JPS6315836A - Tire for heavy duty vehicle - Google Patents

Tire for heavy duty vehicle

Info

Publication number
JPS6315836A
JPS6315836A JP61160579A JP16057986A JPS6315836A JP S6315836 A JPS6315836 A JP S6315836A JP 61160579 A JP61160579 A JP 61160579A JP 16057986 A JP16057986 A JP 16057986A JP S6315836 A JPS6315836 A JP S6315836A
Authority
JP
Japan
Prior art keywords
rubber
molecular weight
tire
average molecular
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61160579A
Other languages
Japanese (ja)
Inventor
Tadashi Saito
正 斎藤
Ken Kijima
研 貴島
Masayuki Ohashi
大橋 昌行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61160579A priority Critical patent/JPS6315836A/en
Publication of JPS6315836A publication Critical patent/JPS6315836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a tire for a heavy duty vehicle having excellent abrasion resistance and breaking resistance, by using a blended rubber of a given wt. ratio comprising a polybutadiene rubber having a specified property and a natural rubber and/or a polyisoprene rubber as a tread. CONSTITUTION:A polybutadiene rubber having at least 90% or more of cis-1,4 bondings, whose weight-average molecular weight (Mw) is in the range of 500,000-1,200,000, the ratio of Mw to number-average molecular weight (Mn) is in the range of 5-15 and values of Mw and Mn has a relation represented by the equation is prepd. 10-50pts.wt. this polybutadiene rubber and 90-50pts. wt. natural rubber and/or polyisoprene are blended. The blended rubber thus obtd. is used as a tread rubber to prepare a tire for a heavy duty vehicle. The obtd. tire is suitably used for a tire for a truck, a bus or an airplane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は重車両用タイヤ、特に、重荷重下で高速走行す
るトラック・ハス川タイA・、小型トラックタイヤ、航
空機用タイヤ等重車両用タイヤの発熱耐久性能(低発熱
性)、耐摩耗性能、耐破壊性能およびそのゴムの加工性
の改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to tires for heavy vehicles, particularly for heavy vehicles such as tires for trucks that run at high speed under heavy loads, tires for small trucks, tires for aircraft, etc. This invention relates to improvements in the heat generation durability (low heat generation), wear resistance, and fracture resistance of tires, as well as the processability of their rubber.

(従来の技術とその問題点) 従来、重車両用タイヤの1〜レソt′のゴムを改良する
場合、例えば、ゴム材料選択のポイン1−(n本規格協
会、1979年8月10口第1版発行、107@〜13
0頁、タイヤ用ゴム材料)によれば、タイヤの用途およ
び改良目的に応じたゴム材料の選択、ゴム材料の混合お
よびカーボンブランク、軟化剤の種類、量を適切にする
ことが記されている。例えば発熱性、耐破壊性を改良す
るには天然ゴムを使用し、耐摩耗性、耐カット性を改良
するにはスチレンブタジェンゴムを使用し、あるいは耐
摩耗性発熱性を改良するにはブタジェンゴムを使用する
ことが知られている。また改良する目的によってはこれ
らのゴム材料を適当星に゛(混合することが行われてい
る。また、ゴム材1)にカーボンブランクを配合するこ
とによって、特にカーボンブラックの粒子径を小さくか
つ多量に配合することによって耐摩耗性を向」ニさせる
ことも知られている。
(Prior art and its problems) Conventionally, when improving the rubber of tires for heavy vehicles from 1 to 1st edition published, 107@~13
According to page 0, Rubber Materials for Tires), it is stated that the selection of rubber materials, the mixing of rubber materials, and the types and amounts of carbon blanks and softeners should be appropriate depending on the use and improvement purpose of the tire. . For example, natural rubber is used to improve heat generation properties and fracture resistance, styrene-butadiene rubber is used to improve abrasion resistance and cut resistance, or butadiene rubber is used to improve wear resistance and heat generation properties. is known to be used. In addition, depending on the purpose of improvement, these rubber materials are mixed in appropriate amounts.Also, by blending carbon blank with rubber material 1), it is possible to reduce the particle size of carbon black in particular and increase the amount of carbon black. It is also known that abrasion resistance can be improved by adding it to

また、日本ゴム協会誌 第56巻 第7号418頁(1
983年発行)によれば、ポリブタジェンゴムの改良に
ついては、タンク(粘着性)、グリーンストレングス(
未加硫ゴムの強度)を改良するために分子量分布の広い
ポリブタジェンゴムが開示されている。
In addition, Japan Rubber Association Journal, Vol. 56, No. 7, p. 418 (1)
(published in 1983), improvements to polybutadiene rubber include tank (stickiness), green strength (
Polybutadiene rubber with a wide molecular weight distribution has been disclosed to improve the strength of unvulcanized rubber.

