JPS63158053A - Formation of artificial joint - Google Patents

Formation of artificial joint

Info

Publication number
JPS63158053A
JPS63158053A JP30547586A JP30547586A JPS63158053A JP S63158053 A JPS63158053 A JP S63158053A JP 30547586 A JP30547586 A JP 30547586A JP 30547586 A JP30547586 A JP 30547586A JP S63158053 A JPS63158053 A JP S63158053A
Authority
JP
Japan
Prior art keywords
joint
artificial
artificial joint
shape
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30547586A
Other languages
Japanese (ja)
Inventor
健一郎 鈴木
清彦 野原
垣生 泰弘
松野 伸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30547586A priority Critical patent/JPS63158053A/en
Publication of JPS63158053A publication Critical patent/JPS63158053A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、生体内に埋めこまれる生体用材料、特に人工
骨の作成方法に係り、その形状が個入によ、く適合する
ように工夫された人工関節を作成する方法に関するもの
である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for making biomaterials, especially artificial bones, to be implanted in a living body. The present invention relates to a method for creating a devised artificial joint.

(従来の技術) 人間の各種関節は、種々の原因(外傷)により変形し、
破壊されることがある。関節破壊が著しくなれば疼痛と
関節機能障害のために、日常生活がかなり制限されるこ
とになる。
(Prior art) Various human joints are deformed due to various causes (trauma).
It may be destroyed. If joint destruction becomes significant, daily life will be severely restricted due to pain and joint dysfunction.

このような状態を改善し、通常の社会生活に復帰させる
ための治療法として、現在用いられている最も有効な方
法は、人工関節の置換術である。
The most effective treatment currently used to improve this condition and allow patients to return to normal social life is artificial joint replacement.

また、歯科の分野では、虫歯、歯槽膿漏等により歯牙を
抜去している人は多く、特に食生活において不便を感じ
なければならなかった。これらの状態を回復するための
最近多く行われている治療法は、人工歯根のインブラン
ト法である。
Furthermore, in the field of dentistry, many people have had their teeth removed due to cavities, alveolar pyorrhea, etc., and they have had to experience inconvenience, especially when it comes to eating habits. A treatment method that has recently been widely used to recover from these conditions is an implant method using an artificial tooth root.

人工骨や、人工関節、人工歯根等に要求される特性のう
ち重要な問題点としては、骨への固定方法が挙げられる
。すなわち、同じインブラント材である人工臓器の場合
と比較すると、人工骨などは骨の一部として機能するこ
とが必要であり、そのために非常に大きな荷重を受ける
ことになる。
Among the characteristics required for artificial bones, artificial joints, artificial tooth roots, etc., an important issue is the method of fixation to the bone. That is, compared to the case of an artificial organ which is the same implant material, an artificial bone or the like needs to function as a part of the bone, and therefore receives a very large load.

例えば、普通の歩行時において、股関節では最大で体重
の4〜8倍の、また膝関節においては同様に2〜4倍の
荷重が加わると言われている。さらに、これらの荷重は
、生体内という化学的に極めて厳しい環境下において長
期にわたってくり返し負荷される。
For example, during normal walking, it is said that a maximum load of 4 to 8 times the body weight is applied to the hip joints, and a load of 2 to 4 times the body weight is applied to the knee joints. Furthermore, these loads are repeatedly applied over a long period of time in an extremely chemically harsh environment in vivo.

従来、上記人工骨を生体内の骨へ固定する方法としては
、ボーン・セメントと呼ばれる、いわゆるポリメチルメ
タクリレートのポリマーの粉末とモノマーの液体とを混
ぜ合せ、重合・硬化させる方法、骨接触面に、骨親和性
の優れたアルミナ、水酸化アパタイト等のセラミックス
を溶射する方法、あるいは骨接触面にワイヤやビーズな
どを焼結することにより表面を多孔質化してその中に骨
を成長させる方法などがある。
Conventionally, methods for fixing the above-mentioned artificial bone to bone in the living body include a method of mixing a so-called polymethyl methacrylate polymer powder called bone cement with a monomer liquid and polymerizing and hardening it. , a method of thermally spraying ceramics such as alumina and hydroxide apatite, which have excellent bone affinity, or a method of making the surface porous by sintering wires or beads on the bone contact surface and allowing bone to grow therein. There is.

(発明が解決しようとする問題点) 上記従来方法には、下記のような種々の問題点があった
(Problems to be Solved by the Invention) The above conventional method has various problems as described below.

