて、前ラインの1画素分のレジスタ57の値とで補間
回路58により補間され、レジスタ60に記憶される。
Table 2 shows the quantization characteristics of the time rWI difference value "2", and in this case, the image compression encoding circuit 10 of FIG. 3(a) and the image compression encoding circuit 10 of FIG. 4(a)
It is equivalent to the circuit of N#) In the circuit of FIG. 4(,), the sample is 1 line, 2 pixels, and the restored value of the previous line from the fin buffer r50 is subtracted by the difference circuit 51 to become a 1 large difference Rana, and the register 53 stores the 1 pixel number. be done. The quantization circuit 52 compares the time difference value "1" with a pixel delayed by 11 pixels, and if the second-order difference from the difference circuit 54 is smaller than the minimum quantization level, it compares the second-order difference of the next pixel by one pixel. Outputs the sign of the sample amplitude. This code is encoded by the code compression circuit 5
It is compressed by 5. Further, this code is decoded by the expansion circuit 56, interpolated by the interpolation circuit 58 with the value of the register 57 for one pixel of the previous line, and stored in the register 60.

レジスタ57は1次差分の予測値をレジスタ53に対応
させるものである。このレジスタ57の値は2画素分の
レジスタ58の値とで補間回路59により補間されてラ
インバッフ750に記憶され、また上記1次差分との間
で差分回路61により2次差分が取られ量子化回路52
に入力する。
The register 57 associates the predicted value of the first-order difference with the register 53. The value of this register 57 is interpolated with the value of the register 58 for two pixels by an interpolation circuit 59 and stored in a line buffer 750, and a second difference is taken by a difference circuit 61 between it and the first difference. conversion circuit 52
Enter.

表3は時間差値が4の量子化特性の例で、この場合第4
図(、)の回路におけるレジスタ53を3個直列にし、
レジスタ57・633個直にすると第3図(a)の回路
と等価にできる。第4図(b)は第4el(a)回路に
対応した画像復号伸張回路17を示し、回路的には第5
図(b)と基本的に同じである。
Table 3 shows an example of quantization characteristics with a time difference value of 4, in which case the fourth
Three registers 53 in the circuit shown in the figure (,) are connected in series,
If 57.633 registers are replaced, the circuit can be made equivalent to the circuit shown in FIG. 3(a). FIG. 4(b) shows an image decoding and decompression circuit 17 corresponding to the fourth el(a) circuit, and the fifth el(a) circuit is shown in FIG.
It is basically the same as Figure (b).

また表4は零狩号圧縮の符号例を示している。Table 4 also shows code examples for zero-kari code compression.

さてカラー画像データを圧縮する場合には1ラインにつ
いて、輝度信号(Y)、色差信号(R−Y)、色差信号
(B −Y )の順に圧縮符号化したものを散フィン分
まとめて1パケツトとして符号化し伝送する。この圧縮
データに先立っでカメラ番号や、画像の取り込み時刻や
圧縮パラメータ等をヘッダパケットとしで伝送する。1
パケツトの符号は電話回線lを通じて受信側で直ちに復
元されて、パケット単位で圧縮、伝送、復元が行なわれ
るので、送信側、伝送路、受信側は圧縮、伝送、復号を
順々に受は渡して復元と並行に次のパケットを伝送し、
この伝送と並行して更に次のパケットを圧縮符号化する
ようにするので、画像を取り込んでから復元するまでの
時間を画像データの伝送所要時間と同じ程度にすること
ができる。
Now, when compressing color image data, for one line, the luminance signal (Y), the color difference signal (RY), and the color difference signal (B - Y) are compressed and encoded in the order of dispersion fins and are combined into one packet. encoded and transmitted as Prior to this compressed data, the camera number, image capture time, compression parameters, etc. are transmitted as a header packet. 1
The code of the packet is immediately decoded on the receiving side via the telephone line l, and compression, transmission, and decoding are performed on a packet-by-packet basis, so the sending side, transmission path, and receiving side receive and receive compression, transmission, and decoding in order. and transmits the next packet in parallel with the restoration.
Since the next packet is compressed and encoded in parallel with this transmission, the time from capturing the image to restoring it can be made approximately the same as the time required to transmit the image data.