また、特開昭59−4.5337号公報には、ポリブタ
ジェンゴムの生強度(グリーンストレングス)を改良す
るために重量平均分子■と数平均分子量ととの比を5以
−Lにする事が開示されている。
Furthermore, in JP-A No. 59-4.5337, in order to improve the green strength of polybutadiene rubber, the ratio of the weight average molecular weight to the number average molecular weight is set to 5 or more -L. things are disclosed.

しかしながら、重車両用タイヤのトレッドゴムの低発熱
性、耐摩耗性、耐破壊性の改良をするために、天然ゴム
とポリブタジェンゴムとの混合物において、ポリブタジ
ェンゴムを多鼠に混合すると耐摩耗性は改良されるが、
耐クラツク性が悪化する。ポリブタジェンゴムの混合割
合を増大させると耐クランク性は改良されるが耐摩耗性
が低下する。このように、従来の技術では1つの特性の
改良を試みると他の1つの特性の悪化を招くという問題
点がある。
However, in order to improve the low heat build-up, abrasion resistance, and fracture resistance of tread rubber for heavy vehicle tires, polybutadiene rubber is mixed into a mixture of natural rubber and polybutadiene rubber. Abrasion resistance is improved, but
Cracking resistance deteriorates. Increasing the mixing ratio of polybutadiene rubber improves crank resistance, but reduces wear resistance. As described above, the conventional technology has a problem in that attempting to improve one characteristic leads to deterioration of another characteristic.

また、重車両用タイヤの1〜レノ1ゴムのように、低発
熱性、耐摩耗性、耐クラック性の他に、さらに、ゴムの
耐破壊特性、すなわち、タイヤの耐カット性(衝撃によ
るカッl−)またに1耐リブテイア性を改良する場合に
は、ポリブタジェンゴムと天然ゴムあるいはポリブタジ
ェンゴムとポリイソプレンゴムなど耐破壊特性にすぐれ
たゴJ、を混合して使用するのが一般的である。
In addition to low heat build-up, abrasion resistance, and crack resistance, rubbers such as 1 to Reno 1 rubber for heavy vehicle tires also have the characteristics of rubber's fracture resistance, i.e., the tire's cut resistance (cut resistance due to impact). l-) Furthermore, in order to improve rib tear resistance, it is recommended to use a mixture of polybutadiene rubber and natural rubber, or polybutadiene rubber and polyisoprene rubber, which have excellent fracture resistance properties. Common.

しかしながら、タイヤの使用条件によってしよ、ゴムを
混合しただけでは満足できないため、カーボンブランク
の種類、量の選択によって問題を解決しようとする事も
行われている。カーボンブラックの粒子径を小さくする
ことによって耐摩耗性は向上するが、工業的に使用する
場合にはカーボンの粒子径が小さいとゴムとの混入分散
がしづらく混練に長時間を要し、生産性の面から好まし
くない。また、混練時間を短くするとカーボンブランク
の分散が不均一となり、目的とする耐摩耗性が得られな
いという問題点がある。
However, depending on the usage conditions of the tire, it may not be satisfactory just to mix rubber, so attempts have been made to solve the problem by selecting the type and amount of carbon blank. Abrasion resistance can be improved by reducing the particle size of carbon black, but when used industrially, if the particle size of carbon is small, it is difficult to mix and disperse with rubber, and kneading takes a long time, resulting in production problems. Undesirable from a sexual standpoint. Furthermore, if the kneading time is shortened, the carbon blank will be dispersed non-uniformly, resulting in a problem that the desired wear resistance cannot be obtained.

