JPS63158607A - Determining device for control constant of control system - Google Patents

Determining device for control constant of control system

Info

Publication number
JPS63158607A
JPS63158607A JP30535286A JP30535286A JPS63158607A JP S63158607 A JPS63158607 A JP S63158607A JP 30535286 A JP30535286 A JP 30535286A JP 30535286 A JP30535286 A JP 30535286A JP S63158607 A JPS63158607 A JP S63158607A
Authority
JP
Japan
Prior art keywords
control system
control
section
inference
satisfied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30535286A
Other languages
Japanese (ja)
Inventor
Hirochika Mori
森 泰親
Takashi Shigemasa
隆 重政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30535286A priority Critical patent/JPS63158607A/en
Publication of JPS63158607A publication Critical patent/JPS63158607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To shorten the time required for determination of an optimum control constant by inferring whether specifications are satisfied or not from the pole and the zero position of a closed loop control system to adjust weight matrixes Q and R. CONSTITUTION:An equation is solved in a Riccati equation solving part 5 based on information from a dynamic characteristic input part 3 and a Q.R setting part 4. A control constant operating part 6 which receives the result obtains the control constant in accordance with a prescribed operation. A pole and zero calculating part 7 of the closed loop control system calculates the pole and the zero position of the closed loop control system on the basis of the result, and calculated results are inputted to an inference part 8. Design specifications from a control design specification setting part 10 are inputted to the inference part 8 to infer whether specifications are satisfied or not, and the method to adjust values of Q and R is inferred if they are not satisfied. A data base 9 where required and sufficient knowledge information is stored is used for this inference. Thus, the time required for determination of the optimum control constant is shortened.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、制御対象の制御量が複数存在し、それらの制
御のための操作量が複数存在し、且つそれらの操作量の
変化が各々複数の制御量に影響を及ぼす多入出力制御系
の最適制御定数の決定装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to a system in which there are a plurality of controlled variables of a controlled object, a plurality of manipulated variables for controlling these, and The present invention relates to an apparatus for determining optimal control constants for a multi-input/output control system in which changes in quantities each affect a plurality of control quantities.

(従来の技術) この種の制御装置としては従来、操作量とその制御効果
が主要に現われる制御量を組にして考え、その組ごとに
1人出力の制御方式を適用していた。ところがこの様な
制御装置は、1つの制御量に対して組にした1つの操作
量だけに着目し、他の操作量の影響を無視して制御系を
設計するため、設計時に予定していた制御性能より悪く
なる場合や、極端な場合は不安定になることがあった。
(Prior Art) Conventionally, in this type of control device, a manipulated variable and a controlled variable whose control effect mainly appears are considered as sets, and a control method of one person's output is applied to each set. However, in this type of control device, the control system is designed by focusing only on one manipulated variable that is paired with one controlled variable and ignoring the influence of other manipulated variables. In some cases, the control performance became worse, or in extreme cases, it became unstable.

これに対し、制御対象が多入出力系である場合の制御方
式として状態空間法による制御方式が知られている。こ
の制御方式は第2図に示すような制御対象1と制御器2
の形で表現される。即ちこの制御方式は状態変数x (
t)に定数行列に1を乗じてフィードバックすることに
より特性改善を図るもので、制御対象1の内部特性を考
慮に入れて設計するため、多入出力系であっても安定な
制御系を設計することができる。しかも制御器2は目標
値r (t)と制御fay(t)に差がある限り積分動
作が働く構造であるため、オフセットのない制御系を構
成することができる。
On the other hand, a control method based on a state space method is known as a control method when the controlled object is a multi-input/output system. This control method consists of a controlled object 1 and a controller 2 as shown in Figure 2.
It is expressed in the form of In other words, this control method uses the state variable x (
t) is multiplied by a constant matrix by 1 and fed back to improve the characteristics.Since the design takes into account the internal characteristics of the controlled object 1, a stable control system can be designed even if it is a multi-input/output system. can do. Furthermore, since the controller 2 has a structure in which the integral operation works as long as there is a difference between the target value r (t) and the control fay(t), a control system without offset can be constructed.