すなわち、ボーンセメント法についてみると、重合反応
による発熱によ諷周辺組織の壊死や、残留モノマーの毒
性などもあって、長期間使用している間にはルースニン
グと呼ばれるゆるみが発生してくる問題点があった。
In other words, with the bone cement method, the heat generated by the polymerization reaction causes necrosis of surrounding tissues and the toxicity of residual monomers, which causes loosening called loosening during long-term use. There was a problem.

また、従来技術(固定法)が抱える本質的な問題点のほ
かに、関節形状の個入差の問題もある。
In addition to the essential problems of the conventional technology (fixation method), there is also the problem of individual insertion differences in joint shapes.

すなわち、この個入差に対応するため、従来の人工関節
においては、多種多様の形状の製品を生産し、X線透視
像をもとに適合の可能性のある人工関節を数種類準備し
て関節置換術実施中に適合するものを選択し、ときには
自然骨の切除範囲を変更、修正しつつ生体内の骨に人工
関節を挿入、セメント等に固定する方法が採用されてい
る。
In other words, in order to accommodate this individual input difference, conventional artificial joints are manufactured in a wide variety of shapes, and several types of artificial joints that are potentially compatible are prepared based on X-ray fluoroscopic images. During replacement surgery, a suitable method is selected, and the artificial joint is inserted into the bone in the living body and fixed with cement, etc., while sometimes changing or modifying the resection range of the natural bone.

しかしながら、このような方法によって、関節形状の個
入差を完全に解決することは極めて困難である。それは
形状の異なる人工関節を予め多数用意することは容易で
はな(、現実的には20種程度の人工関節から選択せざ
るを得ないため、個入差を多少容認して置換術をやらざ
るを得ないのが実態であった。
However, it is extremely difficult to completely resolve individual differences in joint shape using such a method. It is not easy to prepare a large number of artificial joints with different shapes in advance (in reality, we have to choose from about 20 types of artificial joints, so we have to accept some differences in individual parts and perform replacement surgery. The reality was that they were not able to obtain the desired results.

以上、従来技術の問題点を解決すると次のとおりである
The problems of the prior art described above are solved as follows.

(1)人工関節の摺動面の適合性があらかじめ設定され
た摺動状態より劣化し、人工関節と自然骨との接合面で
歪み、その結果疼痛を生ずると共に人工関節摺動面での
異常損耗など人工関節の寿命を低減させる現象が発生す
る。
(1) The suitability of the sliding surface of the artificial joint deteriorates from the preset sliding condition, causing distortion at the interface between the artificial joint and natural bone, resulting in pain and abnormalities on the sliding surface of the artificial joint. Phenomena such as wear and tear occur that reduce the lifespan of the artificial joint.

(2)  また、異常摩耗により摩擦力が増加し、人工
関節と骨界面に大きな力が加わり、ゆるみの原因となっ
たりしている。
(2) In addition, abnormal wear increases frictional force, which applies a large force to the interface between the artificial joint and the bone, causing loosening.

(3)人工関節と自然骨の間の間隙が大きくなり、多量
の骨セメントを要するために周辺組織の壊死領域が増大
し、関節置換術の効果が激減してしまう。
(3) The gap between the artificial joint and the natural bone becomes large, and a large amount of bone cement is required, which increases the necrotic area of the surrounding tissues and drastically reduces the effectiveness of joint replacement surgery.

本発明の目的は、上記問題点を解決し得る関節置換術の
対象となる個入の関節形状、損傷状態によく適合する人
工関節を製作する技術を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a technique for manufacturing an artificial joint that can solve the above-mentioned problems and is well adapted to the shape and damage condition of each individual joint to be subjected to joint replacement surgery.

(問題点を解決するための手段) 上掲の目的に対し本発明は、次の事項を要旨構成とする
作成方法、すなわち、基本形状にもとづいて少数の一般
型ワックスモデルを準備し、施術対象者についての関節
部X線透視像を基に正常モデルとの差を求めて前記一般
型ワックスモデルを修正加工し、かくして得られる各個
入に適合する精密ワックスモデルを作成し、この精密ワ
ックスモデルを使って人工関節を精密鋳造することを特
徴とする人工関節の作成方法を課題解決手段として提案
する。
(Means for Solving the Problems) In order to achieve the above-mentioned purpose, the present invention provides a creation method having the following points as a gist: namely, preparing a small number of general wax models based on the basic shape, and Based on X-ray fluoroscopic images of the joints of patients, the general wax model is modified to determine the difference from the normal model, and a precision wax model that fits each piece obtained in this way is created, and this precision wax model is As a means to solve this problem, we propose a method for creating an artificial joint, which is characterized by precision casting using the method.