また、カーボンブランクで耐摩耗性を改良する1’61
外の他の手段としてゴムの耐破壊特性を改良するために
、例えば、ポリブタジェンゴムの耐破壊特性を改良する
ために分子量を大きくすることができるが、加工性の低
下を招く。そのために、耐破壊特性を改良する目的でロ
ジン誘湧体、シクロペンタジェン樹脂、変性シクロペン
タジェン樹脂を配合することが行われているが、重荷重
、高速走行においては発熱が大きくなり耐久性が低下す
るという問題点がある。
In addition, the 1'61 carbon blank improves wear resistance.
As another means of improving the fracture resistance of rubber, for example, increasing the molecular weight can be used to improve the fracture resistance of polybutadiene rubber, but this results in a decrease in processability. To this end, rosin derivatives, cyclopentadiene resins, and modified cyclopentadiene resins have been blended to improve fracture resistance, but under heavy loads and high speeds, heat generation increases, resulting in poor durability. There is a problem in that the value decreases.

(発明の目的) そこで本発明4才、重車両用タイヤに要求される耐摩耗
性、耐発熱性、耐破壊特性およびトレッドゴムの加二[
性において、良路で高速走行する重車両用タイヤに要求
される性能のうち耐摩耗性、低発熱性、およびゴムの加
工性を維持したまま、耐破壊特性(すなわち、面1チッ
ピング性および耐リブティア性)を大幅に改良した重車
両用タイヤを提flすることを目的とする。
(Purpose of the Invention) Therefore, the present invention aims to improve the abrasion resistance, heat resistance, and fracture resistance properties required for tires for heavy vehicles, and to improve the properties of tread rubber.
In terms of performance, while maintaining wear resistance, low heat build-up, and rubber processability among the performances required for tires for heavy vehicles that run at high speeds on good roads, The purpose of this invention is to provide a heavy vehicle tire with significantly improved rib tearability.

(問題点を解決するだめの手段) そこで、本発明者らは、ポリブタジェンゴムの耐摩耗性
、低発熱性、耐破壊特性、ゴムの加工性等の物性と、ゴ
ム分子構造、ゴムの重量平均分子量1 M W、数平均
分子量gn、これらの比M w / Mn (分子量分
布)等との関係、および他のゴム種との混合特性等につ
き研究した。
(An unsuccessful means to solve the problem) Therefore, the present inventors investigated the physical properties of polybutadiene rubber such as abrasion resistance, low heat build-up, fracture resistance, and rubber processability, as well as the rubber molecular structure and rubber properties. The relationship between the weight average molecular weight 1 M W, the number average molecular weight gn, the ratio M w /Mn (molecular weight distribution), etc., and the mixing characteristics with other rubber types were studied.

まず、本発明者らし才、ポリブタジェンゴムの耐摩耗性
、低発熱性、耐破壊特性およびゴムの加工性を併立改良
するために種々検討した結果、以下のことを見出した。
First, as a result of various studies in order to simultaneously improve the abrasion resistance, low heat build-up, fracture resistance, and processability of polybutadiene rubber, the inventors discovered the following.

■ ポリブタジェンゴムの重量分子量MWを大きくする
と耐摩耗性にすくれるが引張り強さ、破断伸びが低下す
る。したがって、商事h1平均分子量のポリブタジェン
ゴムを重荷重タイヤのトレッドゴムに使用すると摩耗性
が改良されるがカット性、リブティア性、チッピング性
などが悪化する。またゴムを高分子量にするとゴムの粘
度が」−智して混練、押出しなどの加工性が悪化する。
■ Increasing the weight molecular weight MW of polybutadiene rubber improves abrasion resistance, but reduces tensile strength and elongation at break. Therefore, when a polybutadiene rubber having an average molecular weight of Shoji h1 is used in the tread rubber of a heavy-duty tire, the abrasion properties are improved, but the cutting properties, rib tear properties, chipping properties, etc. are deteriorated. Furthermore, when the molecular weight of the rubber is increased, the viscosity of the rubber increases, resulting in poor processability such as kneading and extrusion.

しかしながら、ポリブタジェンゴムの数平均分子量Mn
に対する重量平均分子@Mwの比Mw / M n 、
 7m工慴、1lIii r;に壊1ノ1の悪化を来さ
ノt″いことを見出した。
However, the number average molecular weight Mn of polybutadiene rubber
The ratio of the weight average molecule @Mw to Mw / M n ,
It was found that 7m engineering and 1lIiii r; did not result in a 1-1 deterioration of damage.