この制御方式に関しては例えば、「線形多入出力最適追
従制御系の一般計法」 (計測自動制御学会論文集第1
4巻第4号、昭和53年8月)として提案されている。
Regarding this control method, for example, "General method for linear multi-input/output optimal tracking control system" (Proceedings of the Society of Instrument and Control Engineers, Vol. 1)
4, No. 4, August 1973).

この方式では、複数の制御量と操作量とから、次のよう
なスカラーの制御指標Jを設定して、これが最小になる
ように制御する。
In this method, the following scalar control index J is set from a plurality of control variables and manipulated variables, and control is performed so that this becomes the minimum value.

ここで、v (t) =u (t)であり、平衡状態の
値を基準にして図った変数を添字eをつけて表わしてい
る。即ち、yθ (1)は制御偏差ベクトルである。ま
た、Q、Hの行列は、各制御量と各操作量に対する制御
協調の重みである。
Here, v (t) = u (t), and the variables calculated based on the values in the equilibrium state are expressed with the subscript e. That is, yθ (1) is the control deviation vector. Furthermore, the Q and H matrices are control coordination weights for each controlled variable and each manipulated variable.

この場合、重み行列Q、Rが設計パラメータであり、立
上り時間、減衰速度、制定時間等で表わされる制御系設
計仕様を満足するように、Q。
In this case, the weight matrices Q and R are design parameters, and Q is set so as to satisfy the control system design specifications expressed by rise time, decay rate, establishment time, etc.

Rを調整しなければならない。Q、Hの行列を圧定対称
行列に選ぶと、安定な制御系を設計することができるが
、上記のような設計仕様をどのように、ffiみ行列で
表わせばよいかが明らかになっていない。このため時間
応答シミュレーションしながら試行錯誤で調節しなけれ
ばならなかった。
R must be adjusted. If the Q and H matrices are chosen as fixed symmetric matrices, it is possible to design a stable control system, but it is not clear how to express the above design specifications as an ffi-cut matrix. . For this reason, we had to make adjustments through trial and error while performing time response simulations.

(発明が解決しようとする問題点) 以上のように従来の方式では、設計パラメータであるQ
、Rをどのように設定すればよいかの指針が明らかにさ
れていないために、制御系の時間応答シミュレーション
を、その結果が設計仕様を満足するものでない場合はQ
、Rの値を試行錯誤的に調節して繰返すことが必要であ
り、制御系の制御定数設定に多大の時間と労力を要する
、という問題があった。
(Problem to be solved by the invention) As described above, in the conventional method, the design parameter Q
, and how to set R has not been clarified, so if the time response simulation of the control system does not satisfy the design specifications, Q.
, it is necessary to repeatedly adjust the values of R by trial and error, and there is a problem in that it takes a great deal of time and effort to set the control constants of the control system.

本発明は、時間応答シミュレーションをせずにQ、Hの
値を調節することができ、効率的に制御系の最適制御定
数を決定することを句能とした制御定数決定装置を提供
することを目的とする。
It is an object of the present invention to provide a control constant determining device capable of adjusting the values of Q and H without performing time response simulation and efficiently determining the optimum control constants of a control system. purpose.

[発明の構成] (問題点を解決するための手段) 本発明にかかる制御定数決定装置は、制御対象の動特性
入力部と、重み行列Q、Hの設定部と、リカッチ方程式
求解部と、制御定数演算部と、閉ループ制御系の極・零
計算部と、極・零の値、Q。
[Structure of the Invention] (Means for Solving the Problems) A control constant determining device according to the present invention includes a dynamic characteristic input section of a controlled object, a setting section for weight matrices Q and H, a Riccati equation solving section, Control constant calculation section, closed loop control system pole/zero calculation section, pole/zero values, Q.