符号の中でライン単位に輝度信号(Y)と色差信号(R
−Y )、(B −Y )の順が決まっているので色コ
ードを伝送する必要はない。
The luminance signal (Y) and color difference signal (R
-Y) and (B-Y), so there is no need to transmit the color code.

またカラーかモノクロかの符号情報はヘッダパケットで
伝送する。
Further, code information as to whether it is color or monochrome is transmitted in a header packet.

第6図は輝度信号(Y)と共に(R−Y)、(B−Y)
、(G −Y )の3つの色差信号を伝送する実施例の
構成を示しており、フレームメモリ8c、A/Dコンバ
ータ7c、ローパスフィルタ6cを夫々送信側で、また
受信側でフレーム/モ’j20c、D/Aコンバータ2
2c、ローパスフィルタ6cを夫々色差信号(G −Y
 )のために余号に設けである。
Figure 6 shows (RY), (B-Y) along with the luminance signal (Y).
, (G-Y), in which a frame memory 8c, an A/D converter 7c, and a low-pass filter 6c are used on the transmitting side, and a frame/module on the receiving side. j20c, D/A converter 2
2c and low-pass filter 6c, respectively, for color difference signals (G-Y
), it is placed in the extra sign.

つまり圧縮符号化された色差信号(R−Y)、(B−Y
)から色差信号(G −Y )を復元する場合には、2
次差分の非線形量子化で振幅差値が大きな場合に、大き
な誤差が生じる恐れがあるので、本実施例では色差信号
(G −Y )をより正確に求めるために、独立して符
号化し、緑色系統の色の再現性を良くしでいる。しかも
、輝度信号(Y)に比べて色差信号の帯域が狭いので、
輝度信号(Y)に比べて色差信号の帯域が狭いので、符
号量としてはNTSC方式のRGBの3g色を伝送する
場合の1/2程度で、色の再現性を良くできるという効
果がある。即ち色差信号(G −Y )の符号量も輝度
信号(Y)の1/4程度で、画素数も輝度信号(Y)の
1/4で良い、又色復元回路27で復元したRGBの色
信号を色差計算回路2”に入力して色差信号を抽出しコ
ンポノット信号を作成するようになっている。
In other words, the compression-encoded color difference signal (R-Y), (B-Y
) to restore the color difference signal (G − Y), 2
If the amplitude difference value is large due to nonlinear quantization of the order difference, a large error may occur. Therefore, in this example, in order to obtain the color difference signal (G - Y) more accurately, the color difference signal (G - Y) is encoded independently, and the Good color reproducibility of the system. Moreover, since the band of the color difference signal is narrower than that of the luminance signal (Y),
Since the band of the color difference signal is narrower than that of the luminance signal (Y), the amount of code is about 1/2 of that when transmitting 3g colors of RGB in the NTSC system, which has the effect of improving color reproducibility. In other words, the code amount of the color difference signal (G - Y) may be about 1/4 of the luminance signal (Y), the number of pixels may be 1/4 of the luminance signal (Y), and the RGB colors restored by the color restoration circuit 27 The signal is input to a color difference calculation circuit 2'' to extract the color difference signal and create a component knot signal.