■ カット性、リゾティア1ノ1、千ノピング性などの
Kil (1,壊!1)1性の点から1.1分子量分布
を51ソ上とするごと乙こ、1−って改良効果かみられ
、特に重h1平向分子5f M wが大きくなるにつれ
改良効果は顕著となるが、耐摩耗1)lの点より15以
下が望ましいことをしり出した。
■ From the point of view of cutting properties, Rizotia 1-1, thousand-knocking properties, etc., an improvement effect of 1-1 can be seen by increasing the molecular weight distribution by 1.1 by 51 degrees. In particular, as the weight h1 planar molecule 5f Mw becomes larger, the improvement effect becomes more remarkable, but from the viewpoint of wear resistance 1) l, it is desirable that it be 15 or less.

■ 配合′:1ノ、の加工性の点からは重積平均分子−
早Mwイー小さくするば良好となるか、品分″r−尾に
しても分子1)十分布M w / M nを大きくすれ
ば加−1寸]を害さないことを見出し、その関係は次式
%式% で示されろことを見出した。
■ Compound': From the viewpoint of processability, stacked average molecular -
We found that if we make Mw smaller, it becomes better, or that even if we make the material r-tail, it does not harm the molecule 1) If we make Mw/Mn sufficiently large, it does not harm the molecule 1), and the relationship is as follows. It was found that it can be expressed by the formula %.

■ 耐摩耗1!1の点からは品分7−星でIyTましい
傾向を示すか耐破壊1’l、加工性をそこなう範囲を含
む、二とに31ν)本発明の1−1的である面1破壊1
ノ1、ml摩1[1)1、加1: l’lの併立改良を
するためにはi[ii平均分i”+を回w1..l:5
0万〜120万の範囲が望ましいことを見出した。
■ In terms of wear resistance 1!1, the product is 7-star and shows a favorable tendency for IyT, or fracture resistance 1'l, including a range that impairs workability, and secondly 31ν) 1-1 of the present invention. Certain aspects 1 destruction 1
1, ml 1 [1) 1, addition 1: In order to simultaneously improve l'l, i[ii average i''+ times w1..l:5
It has been found that a range of 00,000 to 1,200,000 is desirable.

本発明、旧−1さらにfit意検δ・1を重ねた結果、
本発明に到達した。
In the present invention, as a result of repeating the old-1 and the fit inspection δ・1,
We have arrived at the present invention.

すなわち、本発明に係る重車両用タイヤCat、シス1
.4結合を少なくとも90%以−1)含有し、重量平均
分子量MWが50万〜120万の範囲にあり、重量平均
分子量MWと数平均分子量Mnとの比M w /Mnの
値が5〜15の範囲にあり、重量平均分子量Mwと数平
均分子量Mnの値が次式 %式% の関係を有するポリブタジェンゴム10〜50重量部と
天然ゴムおよび/またはポリイソプレンゴム90〜50
重量部の範囲で混合したゴムを1〜レソ1−に備えたこ
とを特徴としている。
That is, the heavy vehicle tire Cat, System 1 according to the present invention
.. 4 bonds at least 90% or more, the weight average molecular weight MW is in the range of 500,000 to 1,200,000, and the ratio M w /Mn of the weight average molecular weight MW to the number average molecular weight Mn is 5 to 15. 10 to 50 parts by weight of polybutadiene rubber and 90 to 50 parts by weight of natural rubber and/or polyisoprene rubber, in which the weight average molecular weight Mw and the number average molecular weight Mn have a relationship according to the following formula %.
It is characterized by having rubber mixed in a range of parts by weight from 1 to 1-.

また、本発明の重車両用タイヤは航空機用タイヤに特に
好適である。
Furthermore, the heavy vehicle tire of the present invention is particularly suitable as an aircraft tire.

