JPS63158604A - Furnace pressure controller - Google Patents

Furnace pressure controller

Info

Publication number
JPS63158604A
JPS63158604A JP30676386A JP30676386A JPS63158604A JP S63158604 A JPS63158604 A JP S63158604A JP 30676386 A JP30676386 A JP 30676386A JP 30676386 A JP30676386 A JP 30676386A JP S63158604 A JPS63158604 A JP S63158604A
Authority
JP
Japan
Prior art keywords
furnace
temperature
amount
temperature correction
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30676386A
Other languages
Japanese (ja)
Inventor
Kojiro Ito
伊藤 光二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30676386A priority Critical patent/JPS63158604A/en
Publication of JPS63158604A publication Critical patent/JPS63158604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the controllability and prevent previously the occurrence of a hunting phenomenon or the like by performing temperature compensation in consideration of expansion and contraction of gas in a furnace due to the change of the temperature in the furnace. CONSTITUTION:A fuel flow rate and an air flow rate obtained by a fuel flow rate detector 29 and an air flow rate detector 30 are synthesized by addition in an additive synthesizing part 31 to obtain a gas inflow rate in the furnace. The temperature in the furnace from a furnace temperature detector 32 is operated to extract its square root by a square root extracting operation part 33 and a temperature correction coefficient is obtained, and the gas inflow rate in the furnace is multiplied by the temperature correction coefficient and a feed forward coefficient (k) in a feed forward controlled variable operating means 37 to obtain a feed forward controlled variable. This controlled variable is compensated for disturbance and is taken out through a feed forward model 38 and is added to the output of a furnace pressure regulator 35 to obtain an operation signal. Thus, the controllability is improved and the occurrence of a hunting phenomenon or the like is prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば加熱炉や冷却炉等の炉圧を制御する炉
圧制御装置に係わり、特に温度補償機能を付加した炉圧
制御装置に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a furnace pressure control device for controlling the furnace pressure of a heating furnace, a cooling furnace, etc. Regarding a furnace pressure control device.

(従来の技術) この種の炉圧制御装置は炉内に投入される燃焼用流入ガ
ス量と炉外へ流出する流出ガス量とを常にバランスさせ
ることが炉内の燃焼効率を高め、かつ、炉内の材料を所
定温度に加熱する点からも重要な要件となっている。
(Prior Art) This type of furnace pressure control device improves the combustion efficiency in the furnace by constantly balancing the amount of inflow gas for combustion input into the furnace and the amount of outflow gas flowing out of the furnace. This is also an important requirement from the point of view of heating the materials in the furnace to a predetermined temperature.

そこで、従来、以上のような要件を満足する例えば加熱
炉を実現するために、加熱炉に第3図に示すような炉内
圧力制御装置を付加し炉内圧力を所定値となる様に制御
している。即ち、この装置は、燃焼用バーナ1に燃料お
よび空気を供給して燃焼を行って加熱炉2内部の材料を
所定温度となる様に加熱するとともに、燃料供給路およ
び空気供給路に個別に燃料流量検出器3および空気流量
検出器4を設けて燃料流量および空気流量を検出した後
、これらの検出流量を加算合成部5で加算合成して炉内
流入ガス量を求めている。さらに、乗算部6で前記炉内
流入ガス量とフィードフォワード係数にとを乗算し、こ
の乗算によって得られた信号をフィードフォワードモデ
ル7を介して外乱補償信号8を得ている。一方、加熱炉
2に炉圧検出器9を取り付け、この炉圧検出器9で検出
された炉圧信号を炉圧調節計10に導き、ここで炉内検
出圧力と目標値Svとの偏差に基づいて調節演算を行っ
て炉圧調節信号11を得る。そして、この炉圧調節信号
11と前記外乱補償信号8とを加算部12で加算して操
作信号を得、この操作信号を用いて操作端13を操作し
炉外へ流出する流出ガス量を調節し、結果として炉内圧
力を所定値になる様に制御している。
Therefore, conventionally, in order to realize a heating furnace that satisfies the above requirements, an in-furnace pressure control device as shown in Fig. 3 is added to the heating furnace to control the in-furnace pressure to a predetermined value. are doing. That is, this device supplies fuel and air to the combustion burner 1 to perform combustion and heat the material inside the heating furnace 2 to a predetermined temperature, and also separately supplies fuel to the fuel supply path and the air supply path. After a flow rate detector 3 and an air flow rate detector 4 are provided to detect the fuel flow rate and the air flow rate, these detected flow rates are added and combined by an addition/synthesis section 5 to determine the amount of gas flowing into the furnace. Further, a multiplier 6 multiplies the amount of gas flowing into the furnace by the feedforward coefficient, and the signal obtained by this multiplication is passed through a feedforward model 7 to obtain a disturbance compensation signal 8. On the other hand, a furnace pressure detector 9 is attached to the heating furnace 2, and the furnace pressure signal detected by the furnace pressure detector 9 is guided to the furnace pressure regulator 10, where the deviation between the detected pressure in the furnace and the target value Sv is determined. Based on this, an adjustment calculation is performed to obtain a furnace pressure adjustment signal 11. Then, this furnace pressure adjustment signal 11 and the disturbance compensation signal 8 are added in an adder 12 to obtain an operation signal, and this operation signal is used to operate the operation end 13 to adjust the amount of outflow gas flowing out of the furnace. As a result, the pressure inside the furnace is controlled to a predetermined value.