(表   1) (表   2) (表   3) (表    4) (表   5) く表        6) 尚圧縮符号化の計算速度とメモリのアクセス時間が短い
高速ハードウェアの場合にはNTSC方式の3原色の7
レームメモリの3種類を用意するだけで、計算により輝
度信号(Y)と色差信号を求め、同様に圧縮符号化する
ことができ、本発明と等価なものが実現できる。従って
7レームメモリの構成を色差信号にのみ用いる構成に限
定されない。
(Table 1) (Table 2) (Table 3) (Table 4) (Table 5) Table 6) In the case of high-speed hardware with short calculation speed and memory access time for compression encoding, the three primary colors of the NTSC system are used. 7
By simply preparing three types of frame memories, a luminance signal (Y) and a color difference signal can be calculated and compressed and encoded in the same way, thereby realizing something equivalent to the present invention. Therefore, the configuration of the 7-frame memory is not limited to a configuration used only for color difference signals.

輝度信号(Y)の画素数に比べて色差信号の画素数を1
/4に少なくすることができ、色差信号の帯域を狭くシ
、符号量を少なくすることができるが、表2、表3のよ
うに時間差値を2以上として圧縮率の高い量子化特性に
よって、色差信号を圧縮することも可能である。つまり
色差信号の画素数を輝度信号(Y)の画素数と同じにし
ても、色差信号の帯域が狭いので、なだらかな変化にな
り、時間差値が2以上の量子化特性に対し、色差信号の
圧縮率が高くなるためである。
The number of pixels of the color difference signal is 1 compared to the number of pixels of the luminance signal (Y).
/4, the band of the color difference signal can be narrowed, and the amount of code can be reduced, but as shown in Tables 2 and 3, by setting the time difference value to 2 or more and using quantization characteristics with a high compression ratio, It is also possible to compress color difference signals. In other words, even if the number of pixels of the color difference signal is the same as the number of pixels of the luminance signal (Y), since the band of the color difference signal is narrow, the change will be gradual. This is because the compression ratio becomes higher.

また画像伝送装置で粗い画像を短い伝送時間で伝送し、
必要に応じて鮮明化要求によって受信側にモニタテレビ
で表示している画面の解像度を上げて鮮明化させる場合
、送信側には受信側で表示している画面の原画を記憶し
ている必要があるが、色差信号は夫々輝度信号(Y)の
1/4のメモリ空間で良いのでNTSC方式のRGBの
3原色を記憶する場合の172のメモリしか要しない、
このことはテレビカメラが複数台あって、夫々が専用の
7レームメモリを設けている場合にも同様にメモリが少
なくて済む。
In addition, the image transmission device can transmit coarse images in a short transmission time,
If you want the receiving side to raise the resolution of the screen displayed on the monitor TV and make it clearer by requesting sharpening as necessary, the sending side must remember the original image of the screen displayed on the receiving side. However, each color difference signal requires 1/4 the memory space of the luminance signal (Y), so only 172 memories are required when storing the three primary colors of RGB in the NTSC system.
This also applies if there are a plurality of television cameras, each with its own dedicated 7-frame memory, and the memory requirement can be reduced as well.

次に上述している色差信号(R−Y )、(B −Y 
)t(G −Y )について説明すると、各色差信号は
NTSC方式の3原色に対して次の関係となっている。
Next, the color difference signals (R-Y), (B-Y
)t(G-Y), each color difference signal has the following relationship with respect to the three primary colors of the NTSC system.

G−Y=−0,51(R−Y)−0,19(B−Y) 
   、・・・■更に C+ = (1/1.14)・
(R−Y)、C2= (1/2,03)・(B−Y) 
    ・・・■(t)(o、3oo  O,590o
、ool(R1これに対し、NTSC方式のテレビ放送
は人間の視覚に近い広帯域の色差信号■と狭帯域の色差
信号Qを使用している。これらは色差信号(R−Y)、
(B−Y)に対して位相が33°進んでおり、次式の関
係がある。
G-Y=-0,51(RY)-0,19(B-Y)
,...■Furthermore, C+ = (1/1.14)・
(RY), C2= (1/2,03)・(B-Y)
...■(t) (o, 3oo O, 590o
, ool(R1) On the other hand, NTSC television broadcasting uses a wideband color difference signal (■) close to human vision and a narrowband color difference signal (Q).These are color difference signals (R-Y),
The phase is advanced by 33 degrees with respect to (BY), and the relationship is expressed by the following equation.