また、ゴム分100重量部に対するカーボンブラックの
配合量は、ヨウ素吸着量が80〜150g/kgで、D
BPが100〜180Cシ/100 gの特性を有する
カーボンブラック30〜80重積部の範囲が好ましい。
In addition, the amount of carbon black blended with respect to 100 parts by weight of rubber has an iodine adsorption amount of 80 to 150 g/kg, and D
A preferable range is 30 to 80 parts of carbon black having a BP of 100 to 180 C/100 g.

ここに、分子品分布M w / M nを5〜I5とし
たのは、5未満では耐破壊性が不足し、15を超えると
耐摩耗性が不足するからである。分子量分布hnW /
 h+ nは5〜15の範囲が好ましいが、さらに好ま
しくば6〜8である。
The reason why the molecular component distribution Mw/Mn is set to 5 to I5 is that if it is less than 5, the fracture resistance will be insufficient, and if it exceeds 15, the abrasion resistance will be insufficient. Molecular weight distribution hnW /
h+n preferably ranges from 5 to 15, more preferably from 6 to 8.

また、重量平均分子量Mwと数平均分子Fil M n
との関係について、前記式(2)の範囲に限定したのは
、式(1)の範囲を外れると加工性が不足するからであ
る。
In addition, the weight average molecular weight Mw and the number average molecular weight Fil M n
The reason why the relationship is limited to the range of formula (2) above is because workability is insufficient if the relationship is outside the range of formula (1).

また、重量平均分子量M w 1.才50〜120万の
範囲としたのは、50万未満では耐摩耗性が不足し、1
50万を超えると混練的にカーボンブランクの分散が不
均一となり、やはり耐摩耗性が不足するからである。重
量平均分子量Mwは50〜120万の範囲が好ましいが
、さらに好ましくは60〜80万である。
Moreover, the weight average molecular weight M w 1. The reason why the range was set at 500,000 to 1,200,000 was that if it was less than 500,000, the wear resistance would be insufficient.
If it exceeds 500,000, the carbon blank will not be uniformly dispersed during kneading, resulting in insufficient wear resistance. The weight average molecular weight Mw is preferably in the range of 500,000 to 1,200,000, more preferably 600,000 to 800,000.

また、シス1.4結合の含有率を90%以上としたのは
、90%未満ではグリーンストレングスが低下し加工性
が不足するからである。
Further, the reason why the content of cis-1.4 bonds is set to 90% or more is because if it is less than 90%, green strength decreases and workability is insufficient.

また、ポリブタジェンゴムと天然ゴムおよびポリイソプ
レンゴムとの混合において、ポリブタジエンゴム分を1
0〜50重量部としたのは10重量部未満でも、50重
量部を超えても低発熱性が不足するからである。
In addition, when mixing polybutadiene rubber with natural rubber and polyisoprene rubber, the polybutadiene rubber content is
The reason for setting the amount to be 0 to 50 parts by weight is because the low heat generation property is insufficient even if it is less than 10 parts by weight or exceeds 50 parts by weight.

(実施例) 以下、本発明を実施例を用いて説明する。(Example) The present invention will be explained below using examples.

(実施例1〜3、比較例1〜3) まず、ポリブタジェンゴムの重量平均分子量MW、数平
均分子量Mnからなる分子品分布M w /Mnおよび
重量平均分子量Mwが図に示す実線の範囲に限定される
ことを示す図において、白丸印は実施例を、三角印は比
較例を示す。
(Examples 1 to 3, Comparative Examples 1 to 3) First, the molecular product distribution M w /Mn consisting of the weight average molecular weight MW and number average molecular weight Mn of polybutadiene rubber and the weight average molecular weight Mw are within the range of the solid line shown in the figure. In the diagrams showing that the present invention is limited to the following, white circles indicate examples, and triangles indicate comparative examples.