ところで、以上のような炉圧制御装置においては、炉内
流入ガス量と炉外流出ガス量とが等しければ炉内の圧力
は常に安定な状態を保持することになるが、炉内の温度
が変化するとガスの膨張度が変わり、これに伴って炉内
圧力が変化する。従って、この装置は特定温度あるいは
その近傍の温度下で得られた炉内流入ガス量に基づいて
フィードフォワード制御を実行する場合にはフィードフ
ォワード制御本来の補償効果が適切になされるが、当該
特定温度から大きく炉内温度が変化するとフィードフォ
ワード制御の補償効果は大きく減殺される。
By the way, in the above-mentioned furnace pressure control device, if the amount of gas flowing into the furnace and the amount of gas flowing out of the furnace are equal, the pressure inside the furnace will always remain stable, but if the temperature inside the furnace is When this changes, the degree of expansion of the gas changes, and the pressure inside the furnace changes accordingly. Therefore, when this device executes feedforward control based on the amount of gas flowing into the furnace obtained at or near a specific temperature, the original compensation effect of feedforward control is properly achieved, but the If the temperature inside the furnace changes significantly, the compensation effect of feedforward control will be greatly reduced.

更に、炉内温度の変化によって炉内流入ガス量および炉
外流出ガス量の膨張度が変化すると、炉内圧力のプロセ
スゲインが変化してしま−う。
Further, if the degree of expansion of the amount of gas flowing into the furnace and the amount of gas flowing out of the furnace changes due to a change in the temperature inside the furnace, the process gain of the pressure inside the furnace changes.

(発明が解決しようとする問題点) 従って、以上のような制御装置においては、炉内温度の
変化によってフィードフォワード制御の補償効果が減殺
されることにより、プロセスの制御性が著しく低下する
問題がある。また、炉内温度の変化によって炉内流入ガ
ス量と炉外流出ガス量の膨張度が変わると、制御ゲイン
のミスマツチングが生じ、これに伴ってハンチングやア
ンダーダンピングが発生すると言った問題がある。
(Problem to be Solved by the Invention) Therefore, in the above-mentioned control device, there is a problem that the compensation effect of the feedforward control is reduced due to changes in the temperature inside the furnace, and the controllability of the process is significantly reduced. be. Further, when the degree of expansion of the amount of gas flowing into the furnace and the amount of gas flowing out of the furnace changes due to a change in the temperature inside the furnace, mismatching of control gains occurs, which causes problems such as hunting and underdamping.

本発明は上記実情に鑑みてなされたもので、炉内温度の
変化による炉内ガス量の膨張・収縮を考慮して温度補償
を行うことにより、フィードフォワード制御の補償効果
を高めるとともに、フィードバック制御ゲインの最適化
を図り、制御性の向上およびハンチング現象等の生じる
のを未然に防止し得る炉圧制御装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned circumstances, and by performing temperature compensation in consideration of the expansion and contraction of the gas amount in the furnace due to changes in the temperature inside the furnace, the compensation effect of feedforward control is enhanced, and the feedback control It is an object of the present invention to provide a furnace pressure control device that can optimize gain, improve controllability, and prevent hunting phenomena.