(作 用) 発明者らは、関節置換術の対象となる個入の関節の形状
や損傷状態によく適合する人工関節を作成するための方
法について研究を進めた結果、まず人工関節の基本形状
を決定することが重要であることを知り得た。
(Function) As a result of conducting research on a method for creating an artificial joint that closely matches the shape and damage state of each individual joint that is the target of joint replacement surgery, the inventors first determined the basic shape of the artificial joint. I learned that it is important to decide.

基本形状の設計は、正常な関節の形状と、関節置換術に
おいて残存させる人工関節と、それと接合させるべき残
存骨(自然骨)の形状との調査、検討を通じて行った。
The basic shape was designed through investigation and consideration of the shape of a normal joint, the artificial joint that will remain after joint replacement surgery, and the shape of the remaining bone (natural bone) that will be connected to it.

人工関節の前記基本形状に対し、自動化加工機による若
干の精密加工代を残してあらかじめ製作されたワックス
モデルを準備することが本発明の構成の第一の特徴であ
る。このワックスモデルは、常法により金型へ加圧注入
して製作しても良いが、より経済性を重視すれば石こう
型などへ流し込み鋳造した方が良い。なお、精密加工の
所要時間を軽減すべく、基本形状を数種用意することは
本発明の趣旨に沿うものである。勿論、基本形状とあら
かじめ製作されるワックスモデルの形状とは、自由曲面
を有しているので、自動化加工機に指示しうるちのでは
ないので、自由曲面データは膨大な記憶容量を有するコ
ンピューター内に記憶して運用するのが好ましい。なお
、該ワックスモデルの精密鋳造に際しては、鋳型に対し
、必要な溶融金属注入口や凝固収縮を補完するための押
湯部、溶融金属注入流が鋳型内のガスと置換し、ガスに
起因する欠陥を鋳造品中に残さないようにするためのガ
ス抜き孔などを、必要に応じて設ける。
The first feature of the configuration of the present invention is to prepare a wax model that is prefabricated with respect to the basic shape of the artificial joint, leaving some precision machining allowance by an automated processing machine. This wax model may be produced by pressurized injection into a mold using the usual method, but if economic efficiency is more important, it is better to cast it by pouring it into a plaster mold or the like. Note that, in order to reduce the time required for precision machining, it is in accordance with the spirit of the present invention to prepare several basic shapes. Of course, since the basic shape and the shape of the wax model prepared in advance have free-form surfaces, it is not possible to instruct an automated processing machine, so the free-form surface data is stored in a computer with a huge storage capacity. It is preferable to memorize and use it. In addition, when precision casting the wax model, there is a necessary molten metal injection port for the mold, a riser part to compensate for solidification shrinkage, and a molten metal injection flow that replaces the gas in the mold, Provide gas vent holes as necessary to prevent defects from remaining in the cast product.

かくして、コンピューターには、■基本形状、■あらか
じめ製作したワックスモデルの形状の2種の自由曲面デ
ータが格納されることとなる。
In this way, two types of free-form surface data are stored in the computer: 1) the basic shape, and 2) the shape of the wax model prepared in advance.

次に、関節置換術の対象となる個入の関節の形状は、関
節の損傷程度とともに正面、側面のX線透視像によりデ
ータとして採取する。かかるX線透視像は、X線源と被
写体、被写体と透過X線像の画像変換装置の距離の厳密
な調整により、ブラウン管上に倍率1.00±0.01
倍となるよう投影され、工業用画像録画装置を介して記
録しておく。このとき、被写体のX線光学系に対する角
度も極めて重要であり、その角度は±1°に制御される
Next, the shape of each individual joint to be subjected to joint replacement surgery is collected as data from front and side X-ray fluoroscopic images, as well as the degree of damage to the joint. Such an X-ray fluoroscopic image is displayed on a cathode ray tube at a magnification of 1.00±0.01 by strictly adjusting the distances between the X-ray source and the subject, and between the subject and the image conversion device for the transmitted X-ray image.
The images are projected to double the size and recorded using an industrial image recording device. At this time, the angle of the subject with respect to the X-ray optical system is also extremely important, and the angle is controlled to ±1°.