表1において、ゴム試料1Ik1)〜6 (図の番号に
対応する)に示すようなゴム特性を有するポリブタジェ
ンを特開昭59−45337号公報に開示されたポリブ
タジェンゴム組成物の製造条件を変更して製造した。こ
れらのゴム試料No、 1〜6のポリブタジェンゴムは
、下記 天然ゴム             70重量部ポリブ
タジェンゴム        30〃l5AFカーボン
ブラツク     50〃ステアリン酸       
    3 〃アミン系老化防lト剤        
2 〃軟化剤              5 〃亜鉛
華              5 〃スルフェンアミ
ド系加硫促進剤   0.6〃硫黄       2.
5〃 の配合割合で配合し、通常の方法によりトレッドゴムを
つくった。これらトレッドゴムはトランク・ハス用ラジ
アルタイヤ10.0OR2014プライのリブパターン
タイヤのトレッドに適用し通常のタイヤ製造方法によっ
てそれぞれの試験タイヤ(実施例1〜3および比較例1
〜3)を製造した。
In Table 1, polybutadiene having rubber properties as shown in rubber samples 1Ik1) to 6 (corresponding to the numbers in the figure) were prepared under the manufacturing conditions of the polybutadiene rubber composition disclosed in JP-A-59-45337. Manufactured with modification. The polybutadiene rubbers of these rubber samples No. 1 to 6 were as follows: Natural rubber 70 parts by weight Polybutadiene rubber 30〃15AF carbon black 50〃Stearic acid
3 Amine-based anti-aging agent
2 Softener 5 Zinc white 5 Sulfenamide vulcanization accelerator 0.6 Sulfur 2.
5. A tread rubber was produced by a conventional method. These tread rubbers were applied to the tread of a 10.0 OR 2014-ply rib pattern tire for trunk and lotus radial tires, and the test tires (Examples 1 to 3 and Comparative Example 1) were manufactured using a normal tire manufacturing method.
-3) were produced.

(本口、1メ下余白) 目 遇L−騨 試験はそれぞれの試験タイヤについて、トレッドゴムの
加工性、トレッドゴムの耐破壊性、耐摩耗性につき実施
し、表1に示した。
(Main opening, 1 meter bottom margin) The L-Fold test was conducted for each test tire to determine the processability of the tread rubber, the fracture resistance, and the abrasion resistance of the tread rubber, and the results are shown in Table 1.

トレッドゴムの加工性はトレッドゴム製造時に評価した
。ゴムの加工性の評価は、トレッドゴムの混練時のカー
ボン分散性ゴムのまとまりの性状、押出し時のトレンl
−ゴムの性状を観察して極めて良好なものを◎、良好な
ものを○、悪いものをΔ、極めて悪いものを×として評
価した。
The processability of the tread rubber was evaluated at the time of manufacturing the tread rubber. Rubber processability is evaluated based on the properties of the mass of carbon-dispersed rubber during kneading of tread rubber, and the tread lability during extrusion.
- The properties of the rubber were observed and evaluated as ◎ if it was extremely good, ◯ if it was good, Δ if it was bad, and × if it was extremely bad.

)・レットゴムの耐破壊性、耐摩耗性の試験は試験タイ
ヤを試験車に装着し、一部未舗装路を含む路面で7万k
m走行した。トレンドゴムの耐破壊性ill:タイヤの
トレッドの周上全域にわたりリブティア故障、チンピン
グ故障、カン1〜故障の有無およびその大小の程度によ
り判定した。結果は、それぞれ極めて良好◎、良好08
悪いものを△、極めて悪いものを×として評価した。ま
た、トレソドゴJ、の耐摩耗性ばタイヤ周上8儒所の外
溝を平均した埴で比較し、比較例1のタイヤを100と
して摩耗指数により、指数表示してあり、数値は大きい
ほど耐摩耗性が良好である。
)・The fracture resistance and abrasion resistance of RET rubber was tested by installing the test tires on the test car and driving them for 70,000 km on a road surface including some unpaved roads.
I ran m. Fracture resistance ill of Trend Rubber: Judgment was made based on the presence or absence of rib tear failure, chimping failure, and ring 1 failure over the entire circumference of the tire tread, and the extent of the failure. The results are extremely good ◎ and good 08 respectively.
Bad ones were evaluated as △, and extremely bad ones were evaluated as ×. In addition, the wear resistance of Tresodogo J was compared using an average of the outer grooves of 8 places around the tire circumference, and the tire of Comparative Example 1 was set as 100, and the wear resistance was expressed as an index based on the wear index. Good abrasion resistance.

また、低発熱性は試験タイヤをjm常のドラム試験機を
用いてタイヤの発熱温度を測定して行った。
Furthermore, the low heat generation property was determined by measuring the heat generation temperature of the test tire using a conventional drum testing machine.