[発明の構成] (問題点を解決するための手段) 本発明による炉圧制御装置は、炉内流入ガス量取得手段
を設けて燃料流量と空気流量を検出して炉内流入ガス量
を取得するとともに、炉に取付けた炉内温度検出器の出
力側に温度補正係数取得手段を設けて前記炉内温度検出
器からの炉内検出温度に基づいて温度補正係数を得、ま
た温度補正手段を設けてこの温度補正手段によって前記
温度補正係数取得手段の温度補正係数を用いて温度補償
信号を得るとともに、この温度補償信号を炉圧調節計の
出力である炉圧調節信号に与えることにより、前記炉内
温度の変化に対して炉内排ガス量と炉外流出ガス量とが
バランスするように制御するものである。
[Structure of the Invention] (Means for Solving the Problems) The furnace pressure control device according to the present invention is provided with means for acquiring the amount of gas flowing into the furnace, detects the fuel flow rate and the air flow rate, and acquires the amount of gas flowing into the furnace. At the same time, a temperature correction coefficient obtaining means is provided on the output side of an in-furnace temperature detector attached to the furnace to obtain a temperature correction coefficient based on the in-furnace temperature detected from the in-furnace temperature detector. By providing this temperature compensation means to obtain a temperature compensation signal using the temperature compensation coefficient of the temperature compensation coefficient obtaining means and applying this temperature compensation signal to the furnace pressure adjustment signal that is the output of the furnace pressure regulator, Control is performed so that the amount of exhaust gas inside the furnace and the amount of gas flowing out of the furnace are balanced against changes in the temperature inside the furnace.

(作用) 従って、以上のような手段とすることにより、温度補正
手段を用いて炉温検出器からの炉内温度の変化に応じて
温度補正係数を変更し炉内流入ガス量のフィードフォワ
ード制御系の補償量を変え、また必要に応じて温度補正
係数を炉圧調節計の出力に与えてフィードバック制御の
ゲインを最適ゲインとすることにより、炉内温度の変化
にも拘らず流入および流出ガス量をバランスする様に制
御し、よって、制御性を改善し、かつ、制御ゲインのミ
スマツチングをなくすものである。
(Function) Therefore, by using the above means, the temperature correction coefficient is changed according to the change in the furnace temperature from the furnace temperature detector using the temperature correction means, and the feedforward control of the amount of gas flowing into the furnace is performed. By changing the amount of compensation in the system and applying a temperature correction coefficient to the output of the furnace pressure controller as necessary to set the feedback control gain to the optimal gain, the inflow and outflow gases can be adjusted regardless of changes in the furnace temperature. Control is performed to balance the amounts, thereby improving controllability and eliminating mismatching of control gains.

(実施例) 以下、本発明装置の一実施例について第1図を参照して
説明する。同図において20は所要の材料を所定の温度
に加熱または冷却する炉であって、この炉20には燃料
および空気を供給する燃焼媒体供給手段21.燃焼用流
入ガス量を得る流入ガス量取得手段22.温度補正係数
取得手段23、炉圧を一定に制御する圧力調整手段24
および温度補正手段25等が備えられている。
(Example) Hereinafter, an example of the apparatus of the present invention will be described with reference to FIG. In the figure, reference numeral 20 denotes a furnace for heating or cooling required materials to a predetermined temperature, and combustion medium supply means 21 for supplying fuel and air to this furnace 20. Inflow gas amount acquisition means 22 for obtaining the amount of inflow gas for combustion. Temperature correction coefficient acquisition means 23, pressure adjustment means 24 for controlling the furnace pressure to be constant
A temperature correction means 25 and the like are provided.