前記記録画像は、画像解析装置のブラウン管上に再生さ
れ、ブラウン管上に関節置換術施術予定の整形外科医が
正面、側面の2ケ所の透視像上に適正な人工関節の形状
を書き込む、ここで、計算機により交換されたX線CT
装置を用いれば、被手術者用の人工関節の形状を決定す
ることは原則的には可能である。しかし、被手術者のな
かには病変した関節を有する人もあり、この場合前述の
形状決定法では理想的な形状の人工関節は得がたい。こ
のような形状設計上の難点を克服すべく本発明者らが考
案したのが理想的な具体形状との照合を経る方法である
。すなわち、書き込みデータは、コンピューターに転送
され、スムージングを経て、人工関節の基本形状に対応
する2断面像と対比され、基本形状を決定している4〜
10ケの代表値と比較され、関節置換術対象者の人工関
節代表値が決定される。
The recorded image is reproduced on a cathode ray tube of an image analysis device, and on the cathode ray tube, an orthopedic surgeon who is planning to perform a joint replacement writes an appropriate shape of the artificial joint on two fluoroscopic images, front and side. X-ray CT exchanged by computer
Using the device, it is in principle possible to determine the shape of an artificial joint for a patient. However, some patients have diseased joints, and in this case, it is difficult to obtain an artificial joint with an ideal shape using the shape determining method described above. In order to overcome these difficulties in shape design, the present inventors devised a method that involves comparison with an ideal concrete shape. That is, the written data is transferred to a computer, smoothed, and compared with two cross-sectional images corresponding to the basic shape of the artificial joint to determine the basic shape.
It is compared with 10 representative values to determine the artificial joint representative value of the patient undergoing joint replacement surgery.

かかる人工関節代表値の決定理論は、基本形状が正常に
機能する関節の形状を基礎として決定されていることか
ら、該基本形状の代表値間の比率を基とした比例配分で
も十分である。なお、人工関節の置換術対象者の術後残
存(自然)骨との接合面の形状は、対象者の関節の損耗
状況を施術予定者がブラウン管上のX線透視像を観察し
て決定するのであるが、該形状は施術の実態から判断し
て自由曲面である必要はなく、平面の組合わせで十分で
ある。
The theory for determining the artificial joint representative values is that the basic shape is determined based on the shape of a normally functioning joint, so proportional allocation based on the ratio between the representative values of the basic shape is sufficient. The shape of the joint surface with the remaining (natural) bone after surgery for a patient undergoing artificial joint replacement is determined by the person scheduled to undergo the procedure by observing the wear and tear of the patient's joints on an X-ray fluoroscopic image on a cathode ray tube. However, judging from the actual situation of the treatment, the shape does not need to be a free-form surface, and a combination of flat surfaces is sufficient.

このようにして決定された、関節置換術対象者の人工関
節の形状を基に、あらかじめ精密加工代を残して製作さ
れたワックスモデルの形状と、該人工関節との形状の差
が、自動化加工機の精密加工用データとしてコンピュー
ター内で演算され、自動化加工機に出力される。なお、
形状の差の演算は、2つの形状の相対個所を固定、基準
線として用いても良いし、自動化加工機による加工時間
が最短となるようコンピューター内での演算を行なわせ
て決定しても良い。
Based on the shape of the artificial joint of the patient undergoing joint replacement surgery determined in this way, the difference between the shape of the wax model, which was manufactured in advance with a precision machining allowance, and the artificial joint is automatically processed. It is calculated in a computer as data for precision machining and output to automated processing machines. In addition,
The calculation of the difference in shape may be determined by fixing the relative location of the two shapes and using it as a reference line, or by performing calculations within a computer to minimize the processing time by an automated processing machine. .

かくして、あらかじめ製作されたワックスモデル2ケか
ら、これを精密加工することにより2ケの人工関節のワ
ックスモデル製作できる。ここで、2ケのワックスモデ
ルのうち1ケは精密鋳造用に供されるワックスモデルで
あり、もう1ケは施術者ないし被施術者用ワックスモデ
ルである。
In this way, wax models of two artificial joints can be manufactured by precision processing the two wax models that have been manufactured in advance. Here, one of the two wax models is a wax model used for precision casting, and the other is a wax model for the practitioner or the person being treated.

さらに、上述のように残存(自然)骨との接合面の形状
も、整形外科医がブラウン管上で決定しているので、コ
ンピューターから関節置換術実施時の関節骨の切断指示
を出すことは容易である。
Furthermore, as mentioned above, the shape of the interface with the remaining (natural) bone is determined by the orthopedic surgeon on a cathode ray tube, so it is easy to issue instructions for cutting the joint bone during joint replacement surgery from a computer. be.