Rの値、設計仕様等から仕様を満足できるか否かを推論
し、満足していない時はQ、Rの値をどのように調整す
べきかを推論する推論部と、その推論に必要十分な知識
情報を蓄えたデータベースとを有する。
A reasoning section that infers whether the specifications can be satisfied from the value of R, design specifications, etc., and if it is not satisfied, how to adjust the values of Q and R, and the necessary and sufficient parts for that inference. It has a database that stores knowledge information.

(作用) 本発明による装置では、動特性入力部とQ。(effect) In the device according to the invention, a dynamic characteristic input part and a Q.

R設定部からの情報をもとにリカッチ方程式求解部で方
程式を解き、その結果を制御定数演算部に人力する。制
御定数演算部ではある決められた四則演算を実施し、(
1)式の制御指標を最小とする制御定数を求める。この
結果に基づき閉ループ制御系の極・零計算部では閉ルー
プ制御系の極と零を計算し、その結果を推論部に入力す
る。推論部では、構成後の閉ループ制御系の極と零およ
び制御設計仕様設定部の出力である設計仕様が入力され
、仕様が満たされたか否かの推論、および不満足の時は
重み行列Q、Hの各要素の値を大小どちらにどの程度調
整すればよいかの推論を行う。
Based on the information from the R setting section, the Riccati equation solving section solves the equation, and the results are manually input to the control constant calculation section. The control constant calculation section performs certain four arithmetic operations, and (
1) Find the control constant that minimizes the control index in the equation. Based on this result, the closed-loop control system pole/zero calculation section calculates the poles and zeros of the closed-loop control system, and inputs the results to the inference section. The inference section inputs the poles and zeros of the configured closed-loop control system and the design specifications output from the control design specification setting section, and infers whether or not the specifications are satisfied, and if not, calculates the weight matrices Q and H. Inference is made as to how large or small the value of each element should be adjusted.

この推論部では、推論に必要十分な知識情報を蓄えたデ
ータベースを推論目的に応じて利用する。
This inference section uses a database that stores knowledge information necessary and sufficient for inference according to the purpose of inference.

以上により、時間シミュレーションしなからQ。Due to the above, time simulation is not possible.Q.

Rの値を探索していた従来の方式に比べて、最適制御定
数の決定に要する時間を短縮することができ、しかもQ
、Hの調整を自動化することができる。
Compared to the conventional method that searches for the value of R, the time required to determine the optimal control constant can be shortened, and
, H can be adjusted automatically.

(実施例) 以下、本発明を実施例に従って詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail according to examples.

第1図は本発明の一実施例による制御定数決窓装置の機
能構成を示すブロック図である。図において、3は制御
対象の動特性を入力する動特性入力部、4は重み行列Q
、Rを設定するQ、R設定部、5はこれら入力部3およ
び設定部4のデータから(1)式の制御指標を最小にす
る制御定数を計算するために必要となるリカッチ方程式
を作り、これを解く方程式求解部、6は求解部5で求め
られた解を用いて予め決められている行列四則7a算を
実施して制御定数を決定する制御定数演算部、7は演算
部6で得られた制御定数を用いて構成された閉ループ制
御系の極と零を計算する閉ループ制御系極・零計算部、
8は計算部7により得られた極と零の値および制御系設
計仕様設定部10で設定された仕様が入力され、仕様が
満たされているか否かを推論し、満たされていない場合
は更に重み行列Q、Hの各要素の値を大小どちらの方向
にどの程度調整すべきかを見積もる推論部であり、9は
その推論に必要十分な知識情報を蓄えているデータベー
スである。
FIG. 1 is a block diagram showing the functional configuration of a control constant windowing device according to an embodiment of the present invention. In the figure, 3 is a dynamic characteristic input section that inputs the dynamic characteristics of the controlled object, and 4 is a weight matrix Q.
, R setting section 5 creates the Riccati equation necessary to calculate the control constant that minimizes the control index of equation (1) from the data of these input section 3 and setting section 4, An equation solving section 6 solves this, a control constant computing section 6 executes predetermined matrix arithmetic 7a using the solution found in the solution finding section 5 to determine control constants; a closed-loop control system pole/zero calculation unit that calculates the poles and zeros of the closed-loop control system configured using the control constants;
8 inputs the values of poles and zeros obtained by the calculation unit 7 and the specifications set by the control system design specification setting unit 10, and infers whether the specifications are met or not. If not, further processing is performed. This is an inference unit that estimates how much the values of each element of the weight matrices Q and H should be adjusted in either direction, large or small, and 9 is a database that stores knowledge information necessary and sufficient for the inference.