前記燃焼媒体供給手段21は、炉20に燃焼用バーナ2
6が取付けられ、かつ、燃料供給路27よび空気供給路
28を介して燃料および空気を受けて炉内燃焼動作を行
う。前記流入ガス瓜取得手段22は、燃料供給路27と
空気供給路28に個別に燃料流量検出器29と空気流量
検出器30が取付けられ、これらの検出器29.30の
両出力を加算合成部31に導いて加算合成することによ
り、炉内流入ガス量を得る構成となっている。
The combustion medium supply means 21 includes a combustion burner 2 in the furnace 20.
6 is attached to the furnace, and receives fuel and air through a fuel supply path 27 and an air supply path 28 to perform combustion operation in the furnace. The inflow gas melon acquisition means 22 has a fuel flow rate detector 29 and an air flow rate detector 30 separately attached to the fuel supply path 27 and the air supply path 28, and adds and synthesizes the outputs of both of these detectors 29 and 30. 31 and performs additive synthesis to obtain the amount of gas flowing into the furnace.

前記温度補正係数取得手段23は、炉20の適宜な箇所
に炉内の雰囲気(ガス)lA度を検出する炉温検出器3
2が取付けられ、かつ、炉温検出器32の出力側に開平
演算部33を接続して炉内検出温度の開平演算を行って
温度補正係数を得る様になっている◎ 前記圧力調節手段24は、従来から周知のフィードバッ
ク制御系であり、炉圧検出器34および炉圧調節計35
等を有し、炉圧調節計35の出力を操作端36に与えて
炉外流出ガス量を調節する機能をもっている。
The temperature correction coefficient acquisition means 23 includes a furnace temperature detector 3 at an appropriate location in the furnace 20 for detecting the atmosphere (gas) lA degrees inside the furnace.
2 is attached, and a square root calculation section 33 is connected to the output side of the furnace temperature detector 32 to perform a square root calculation of the detected temperature in the furnace to obtain a temperature correction coefficient.◎ The pressure adjustment means 24 is a conventionally well-known feedback control system, which includes a furnace pressure detector 34 and a furnace pressure regulator 35.
It has a function of applying the output of the furnace pressure regulator 35 to the operating end 36 to adjust the amount of gas flowing out of the furnace.

前記温度補正手段25は、炉内流入ガス量にフィードフ
ォワード係数におよび温度補正係数を乗算してフィード
フォワード制御量を求めるフィードフォワード制御量演
算手段37と、このフィードフォワード制御量を用いて
外乱補償信号を取得するフィードフォワードモデル38
と、前記炉圧調節計35の炉圧調節信号に外乱補償信号
を加えて操作信号を得る加算演算部39とで構成されて
いる。。
The temperature correction means 25 includes a feedforward control amount calculation means 37 that multiplies the amount of gas flowing into the furnace by a feedforward coefficient and a temperature correction coefficient to obtain a feedforward control amount, and a disturbance compensation using this feedforward control amount. Feedforward model for acquiring signals 38
and an addition calculation section 39 that adds a disturbance compensation signal to the furnace pressure adjustment signal of the furnace pressure regulator 35 to obtain an operation signal. .

次に、以上のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as above will be explained.

一般的には、炉圧調節計35を用いて炉圧検出器34で
得られた炉内検出圧力と目標値SVとを比較し、その偏
差を零とするための調節演算を行って炉圧調節信号を得
、更に炉圧調節信号に炉内流入ガス量に関わるフィード
フォワード制御の外乱補償信号を加えて操作信号を得、
これを操作端36に与えて炉外流出ガス量を調節し、炉
内流入ガス量と炉外流出ガス量とをバランスさせている
Generally, the furnace pressure is adjusted by comparing the detected pressure in the furnace obtained by the furnace pressure detector 34 with the target value SV using the furnace pressure regulator 35, and performing adjustment calculations to make the deviation zero. Obtain an adjustment signal, further add a disturbance compensation signal for feedforward control related to the amount of gas flowing into the furnace to the furnace pressure adjustment signal to obtain an operation signal,
This is applied to the operating end 36 to adjust the amount of gas flowing out of the furnace, thereby balancing the amount of gas flowing into the furnace and the amount of gas flowing out of the furnace.