1  =0.7+ (R−Y)−G、2フ(B−Y) 
       ・・・■Q=0.48(R−Y)+0.
41(B−Y)     ・@色差信号の帯域は■は1
.5MHz1Qは500KHzである。
1 =0.7+ (RY)-G, 2F (B-Y)
...■Q=0.48(RY)+0.
41 (B-Y) ・@Color difference signal band is 1
.. 5MHz1Q is 500KHz.

従って本発明の構成でR−Y7レームメモリ8aを■7
レームメモリに、B−Y7レームメモリ8beQ7レー
ムメモリとし、このフレームメモリに直列に接続したロ
ーパスフィルタ6 u、 6 bの帯域を夫々l、5M
Hz、500KHzとすると、色差信号I%Qに対応し
たものになる。アナログ処理の色変調は色差信号工、Q
も色差信号(R−Y)、(B−Y)と同様に直角2相変
調(2重平衡変調)されるので、色差信号(R−Y )
の変調器を!変調に置き換えると、色副搬送波(カラー
バースト)に対し、−57°位相で変調し、B−Y変調
器をQ変調に置き換えると、色差信号工に対し−90°
移送の色副搬送波で変調される0色差償号1、Qの復調
も変調と同じ位相の色副搬送波で行なわれ、色差信号(
R−Y)の復調器が丁復調器、B−Y復調器がQ復調器
となる。
Therefore, in the configuration of the present invention, the R-Y7 frame memory 8a is
The frame memory is a B-Y7 frame memory 8beQ7 frame memory, and the bands of low-pass filters 6u and 6b connected in series to this frame memory are 1 and 5M, respectively.
Hz and 500 KHz, it corresponds to the color difference signal I%Q. Color modulation in analog processing is done by color difference signal engineering, Q
The color difference signal (R-Y) is also subjected to quadrature two-phase modulation (double balance modulation) like the color difference signals (R-Y) and (B-Y), so the color difference signal (R-Y)
modulator! When replaced with modulation, the color subcarrier (color burst) is modulated with a -57° phase, and when the B-Y modulator is replaced with Q modulation, the color difference signal modulation is modulated with a -90° phase.
The demodulation of the zero color difference compensation signals 1 and Q modulated by the color subcarrier of the transport is also performed with the color subcarrier having the same phase as the modulation, and the color difference signal (
The demodulator for R-Y) becomes a D demodulator, and the B-Y demodulator becomes a Q demodulator.

NTSC方式め3原色の復元゛は色差信号■、Qに対し のマトリック回路で行なわれる。即ち色差信号(R−Y
)、(B−Y)に対するr色復元回路」は色差信号I、
Qに対する「色復元回路」に置換わり、マトリックの係
数が変わることになる。
Restoration of the three primary colors according to the NTSC system is performed by a matrix circuit for the color difference signals (2) and (Q). That is, the color difference signal (R-Y
), (B-Y) is a color difference signal I,
It will be replaced with a "color restoration circuit" for Q, and the coefficients of the matrix will change.

色差(N号I、Qは人間の視覚による広帯域軸と狭帯域
軸の最遇値から色度図上でまだずれていると言われてい
る。
It is said that color difference (N No. I, Q) is still deviated on the chromaticity diagram from the optimum value of the broadband axis and narrowband axis according to human vision.

いずれにせよ色差信号を0式や0式で定義するか、人間
の視覚に最適な輪にするかはマトリックスの係数が変わ
り、平衡変調では位相や色差信号の重み係数の違いだけ
であるので、本発明の主旨に当て嵌まる。
In any case, the coefficients of the matrix change whether the color difference signal is defined by the 0 formula or 0 formula, or by a ring that is optimal for human vision, and in balanced modulation, the only difference is the phase and the weighting coefficient of the color difference signal. This applies to the gist of the present invention.