試験タイヤは内圧7.25kg/c己、J T S規定
荷重100%負荷、速度60km/hrで1時間走行後
のトレッド内の温度(タイヤショルダ一部で表面から1
5 mm下の部分の温度)を測定した。
The test tire had an internal pressure of 7.25 kg/cm, a JTS specified load of 100%, and a speed of 60 km/hr.
5 mm below) was measured.

試験結果は、表1に示すように、実施例1〜3は比較例
1〜3に比較して耐摩耗性が優れ、さらにゴムの加工性
および耐破壊性が大幅に向トしている。またいずれの試
験タイヤにおいても温度差に有意性は認められなかった
。すなわち、実施例1〜3および比較例1〜3のタイヤ
の低発熱性はほぼ同しである。
As shown in Table 1, the test results show that Examples 1 to 3 have superior abrasion resistance compared to Comparative Examples 1 to 3, and the processability and fracture resistance of the rubber are significantly improved. Further, no significance was observed in the temperature difference in any of the test tires. That is, the low heat generation properties of the tires of Examples 1 to 3 and Comparative Examples 1 to 3 are almost the same.

(実施例4〜7、比較例4.5) 次に、ポリブタジェンゴムと天然ゴムとの混合割合は、
10〜50重量部が好ましいことを示す。
(Examples 4 to 7, Comparative Example 4.5) Next, the mixing ratio of polybutadiene rubber and natural rubber is as follows:
It shows that 10 to 50 parts by weight is preferable.

ポリブタジェンゴムは、実施例1の前記ゴム試料1tk
12を用い、ポリブタジェンゴムと天然ゴムとのブレン
ド割合LJ表4に示すゴム割合(全ゴム量を100重量
部とする)を用いて下記 表2に示すゴム割合       100重量部I S
AFカーボンブラック    50〃ステアリン酸  
         3 〃アミン系老化防止剤    
    2 〃軟化剤             5 
“亜鉛華              5 〃加硫促進
剤           0.6〃硫黄      2
.5・ の配合比率で配合し、通常の方法によりトレッドゴムを
製造し、それぞれの試験タイヤ(実施例4〜7、比較例
4.5)を実施例1と同様に製造した。
The polybutadiene rubber was the rubber sample 1tk of Example 1.
12, the blend ratio LJ of polybutadiene rubber and natural rubber, the rubber ratio shown in Table 4 (the total rubber amount is 100 parts by weight), and the rubber ratio shown in Table 2 below: 100 parts by weight I S
AF Carbon Black 50〃Stearic Acid
3 Amine-based anti-aging agent
2 Softener 5
“Zinc white 5 Vulcanization accelerator 0.6 Sulfur 2
.. 5. Tread rubber was produced by a conventional method, and each test tire (Examples 4 to 7, Comparative Example 4.5) was produced in the same manner as in Example 1.

(本頁、以下余白) 試験は前述の実施例1と同様に実施し、表2にその結果
を同様に表示した。
(This page, the following margins) The test was conducted in the same manner as in Example 1 above, and the results are similarly shown in Table 2.

試験結果は、表2に示すように、実施例4〜7は比較例
4,5より耐摩耗性、ゴムの加工性および耐破壊性がと
もに大幅に向上している。
As shown in Table 2, the test results show that Examples 4 to 7 have significantly improved wear resistance, rubber processability, and fracture resistance compared to Comparative Examples 4 and 5.

(効果) 以上説明したように、本発明によれば、トレッドゴムの
耐摩耗性、低発熱性を十分に維持したままゴムの加工性
が改良されるとともにタイヤの耐破壊性が大幅に向上で
きる。
(Effects) As explained above, according to the present invention, the processability of the rubber can be improved while the wear resistance and low heat generation properties of the tread rubber are sufficiently maintained, and the fracture resistance of the tire can be significantly improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る重車両用タイヤのトレッドに用いるポ
リブタジェンゴムの分子量分布(重量平均分子量MWと
数平均分子量Mnとの比)と重量平均分子量MWとの関
係を示すグラフである。
The figure is a graph showing the relationship between the molecular weight distribution (ratio of weight average molecular weight MW to number average molecular weight Mn) and weight average molecular weight MW of polybutadiene rubber used in the tread of the heavy vehicle tire according to the present invention.