しかし、炉内ガス量は炉内の温度変化によって膨張・収
縮するので、炉内流入ガス量に関わるフィードフォワー
ド制御の外乱補償効果が減殺され、ひいては制御性が低
下する。そこで、燃料流量検出器29と空気流量検出器
30で得られた燃料流量と空気流量とを加算合成部31
で加算合成して炉内流入ガス量を求め、かつ、炉温検出
器32からの炉内温度を開平演算部33で開平演算して
温度補正係数を求めるとともに、フィードフォワード制
御量演算手段37で前記炉内流入ガス量に温度補正係数
とフィードフォワード係数にとを乗算してフィードフォ
ワード制御量を得、この制御量をフィードフォワードモ
デル38を介して外乱補償信号として取出して前記炉圧
調節計35の出力に加えて操作信号を得た後、これを操
作端36に与えて炉外流出ガス量を制御することにより
、炉内流入ガス量と炉外流出ガス量のバランスをとって
いる。
However, since the amount of gas in the furnace expands and contracts due to temperature changes in the furnace, the disturbance compensation effect of feedforward control related to the amount of gas flowing into the furnace is reduced, and controllability is reduced. Therefore, the fuel flow rate and the air flow rate obtained by the fuel flow rate detector 29 and the air flow rate detector 30 are added together by a synthesis unit 31.
The amount of gas flowing into the furnace is determined by addition and synthesis in the furnace temperature detector 32, and the square root calculation section 33 performs a square root calculation of the temperature inside the furnace from the furnace temperature detector 32 to obtain a temperature correction coefficient. The amount of gas flowing into the furnace is multiplied by the temperature correction coefficient and the feedforward coefficient to obtain a feedforward control amount, and this control amount is taken out as a disturbance compensation signal via the feedforward model 38 and sent to the furnace pressure regulator 35. After obtaining an operation signal in addition to the output of , this is applied to the operating end 36 to control the amount of gas flowing out of the furnace, thereby maintaining a balance between the amount of gas flowing into the furnace and the amount of gas flowing out of the furnace.

以上のような構成の温度補償手段を設けたのは次の理由
からである。先ず、炉圧力制御に関わる諸元として、炉
内流入ガス量をF o !(Nm3/h) 。
The reason for providing the temperature compensating means having the above configuration is as follows. First, as a specification related to furnace pressure control, the amount of gas flowing into the furnace is F o ! (Nm3/h).

基準温度(例えば20’ C)時の炉外流出ガス量をF
GO(N13 /l、)、現時点での炉温度、圧力状態
時の炉外流出ガス量をF OX (+g3/h) 、炉
内操作量をMva(%)、炉内温度をT(”k)とする
。ここで、炉内圧力を一定にするには炉内流入ガス量と
炉外流出ガス量とが等しくなる必要がある。つまり、上
記諸元を用いると、 Fao=FaI        ・=(1)なる関係が
成立する必要がある。次に、炉圧操作端36がリニア特
性(特性補正でリニア特性とする場合も含む)とすると
、現時点における炉外流出ガスm F G Xとするた
めの操作j1Mvcは、操作端36の流量係数cv(操
作量と開度の関係を表わすものでリニア特性と考えた場
合には“1”である)に比例することおよび炉内温度T
の条件から Mv c−k  −Fa x  ・ (1/J1r) 
  ・=  (2)で表わされる。、今、炉外流出ガス
量が pa。
The amount of gas flowing out of the furnace at the standard temperature (for example, 20'C) is F.
GO (N13/l,), the furnace temperature at the present time, the amount of gas flowing out of the furnace in the pressure state as FOX (+g3/h), the operating amount in the furnace as Mva (%), and the temperature inside the furnace as T ("k ).Here, in order to keep the pressure inside the furnace constant, the amount of gas flowing into the furnace and the amount of gas flowing out of the furnace must be equal.In other words, using the above specifications, Fao=FaI ・=( 1) The following relationship needs to hold.Next, if the furnace pressure operating end 36 has a linear characteristic (including the case where it has a linear characteristic by characteristic correction), the outflow gas from the furnace at the present time m F G The operation j1Mvc is proportional to the flow coefficient cv of the operation end 36 (which represents the relationship between the operation amount and the opening degree, and is "1" when considered as a linear characteristic) and the furnace temperature T.
From the conditions, Mv c−k −Fax ・(1/J1r)
・= It is expressed as (2). , now the amount of gas flowing out of the reactor is pa.

(N13 /h)であるので、上記(2)式はMvG−
に′ ・T−FGo・(ll−rf)−に’  ・−1
’T−Fc o    −(3)なる式に置換できる。
(N13/h), the above equation (2) is MvG-
ni'・T-FGo・(ll-rf)-ni' ・-1
It can be replaced with the formula 'T-Fco-(3).