【発明の効果] 本発明は画像の輝度情報と色情報とを圧縮する画像圧縮
方式において、輝度信号(Y)と、複数の色差信号をラ
イン間の予測残差のライン内の2次の予測残差を可変棟
木密度や、DPCM等の量子化手法により圧縮するので
輝度信号に比べて色差信号の帯域を狭くすることができ
、画素数を1/4程度に少なくしたり、量子化特性で圧
縮率を高くでき、そのためNTSC方式のRGBの3原
色のままに精度情報の入ったRGB信号を圧縮伝送する
より圧縮率を^くでき且つ画質を下げないで伝送するこ
とができるという効果が有る。
Effects of the Invention The present invention uses a luminance signal (Y) and a plurality of color difference signals to perform secondary prediction within a line of prediction residual between lines in an image compression method that compresses luminance information and color information of an image. Since the residual error is compressed using a variable purlin density or a quantization method such as DPCM, it is possible to narrow the band of the color difference signal compared to the luminance signal, reduce the number of pixels to about 1/4, and improve the quantization characteristics. The compression rate can be increased, which has the effect that the compression rate can be increased and the image quality can be transmitted without degrading the image quality compared to compressing and transmitting an RGB signal containing accuracy information while retaining the RGB three primary colors of the NTSC system. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の回路構成図、第2図は同上
の要部の回路例を示す回路構成図、第3図(a)は同上
の画像圧縮符号化回路の回路構成図、第3図(b)は同
上の画像復号伸張回路の回路構成図、第4図(Jl)は
同上の画像圧縮符号化回路の別の例の回路構成図、第4
図(b)は同上の画像復号伸張回路の別の例の回路構成
図、第5図(a)は同上の画像圧縮符号化回路の別の例
の回路構成図、第5図(b)は同上の画像復号伸張回路
の別の例の回路構成図、第6図は本発明の実施例2の回
路構成図である。 2・・・色差計算回路、10・・・画像圧縮符号化回路
、17・・・画像復号伸張回路、27・・・色復元回路
である。 代理人 弁理士 石 1)艮 七 第2図 A; = つり     fi/ 手続補正書(自発) 昭和62年4月3日
FIG. 1 is a circuit configuration diagram of Embodiment 1 of the present invention, FIG. 2 is a circuit configuration diagram showing an example of the circuit of the main part of the same, and FIG. 3(a) is a circuit configuration diagram of the image compression encoding circuit same as the above. , FIG. 3(b) is a circuit configuration diagram of the image decoding and decompression circuit same as above, FIG. 4(Jl) is a circuit configuration diagram of another example of the image compression encoding circuit same as above,
FIG. 5(b) is a circuit diagram of another example of the image decoding/expansion circuit same as above, FIG. 5(a) is a circuit diagram of another example of the image compression/encoding circuit same as above, and FIG. FIG. 6 is a circuit diagram of another example of the image decoding and decompression circuit same as above, and is a circuit diagram of a second embodiment of the present invention. 2... Color difference calculation circuit, 10... Image compression encoding circuit, 17... Image decoding/expansion circuit, 27... Color restoration circuit. Agent Patent Attorney Ishi 1) Figure 7, Figure 2 A;

Claims (4)