なお、精密鋳造用ワックスモデルには、精密鋳造される
金属の収縮、鋳型機の収縮、鋳造品の仕上げ成形にとも
なう寸法変化は考慮ずみである。
Note that the wax model for precision casting takes into account the shrinkage of the precision cast metal, the shrinkage of the mold machine, and the dimensional changes caused by the final molding of the cast product.

勿論、本発明の特徴は、前述のように最新のコンピュー
ターによる設計技術、画像処理技術に依る所が大きいが
、ワックスモデルの成形加工技術も重要な構成要素であ
る。通常の鋳造用ワックスは融点が約70℃と低く、機
械加工は極めて困難とされていたが、本発明者らはアク
リルなどの樹脂成品と比較して成形性、加工性の優れた
融点約95℃の加工用ワックスを採用する。
Of course, the features of the present invention largely depend on the latest computer-based design technology and image processing technology as described above, but wax model molding technology is also an important component. Ordinary casting wax has a low melting point of approximately 70°C, making machining extremely difficult, but the present inventors have developed a product with a melting point of approximately 95°C, which has superior moldability and processability compared to resin products such as acrylic. ℃ processing wax is used.

(実施例) 以下、本発明法を適用した人工膝関節に関する実施例を
3例述べる。
(Example) Three examples regarding an artificial knee joint to which the method of the present invention is applied will be described below.

第1図に示すように、膝関節部は、大腿骨1、脛骨2が
軟骨をはさんで接触していて運動が可能となっている。
As shown in FIG. 1, in the knee joint, a femur 1 and a tibia 2 are in contact with each other across cartilage, allowing movement.

一般に、この膝関節として金属製鋳造品を用いる場合、
摩擦係数が生体骨間のそれに比べて著しく大きくなる。
Generally, when using a metal casting for this knee joint,
The coefficient of friction becomes significantly larger than that between living bones.

したがって、高密度ポリエチレン3を脛骨側の大腿′骨
接合面に配し、これを金属の成形品(サポート4)でバ
ックアップする構造が一般に採用されている。このよう
にすれば、該摩擦係数は生体骨間のそれの3〜10倍と
、金属間のそれよりはかなり小さく保ことができる。
Therefore, a structure is generally adopted in which high-density polyethylene 3 is placed on the femur' bone joint surface on the tibia side, and this is backed up with a metal molded product (support 4). In this way, the coefficient of friction can be kept 3 to 10 times that between living bones and considerably smaller than that between metals.

この場合において、脛骨側の人工関節の上部を高密度ポ
リエチレン、下部を金属鋳造品と2分割しても良い。な
お、脛骨側人工関節は、大腿骨側に比し形状が単純なの
で以下大腿骨側人工関節について述べる。
In this case, the artificial joint on the tibial side may be divided into two parts, with the upper part made of high-density polyethylene and the lower part made of metal casting. Since the tibial artificial joint has a simpler shape than the femoral artificial joint, the femoral artificial joint will be described below.

大腿骨側人工関節は、自由曲面を中心に構成されるもの
で、あらかじめ以下の代表寸法を有する機械加工可能な
ワックスモデルを金型にインジェクションして製造した
。なお、ここでa、〜a3(鶴)は人工関節の最大中、
C3〜c3  (mm)は最大の奥行き、h、〜h3 
(u)は最大高さである。
The femoral prosthesis was constructed mainly of free-form surfaces, and was manufactured by injecting a machinable wax model having the following representative dimensions into a mold. In addition, here a, ~ a3 (crane) is the maximum of the artificial joint,
C3~c3 (mm) is the maximum depth, h, ~h3
(u) is the maximum height.

■a+=77、  c+=63.   ht=65. 
 b+=33■azW?2.  cz□60+   h
z=59.  bz=31■az□67、  Cz=5
8.hi=54.  bz=29また、b、−b3(t
m)は残存量と接合される人工関節の最大奥行きである
。これに対し、人工大腿骨の基本設計値は以下の通りで
ある。
■a+=77, c+=63. ht=65.
b+=33■azW? 2. cz□60+h
z=59. bz=31■az□67, Cz=5
8. hi=54. bz=29 Also, b, -b3(t
m) is the maximum depth of the artificial joint to be joined with the residual volume. On the other hand, the basic design values of the artificial femur are as follows.