そこで、この(2)式および(3)式から、 Mv a =に’  ・f丁・Fo 1   − (4
)が得られる。つまり、操作ffiMvaは炉内温度T
の開平値に比例した操作量であることが分る。このこと
は炉内流入ガス量に炉内温度による温度補正係数を付加
してフィードフォワード制御量を決定するようにすれば
、炉の諸種の条件に伴って生じる外乱要素の影響を考慮
された精度の高いフィードフォワード制御を実行するこ
とができる。
Therefore, from equations (2) and (3), Mv a = ni' ・f d ・Fo 1 − (4
) is obtained. In other words, the operation ffiMva is the furnace temperature T
It can be seen that the manipulated variable is proportional to the square root value of . This can be achieved by adding a temperature correction coefficient based on the temperature inside the furnace to the amount of gas flowing into the furnace to determine the feedforward control amount. High feedforward control can be performed.

従って、以上のような実施例の構成によれば、同一の炉
圧であっても炉温の変化に応じて炉内温度の開平値に比
例した温度補正係数を取得し、炉内流入ガス量にフィー
ドフォワード係数のほかに温度補正係数を乗算しフィー
ドフォワード制御量を決定するようにしたので、炉内温
度の変化によるガス量の膨張・収縮があっても適切にフ
ィードフォワード制御を行うことができ、制御性を大幅
に改善することができる。また、フィードフォワード制
御が適切になされれば、燃焼用バーナ26による炉内の
燃焼効率を高められ、最適な温度で材料を加熱すること
ができる。
Therefore, according to the configuration of the embodiment described above, even if the furnace pressure is the same, a temperature correction coefficient proportional to the square root value of the furnace temperature is obtained according to changes in the furnace temperature, and the amount of gas flowing into the furnace is adjusted. Since the feedforward control amount is determined by multiplying the temperature correction coefficient in addition to the feedforward coefficient, feedforward control can be performed appropriately even if the gas volume expands or contracts due to changes in the furnace temperature. controllability can be greatly improved. Moreover, if feedforward control is performed appropriately, the combustion efficiency in the furnace by the combustion burner 26 can be increased, and the material can be heated at an optimal temperature.