この様な構成において、動特性入力部3は、制御対象の
動特性を次の状態空間表現で人力する。
In such a configuration, the dynamic characteristic input unit 3 manually inputs the dynamic characteristic of the controlled object using the following state space representation.

x (t) = A X (t) 十B u (t) 
    =12)Y (t) −Cx (t) +D 
u (t)     =13)ここで、制御対象はm入
力r出力(m、rは正の整数であり、m≧r≧1)であ
り、状態ff1x(t)の次元はnである。
x (t) = A X (t) 1 B u (t)
=12)Y (t) -Cx (t) +D
u (t) = 13) Here, the controlled object has m inputs and r outputs (m and r are positive integers, m≧r≧1), and the dimension of the state ff1x(t) is n.

重み行列Q、R設定部4では初めはどちらも単位行列を
設定する。リカッチ方程式求解部5では、A、B、C,
DとQ、Rを読み込んで次のりカッチ方程式を解く。
The weight matrices Q and R setting section 4 initially set unit matrices for both. In the Riccati equation solving section 5, A, B, C,
Read D, Q, and R and solve the following Norikatti equation.

この(4)式の解法に関しては例えば、「システム制御
のためのマトリクス理論」 (児玉、須田;計測自動制
御学会)に詳しく述べられている。制御指標の(1)式
を最小にする制御則は次式で与えられる。
The method for solving equation (4) is described in detail in, for example, ``Matrix Theory for System Control'' (Kodama, Suda; Society of Instrument and Control Engineers). The control law that minimizes the control index equation (1) is given by the following equation.

・・・(5) LL″″Klv11+に2v21      °°(6
)L 2−K IV 21 + K 2 V 22  
     ・・・(7)・・・(8) 制御定数演算部6は、状態フィードバック係数L1と積
分係数L2を出力する。閉ループ系の極・零計算部7で
は前の処理により決定した制御定数L1.L2を用いて
(5)式の制御則により構成した閉ループ制御系の極・
零を計算する。この計算部7で求められた閉ループ制御
系の極・零の値は推論部8に入力される。
...(5) LL″″Klv11+ to 2v21 °°(6
) L 2-K IV 21 + K 2 V 22
...(7)...(8) The control constant calculation unit 6 outputs the state feedback coefficient L1 and the integral coefficient L2. The closed-loop system pole/zero calculation unit 7 uses the control constant L1. determined in the previous process. The poles of the closed loop control system constructed by the control law of equation (5) using L2 are
Calculate zero. The values of the poles and zeros of the closed loop control system determined by the calculation section 7 are input to the inference section 8.