Claims (1)

【特許請求の範囲】 シス1.4結合を少なくとも90%以上含有し、重量平
均分子量@M@wが50万〜120万の範囲にあり、重
量平均分子量@M@wと数平均分子量@M@nとの比@
M@w/@M@nの値が5〜15の範囲にあり、重量平
均分子量@M@nと数平均分子量@M@nの値が次式(
@M@w/@M@n)≧1.7×(@M@w×10^−
^5)−9.4・・・・・・(1) の関係を有するポリブタジエンゴム10〜50重量部と
天然ゴムおよび/またはポリイソプレンゴム90〜50
重量部の範囲で混合したゴムをトレッドに備えたことを
特徴とする重車両用タイヤ。
[Claims] Contains at least 90% of cis-1.4 bonds, has a weight average molecular weight @M@w in the range of 500,000 to 1,200,000, and has a weight average molecular weight @M@w and a number average molecular weight @M @ratio with n@
The value of M@w/@M@n is in the range of 5 to 15, and the values of weight average molecular weight @M@n and number average molecular weight @M@n are expressed by the following formula (
@M@w/@M@n)≧1.7×(@M@w×10^-
^5)-9.4...(1) 10 to 50 parts by weight of polybutadiene rubber and 90 to 50 parts by weight of natural rubber and/or polyisoprene rubber
A heavy vehicle tire characterized by having a tread made of rubber mixed in a range of weight parts.
JP61160579A 1986-07-07 1986-07-07 Tire for heavy duty vehicle Pending JPS6315836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160579A JPS6315836A (en) 1986-07-07 1986-07-07 Tire for heavy duty vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160579A JPS6315836A (en) 1986-07-07 1986-07-07 Tire for heavy duty vehicle

Publications (1)

Publication Number Publication Date
JPS6315836A true JPS6315836A (en) 1988-01-22

Family

ID=15718014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160579A Pending JPS6315836A (en) 1986-07-07 1986-07-07 Tire for heavy duty vehicle

Country Status (1)

Country Link
JP (1) JPS6315836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214788A1 (en) * 2008-06-30 2011-09-08 Societe De Technologie Michelin Tire Crown for an Airplane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214788A1 (en) * 2008-06-30 2011-09-08 Societe De Technologie Michelin Tire Crown for an Airplane

Similar Documents

Publication Publication Date Title
EP3118250B1 (en) Rubber composition for tire, pneumatic tire, and method for manufacturing rubber composition for tire
US4321168A (en) Process for preparing rubber composition for tire treads
EP2512824B1 (en) High silica content for heavy vehicle tires
EP2585525B1 (en) Low rolling resistance tread for cars and light trucks
EP0645424B1 (en) Rubber composition for reinforcing beads of tyres
EP0831122A1 (en) Tyre with tread of elastomer composition
EP0705879A1 (en) Tire with tread of elastomer composition
EP0795581A1 (en) Starch composite reinforced rubber composition and tire with at least one component thereof
US4342670A (en) Process for preparing rubber compositions for tire treads
US10737532B2 (en) Reinforced product comprising a composition containing a rapid vulcanization accelerator and tire comprising said reinforced product
US20170233556A1 (en) Reinforced product comprising a composition containing a balanced metal oxide and stearic acid derivative system and tire comprising said reinforced product
JP2001233997A (en) Rubber composition and process for preparation thereof
US4714732A (en) Rubber composition for tire inner liner
JPH0718120A (en) Rubber composition and pneumatic tire produced therefrom
US4690965A (en) Rubber compositions having improved reinforcing properties and low heat build-up
JP3038501B2 (en) Radial tire
JP2003041057A (en) Rubber composition for tire
JPS6315836A (en) Tire for heavy duty vehicle
JP7211024B2 (en) pneumatic tire
JPH04224840A (en) Pneumatic tire
JP2005002139A (en) Rubber composition and pneumatic tire
KR100518306B1 (en) Truck and bus tread compound recipes for excellent cut and chip resistance and abrasion resistance
JPH1081782A (en) Tread rubber composition for low fuel cost tire
JPS63263104A (en) Radial tire
JPH11140230A (en) Large-sized pneumatic tire