なお、上記実施例ではフィードフォワード制御の補償手
段に温度補償要素を付加したものであるが、第2図に示
すようにフィードバック制御系にも炉温の変化に伴う補
償要素を付加することができる。すなわち、炉圧調節計
35と・加算演算部39の間に乗算機能を持つゲイン修
正手段41を設け、ここで、炉圧調節計35からのフィ
ードバック調節信号に温度補正係数取得手段23で得ら
れた温度補正係数を掛けてフィードバック制御ゲインを
修正し、このゲイン修正手段41でゲイン修正された調
節信号に前記外乱補償信号を加えて操作信号を得るよう
にしてもよい。従って、このような構成であれば、炉内
温度の変化に対して炉内流入ガス量に関わるフィードフ
ォワード制御の補償効果を充分に発揮させ得るとともに
、炉圧制御の制御ゲインのミスマツチングがなくなって
ハンチングやアンダーダンピングの発生を防ぐことがで
きる。
In the above embodiment, a temperature compensation element is added to the feedforward control compensation means, but as shown in FIG. 2, a compensation element for changes in furnace temperature can also be added to the feedback control system. . That is, a gain correction means 41 having a multiplication function is provided between the furnace pressure regulator 35 and the addition calculation section 39, and here, the feedback adjustment signal from the furnace pressure regulator 35 is obtained by the temperature correction coefficient acquisition means 23. The feedback control gain may be corrected by multiplying it by a temperature correction coefficient, and the disturbance compensation signal may be added to the adjustment signal whose gain has been corrected by the gain correction means 41 to obtain the operation signal. Therefore, with such a configuration, the compensation effect of the feedforward control related to the amount of gas flowing into the furnace can be sufficiently exerted against changes in the furnace temperature, and mismatching of the control gain of the furnace pressure control can be eliminated. Hunting and underdamping can be prevented from occurring.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果コ 以上詳記したように本発明によれば、炉内温度の変化に
よるガス量の膨張・収縮を考慮して温度補償を行うこと
により、フィードフォワード制御の補償効果を充分に発
揮させることができるとともに、フィードバック制御ゲ
インの最適化を図り得、制御性の向上およびハンチング
等の生じるのを未然に防止し得る炉圧制御装置を提供で
きる。
[Effects of the Invention] As detailed above, according to the present invention, the compensation effect of feedforward control is fully exhibited by performing temperature compensation in consideration of the expansion and contraction of the gas amount due to changes in the temperature inside the furnace. It is possible to provide a furnace pressure control device that can optimize the feedback control gain, improve controllability, and prevent hunting and the like from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる炉圧制御装置の一実施例を示す
構成図、第2図は本発明装置の他の実施例を示す構成図
、第3図は従来装置の構成図である。 20・・・炉、21・・・燃焼媒体供給手段、22・・
・炉内流入ガス量取得手段、23・・・温度補正係数取
得手段、24・・・炉圧調節手段、25・・・温度補正
手段、26・・・燃焼用バーナ、29・・・燃料流量検
出器、30・・・空気流量検出器、31・・・加算合成
部、32・・・炉温検出器、33・・・開平演算部、3
4・・・炉圧検出器、35・・・炉圧力調節計、36・
・・操作端、37・・・フィードフォワード制御量演算
手段、38・・・フィードフォワードモデル、39・・
・加算演算部、41・・・ゲイン修正手段。 出願人代理人 弁理士 鈴江武彦 ts3図
FIG. 1 is a block diagram showing one embodiment of the reactor pressure control device according to the present invention, FIG. 2 is a block diagram showing another embodiment of the device of the present invention, and FIG. 3 is a block diagram of a conventional device. 20...Furnace, 21...Combustion medium supply means, 22...
・Furnace inflow gas amount acquisition means, 23... Temperature correction coefficient acquisition means, 24... Furnace pressure adjustment means, 25... Temperature correction means, 26... Combustion burner, 29... Fuel flow rate Detector, 30... Air flow rate detector, 31... Addition synthesis section, 32... Furnace temperature detector, 33... Square root calculation section, 3
4... Furnace pressure detector, 35... Furnace pressure regulator, 36.
... Operating end, 37... Feedforward control amount calculation means, 38... Feedforward model, 39...
- Addition calculation section, 41...gain correction means. Applicant's agent Patent attorney Takehiko Suzue TS3 diagram

Claims (3)