推論部8では、極と零の複素平面上のこれらの位置から
、閉ループ制御系の連応性、減衰性、安定性、振動性等
の動特性を推論する。その評価基準の一例を挙げる。比
較的虚軸に近い極(これを主要極と呼ぶ)が λ1−−α1±j拳βl であるとする。このとき、α1〉β1.αj 〉ε(ε
>o)ならば、連応性、減衰性等に優れ、はとんど振動
のない応答特性であることが知られている。ここで、ε
は制御設計仕様と制御対象自身の特性によって決められ
る値である。また必ずしも、αl〉βlでなければなら
ないということもない。閉ループ制御系の動特性は極に
ほとんど支配されるが、オーバーシュート、アンダーシ
ュート量等は零点の位置により決まってくる。例えば、
複素平面上の有半平面に零点があると、ステップ応答の
際に逆応答する。左半平面にあっても、主要極よりも更
に虚軸近く (右側)にあると、オーバーシュート量が
大きくなることが知られている。
The inference unit 8 infers dynamic characteristics such as coordination, damping performance, stability, and oscillation of the closed-loop control system from these positions of poles and zeros on the complex plane. An example of the evaluation criteria is given below. Assume that the pole relatively close to the imaginary axis (this is called the main pole) is λ1−−α1±j. At this time, α1>β1. αj 〉ε(ε
>o), it is known that the response characteristics are excellent in coordination, damping, etc., and there is virtually no vibration. Here, ε
is a value determined by the control design specifications and the characteristics of the controlled object itself. Furthermore, it is not necessarily necessary that αl>βl. The dynamic characteristics of a closed-loop control system are mostly controlled by the poles, but the amount of overshoot, undershoot, etc. is determined by the position of the zero point. for example,
If there is a zero point on a semiplane on the complex plane, there will be an inverse response during the step response. Even on the left half plane, it is known that the amount of overshoot increases if the pole is closer to the imaginary axis (to the right) than the main pole.

以上の例に挙げた動特性推論のための基準は主要極に関
してほんの一例に過ぎない。従ってこの実施例では、極
・零の位置と閉ループ制御系の動特性の関係等を初めと
する知識情報を蓄えたデータベース9を参照しながら、
構成した制御系の動特性を時間応答シミュレーションな
くして推論する。この推論の結果、仕様が満たされてい
ない場合は更に推論部8で(1)式の制御指標中の重み
行列Q、Rの調整を推論する。この推論に必要十分な知
識情報は例えばルールなどの形で体系化されてデータベ
ース9に蓄えられている。この様な過程で重み行列Q、
Rは設計仕様を満たすように調整されることになる。
The criteria for dynamic property inference given in the example above are only examples with respect to the main poles. Therefore, in this embodiment, while referring to the database 9 that stores knowledge information such as the relationship between the positions of poles and zeros and the dynamic characteristics of the closed loop control system,
The dynamic characteristics of the constructed control system are inferred without time response simulation. As a result of this inference, if the specifications are not satisfied, the inference unit 8 further infers adjustment of the weight matrices Q and R in the control index of equation (1). Knowledge information necessary and sufficient for this inference is systematized in the form of rules, for example, and stored in the database 9. In this process, the weight matrix Q,
R will be adjusted to meet design specifications.

この実施例による効果を次に具体的に説明する。The effects of this embodiment will be specifically explained below.

制御対象は、2つの制御量を2つの操作量で制御する発
電機であり、内部で干渉している多入出力系である。こ
の制御対象は振動性が強く、従来は重み行列Q、Hの決
定に長い時間を要していた。
The controlled object is a generator that controls two controlled variables using two manipulated variables, and is a multi-input/output system that is internally interfering with each other. This controlled object has strong oscillatory properties, and conventionally it took a long time to determine the weight matrices Q and H.

第3図は、1つの操作量をステップ状に変化させた時の
制御量の応答波形である。2つの制御量が干渉している
と同時に、振動的な制御対象であることが応答波形11
a、12aから分かる。
FIG. 3 shows a response waveform of a controlled variable when one manipulated variable is changed stepwise. The response waveform 11 indicates that the two controlled variables are interfering with each other, and at the same time it is an oscillatory controlled object.
It can be seen from a and 12a.

そこで制御系設計仕様として、振動性を抑え、しかも応
答性に優れた非干渉性制御系の設計を与えた。時間応答
シミュレーションは実行しないで、閉ループ制御系の極
と零点の位置から動特性を推論し、ルールと経験に基づ
いてQ、Rを調整した。
Therefore, as a control system design specification, we designed a non-interfering control system that suppresses vibration and has excellent responsiveness. Without running a time response simulation, the dynamic characteristics were inferred from the positions of the poles and zeros of the closed-loop control system, and Q and R were adjusted based on rules and experience.