【特許請求の範囲】[Claims] (1)画像の輝度情報と色情報とを圧縮する画像圧縮方
式において、輝度信号(Y)と、複数の色差信号をライ
ン間の予測残差のライン内の2次の予測残差を可変標本
密度や、DPCM等の量子化手法により圧縮することを
特徴とすることを特徴とする画像圧縮方式。
(1) In an image compression method that compresses the luminance information and color information of an image, the luminance signal (Y) and multiple chrominance signals are used as a variable sample for the prediction residual between the lines and the second-order prediction residual within the line. An image compression method characterized by compression using density and quantization methods such as DPCM.
(2)RGBの3原色に対して、色差信号を(R−Y)
、(B−Y)及び(G−Y)の3原色総てについて輝度
信号(Y)と共に圧縮することを特徴とする特許請求の
範囲第1項記載の画像圧縮方式。
(2) Color difference signals (R-Y) for the three primary colors of RGB
2. The image compression method according to claim 1, wherein all three primary colors of , (B-Y) and (G-Y) are compressed together with a luminance signal (Y).
(3)輝度信号(Y)より粗い画素で色差信号を圧縮す
ることを特徴とする特許請求の範囲第1項記載の画像圧
縮方式。
(3) The image compression method according to claim 1, wherein the color difference signal is compressed using pixels coarser than the luminance signal (Y).
(4)輝度信号(Y)に対して色差信号を圧縮率の高い
量子化特性で圧縮することを特徴とする特許請求の範囲
第1項記載の画像圧縮方式。
(4) The image compression method according to claim 1, wherein the color difference signal is compressed with respect to the luminance signal (Y) using a quantization characteristic with a high compression rate.
JP61306815A 1986-12-23 1986-12-23 Image compression system Pending JPS63158971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306815A JPS63158971A (en) 1986-12-23 1986-12-23 Image compression system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306815A JPS63158971A (en) 1986-12-23 1986-12-23 Image compression system

Publications (1)

Publication Number Publication Date
JPS63158971A true JPS63158971A (en) 1988-07-01

Family

ID=17961596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306815A Pending JPS63158971A (en) 1986-12-23 1986-12-23 Image compression system

Country Status (1)

Country Link
JP (1) JPS63158971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222394A (en) * 1989-02-23 1990-09-05 Fuji Photo Film Co Ltd Picture signal compression encoder
KR101219007B1 (en) * 2010-10-08 2013-01-07 삼성전기주식회사 Apparatus and method for compressing image signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222394A (en) * 1989-02-23 1990-09-05 Fuji Photo Film Co Ltd Picture signal compression encoder
KR101219007B1 (en) * 2010-10-08 2013-01-07 삼성전기주식회사 Apparatus and method for compressing image signal

Similar Documents

Publication Publication Date Title
US5541653A (en) Method and appartus for increasing resolution of digital color images using correlated decoding
US4530004A (en) Color television signal processing circuit
US5412427A (en) Electronic camera utilizing image compression feedback for improved color processing
KR910000548B1 (en) Progressive scan television system employing vertical detail
RU2118066C1 (en) Device for processing of video signals by preprocessor for generation of non-interlaced video signals from interlaced video signals
US5065229A (en) Compression method and apparatus for single-sensor color imaging systems
US5130798A (en) Dual band progressive television system with noise reduction
CA1129989A (en) Method and apparatus for pcm-encoding ntsc color television at sub-nyquist rate
JPH03504789A (en) EDTV recording device
US5136379A (en) Video signal processing device capable of vertical blocking
US5122868A (en) Side panel signal processor for a widescreen television system
US20070222891A1 (en) Systems and methods for video data conversion
JPS63158971A (en) Image compression system
US5227879A (en) Apparatus for transmitting an extended definition TV signal having compatibility with a conventional TV system
US6424384B1 (en) Method and apparatus for improved signal filtering
JP2594596B2 (en) Image signal transmission method
TWI227630B (en) A method of inter-frame Y/C separation
JP2638380B2 (en) High-definition television receiver
JPH0591369A (en) Nonlinear edge signal generator for muse decoder
KR20020054253A (en) Apparatuses and Methods for Digital Stereo Video Processing using Decimation/Interpolation Filtering
RU2024216C1 (en) Method of transmission of color signals
JPH04151994A (en) Electronic still camera
JPH0488785A (en) Color image pickup element and signal processing device
EP0475788A2 (en) Video signal transmission
JPH1155680A (en) Video camera system