【特許請求の範囲】[Claims] (1)炉圧調節計を用いて炉内検出圧力に基づいて炉外
流出ガス量を、炉内流入ガス量と等しくなる様に炉圧調
節信号を出力して調整する炉圧制御装置において、燃料
流量と空気流量を検出して炉内流入ガス量を取得する流
入ガス量取得手段と、前記炉に炉温検出器を取付け、こ
の炉温検出器からの炉内検出温度に基づいて温度補正係
数を得る温度補正係数取得手段と、この温度補正係数取
得手段からの温度補正係数を用いて温度補償信号を得、
この温度補償信号を前記炉圧調節信号に加えて炉外流出
ガス量の操作端を操作するための操作信号を得る温度補
正手段とを備えてなることを特徴とする炉圧制御装置。
(1) In a furnace pressure control device that outputs a furnace pressure adjustment signal to adjust the amount of gas flowing out of the furnace to be equal to the amount of gas flowing into the furnace based on the detected pressure inside the furnace using a furnace pressure regulator, An inflow gas amount acquisition means that detects the fuel flow rate and air flow rate to obtain the inflow gas amount into the furnace, and a furnace temperature detector is attached to the furnace, and temperature correction is performed based on the temperature detected in the furnace from the furnace temperature detector. a temperature correction coefficient obtaining means for obtaining a coefficient; and obtaining a temperature compensation signal using the temperature correction coefficient from the temperature correction coefficient obtaining means;
A furnace pressure control device characterized by comprising: temperature correction means for adding this temperature compensation signal to the furnace pressure adjustment signal to obtain an operation signal for operating an operation end of an amount of gas flowing out of the furnace.
(2)温度補正手段は、前記炉内流入ガス量に前記温度
補正係数およびフィードフォワード係数を乗算してフィ
ードフォワード制御量を求めるフィードフォワード制御
量演算手段と、このフィードフォワード制御量演算手段
の出力をフィードフォワードモデルを介して前記温度補
正信号としての外乱補償信号を得る手段と、前記炉圧調
節信号に外乱補償信号を与えて操作信号を得る手段とを
有するものである特許請求の範囲第1項記載の炉圧制御
装置。
(2) The temperature correction means includes a feedforward control amount calculation means for calculating a feedforward control amount by multiplying the amount of gas flowing into the furnace by the temperature correction coefficient and the feedforward coefficient, and an output of the feedforward control amount calculation means. and means for obtaining a disturbance compensation signal as the temperature correction signal through a feedforward model; and means for providing a disturbance compensation signal to the furnace pressure adjustment signal to obtain an operation signal. Furnace pressure control device as described in section.
(3)温度補正手段は、前記炉内流入ガス量に前記温度
補正係数およびフィードフォワード係数を乗算してフィ
ードフォワード制御量を求めるフィードフォワード制御
量演算手段と、このフィードフォワード制御量演算手段
の出力をフィードフォワードモデルを介して前記温度補
正信号としての外乱補償信号を得る手段と、前記炉圧調
節計からの炉圧調節信号と前記温度補正係数取得手段か
らの温度補正係数とに基づいてフィードバック制御ゲイ
ンを修正するゲイン修正手段と、このゲイン修正手段の
出力に外乱補償信号を与えて操作信号を得る手段とを有
するものである特許請求の範囲第1項記載の炉圧制御装
置。
(3) The temperature correction means includes a feedforward control amount calculation means for calculating a feedforward control amount by multiplying the amount of gas flowing into the furnace by the temperature correction coefficient and the feedforward coefficient, and an output of the feedforward control amount calculation means. means for obtaining a disturbance compensation signal as the temperature correction signal via a feedforward model, and feedback control based on the furnace pressure adjustment signal from the furnace pressure regulator and the temperature correction coefficient from the temperature correction coefficient acquisition means. 2. A reactor pressure control system according to claim 1, comprising gain modifying means for modifying the gain, and means for applying a disturbance compensation signal to the output of the gain modifying means to obtain an operation signal.
JP30676386A 1986-12-23 1986-12-23 Furnace pressure controller Pending JPS63158604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30676386A JPS63158604A (en) 1986-12-23 1986-12-23 Furnace pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30676386A JPS63158604A (en) 1986-12-23 1986-12-23 Furnace pressure controller

Publications (1)

Publication Number Publication Date
JPS63158604A true JPS63158604A (en) 1988-07-01

Family

ID=17960996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30676386A Pending JPS63158604A (en) 1986-12-23 1986-12-23 Furnace pressure controller

Country Status (1)

Country Link
JP (1) JPS63158604A (en)

Similar Documents

Publication Publication Date Title
US8195312B2 (en) Multi-mode control loop with improved performance for mass flow controller
US6167690B1 (en) Control system for controlling at least one variable of a process as well as a use of such a control system
JPS63158604A (en) Furnace pressure controller
JPS6219641A (en) Method of controlling combustion for hot water supplier
JP2001021141A (en) Combustion control method of heating furnace and combustion control device
JP4709687B2 (en) Fuel gas calorie control device for gas turbine
JPH0719989A (en) Pressure control device for blowout type wind tunnel
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JPS62217051A (en) Controller of hot water supplier
JPH07332602A (en) Steam temperature prediction control device
JP2619044B2 (en) Temperature control device
JPH0410642B2 (en)
JPS5936804A (en) Automatic correcting method of feedforward model
JPH01239602A (en) Process controller
JPS5813809B2 (en) Combustion control method using low excess air
JP2600777B2 (en) Hot water temperature control device
JP2549711B2 (en) Process control equipment
JPH0642161B2 (en) How to modify a feedforward model
JPS629405A (en) Process controller
JPS5846403A (en) Feed-forward controller
JPS62263516A (en) Temperature control method and instrument for heating furnace
JPS5846721B2 (en) Plant optimization control method
TW202323723A (en) Method for controlling temperature of heating furnace
JPS6010303A (en) Temperature controller
JPH1054545A (en) Lng pressure reduction/heating controller