第4図はこうして得られた最適調整値による閉ループ制
御系の目標値ステップ応答波形を示す。
FIG. 4 shows the target value step response waveform of the closed loop control system based on the optimal adjustment value thus obtained.

時間零で制御ff111bは速やかに追従すると共に、
もう一方の制御量12bはほとんど乱れていないことが
分かる。しかも、仕様通りにステップ応答は振動してい
ない。この様な制御系を得るのに、Q、Rの調整は数回
の反復で済んだ。
At time zero, control ff111b quickly follows, and
It can be seen that the other control amount 12b is hardly disturbed. Moreover, the step response does not oscillate as specified. To obtain such a control system, the adjustment of Q and R only required several iterations.

[発明の効果] 以上述べたように本発明によれば、重み行列Q。[Effect of the invention] As described above, according to the present invention, the weight matrix Q.

Rの調整を、閉ループ制御系の極・零の位置から仕様を
満たしたか否かを推論することで行うため、従来のよう
に色々な条件下での時間応答シミュレーションを行う必
要がなくなった。しかも、Q。
Since the adjustment of R is performed by inferring whether specifications are met from the positions of poles and zeros in the closed-loop control system, it is no longer necessary to perform time response simulations under various conditions as in the past. Moreover, Q.

Rの重み行列調整では必要十分な知識情報を蓄えたデー
タベースを参照しながら推論するため、熟練者のノウハ
ウを活かした調整を自動化することができる。従って本
発明による制御定数決定装置を用いれば、時間と費用の
大幅な削減が可能になる。
In R's weight matrix adjustment, inferences are made while referring to a database that stores necessary and sufficient knowledge information, so it is possible to automate the adjustment by making use of the know-how of experts. Therefore, by using the control constant determination device according to the present invention, it is possible to significantly reduce time and costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による制御定数決定装置の構
成を示すブロック図、第2図は追従制御系の構成例を示
す図、第3図は操作量の1つをステップ状に変化させた
時の制御量の応答例を示す図、第4図は実施例の装置を
用いて設計した制御系の目標値をステップ状に変化させ
た時の制御量の時間応答を示す図である。 1・・・制御対象、2・・・制御器、3・・・動特性入
力部、4・・・重み行列設定部、5・・・リカッチ方程
式求解部、6・・・制御定数演算部、7・・・閉ループ
制御系極・零計算部、8・・・推論部、9・・・データ
ベース、10・・・制御系設計仕様設定部。 出願人代理人 弁理士 鈴江武彦 TIME 第3図 TIME 第4図
FIG. 1 is a block diagram showing the configuration of a control constant determining device according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of the configuration of a follow-up control system, and FIG. 3 is a block diagram showing a configuration example of a follow-up control system. FIG. 3 is a block diagram showing a configuration example of a follow-up control system. Fig. 4 is a diagram showing an example of the response of the controlled variable when the target value of the control system designed using the device of the embodiment is changed in a stepwise manner. . DESCRIPTION OF SYMBOLS 1... Controlled object, 2... Controller, 3... Dynamic characteristic input section, 4... Weight matrix setting section, 5... Riccati equation solving section, 6... Control constant calculation section, 7... Closed loop control system pole/zero calculation unit, 8... Inference unit, 9... Database, 10... Control system design specification setting unit. Applicant's agent Patent attorney Takehiko Suzue TIME Figure 3 TIME Figure 4

Claims (1)

【特許請求の範囲】[Claims] 制御対象の動特性入力部と、重み行列設定部と、これら
の入力部および設定部からデータを受取りリカッチ方程
式を構成してその解を求める求解部と、この求解部によ
り求められた解を用いて制御指標を最小にする制御定数
を計算する制御定数演算部と、この演算部で得られた制
御定数を用いて構成した時の閉ループ制御系の極と零を
計算する閉ループ制御系極・零計算部と、この計算部で
求められた閉ループ制御系の極と零の値および制御系設
計仕様設定部で設定された設計仕様を入力して、データ
ベースに蓄えられた知識情報に基づいて仕様が満たされ
たか否かを推論し、満たされていない時には重み行列の
値をどのように調整すべきかを推論する推論部とを備え
たことを特徴とする制御系の制御定数決定装置。
A dynamic characteristic input section of the controlled object, a weight matrix setting section, a solution section that receives data from these input sections and the setting section, constructs a Riccati equation, and calculates the solution, and uses the solution obtained by this solution section. a control constant calculation unit that calculates control constants that minimize the control index, and a closed-loop control system pole and zero that calculates the poles and zeros of a closed-loop control system configured using the control constants obtained by this calculation unit. The calculation unit inputs the values of poles and zeros of the closed-loop control system obtained by this calculation unit and the design specifications set in the control system design specification setting unit, and the specifications are created based on the knowledge information stored in the database. 1. A control constant determination device for a control system, comprising: an inference unit that infers whether or not the condition is satisfied, and infers how to adjust the value of a weight matrix when the condition is not satisfied.
JP30535286A 1986-12-23 1986-12-23 Determining device for control constant of control system Pending JPS63158607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30535286A JPS63158607A (en) 1986-12-23 1986-12-23 Determining device for control constant of control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30535286A JPS63158607A (en) 1986-12-23 1986-12-23 Determining device for control constant of control system

Publications (1)

Publication Number Publication Date
JPS63158607A true JPS63158607A (en) 1988-07-01

Family

ID=17944076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30535286A Pending JPS63158607A (en) 1986-12-23 1986-12-23 Determining device for control constant of control system

Country Status (1)

Country Link
JP (1) JPS63158607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540881A (en) * 2012-02-17 2012-07-04 国电科学技术研究院 Design method for boundary control law of Flexible mechanical arm-based partial differential equation model

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540881A (en) * 2012-02-17 2012-07-04 国电科学技术研究院 Design method for boundary control law of Flexible mechanical arm-based partial differential equation model

Similar Documents

Publication Publication Date Title
JP3328742B2 (en) Neuro PID controller
EP0823078B1 (en) Feedback method for controlling non-linear processes
CN100524106C (en) Automatic regulating method and device for electromotor control device
JPH04259004A (en) Method for feedback control and tuning apparatus
CN110501906B (en) Mutual coupling fractional order chaotic electromechanical transducer acceleration self-adaptive fuzzy control method
Jiang et al. Robust adaptive dynamic programming
US20190384237A1 (en) System and Method for Data-Driven Output Feedback Control
Sutton et al. A design study of a self-organizing fuzzy autopilot for ship control
JP3061450B2 (en) Model predictive controller
US5625551A (en) Feedback controller
JPS63158607A (en) Determining device for control constant of control system
Babaie et al. Design of a switching controller for unstable systems under variable disturbance
Kreutmayr et al. Application of machine learning to improve to performance of a pressure-controlled system
US20230324885A1 (en) Control assistance device, control system, and control assistance method
JPH09146610A (en) Multivariable nonlinear process controller
JPH0561504A (en) Fuzzy feedback controller
Wcislik et al. Correction of the on-off control system using PLC
Travieso-Torres et al. Two simple and novel SISO controllers for induction motors based on adaptive passivity
Nikranjbar Adaptive PID controller design guidelines for a class of non-linear systems
JPH0635510A (en) Model norm adaptive controller using neural network
JPS62241002A (en) Auto-tuning controller
JPH0272404A (en) Deciding method for membership function
Gogol et al. Adaptive-robust control of technological processes with delay on control
Borovik et al. Reinforcement learning in plant control systems with transport lag
WO2023067787A1 (en) Stability margin setting support device, control system, and setting support method