■a+’=74. c+’=60. h+’=62. 
b、’=37■az’69+ cz’=57+ hz’
=56. bz’=35■azi=64. ci’=5
5+ hi’=51. bi’=32関節置換術を施す
ことを前提として3人の屍体骨を仮想患者とし、膝関節
について正面、側面のXwA透視像を調べた。第1の仮
想患者は関節の損傷が著しく、したがって、大腿骨の切
除を広範に行なう必要があることが判明し、この仮想患
者に適合する大腿骨の形状を前出のawc、h (w)
で表わせば a+’=74.5. c+’=60−7+ h+’=6
2.4. b+’=33.6であることが判明し、鋳造
用ワックスモデルとして(ml)・ a+’=75.2+ C+’=61.3. tl+’J
3.0. t、’=33.8の物を■のワックスモデル
から自動化加工機により製作し、Ti−6%Af−4%
V合金を真空電子ビーム溶解鋳造炉により鋳造した。こ
の場合の合金の注入温度は1920℃、注入速度は2.
5 kg/secであった。なお、鋳造用鋳型はTi合
金との接触面にタングステンの金属層を0.12mm、
その後方に安定化ジルコニア層1.5mm 、さらにそ
の後方に高アルミナ層1 、8mmを配したものであり
、精密鋳造品は常法にしたがって湯道を精密切断、サン
ドブラスト後、酸洗し、カラーチェック、XwA透視に
より内部や表面に欠陥のないことを確認して関節置換術
に供した。
■a+'=74. c+'=60. h+'=62.
b,'=37■az'69+ cz'=57+hz'
=56. bz'=35■azi=64. ci'=5
5+hi'=51. bi'=32 On the premise that joint replacement surgery will be performed, three cadaveric bones were used as virtual patients, and frontal and lateral XwA fluoroscopic images of the knee joint were examined. It was determined that the first virtual patient had significant joint damage and therefore required extensive resection of the femur.
If expressed as a+'=74.5. c+'=60-7+h+'=6
2.4. It was found that b+'=33.6, and as a casting wax model (ml) a+'=75.2+ C+'=61.3. tl+'J
3.0. A product with t,'=33.8 was manufactured from the wax model of
The V alloy was cast in a vacuum electron beam melting and casting furnace. In this case, the alloy injection temperature was 1920°C and the injection rate was 2.
It was 5 kg/sec. The casting mold has a 0.12 mm thick tungsten metal layer on the contact surface with the Ti alloy.
A stabilized zirconia layer of 1.5 mm is placed behind it, and a high alumina layer of 1.8 mm is further placed behind it.The precision cast product is made by precision cutting the runner in accordance with the usual method, sandblasting, pickling, and coloring. After checking and XwA fluoroscopy to confirm that there were no internal or surface defects, the joint was subjected to joint replacement surgery.

ついで、第2の仮想患者では関節の損傷は軽微であった
ので、基本設計寸法とほぼ等しい代表寸法が適切との判
断となり下記の寸法のワックスモデルを■のワックスモ
デルを用いて自動化機械加工により製作し、前例と同一
の鋳造条件でTi−6%Ai4%V合金製人工大腿骨を
製作した。なお、自動化加工機の仕上げ加工条件は工具
切り込み深さ0.2mm 、切削速度80mm/sec
とした。
Next, since the damage to the joint was minor in the second virtual patient, it was determined that representative dimensions that were approximately equal to the basic design dimensions were appropriate, and a wax model with the following dimensions was created using automated machining using the wax model in ■. An artificial femur made of Ti-6%Ai4%V alloy was manufactured under the same casting conditions as in the previous example. The finishing processing conditions of the automated processing machine are: tool depth of cut 0.2 mm, cutting speed 80 mm/sec.
And so.

a z’=68.8 Cz’=57.2 h zp=5
5.8 b z”35.1a z’;69.4 Cz’
・57.7 h z’□56.3 b z’□35.3
  (mm)さらに、第3の仮想患者は大腿骨が異常に
小さいが、損傷は少ない女性であって、■のワックスモ
デルから下記の代表寸法のワックスモデルを製作し、第
1の患者用と同一の鋳造等の条件で人工関節を製造した
。なお、鋳造後仕上げ、品質検査を施した人工関節の代
表寸法は、添字、Pで示す望ましい寸法に対し、平均0
.071mm 、標準偏差0.032mmの誤差を生じ
ていたが、従来技術により人工関節を挿入する場合に予
想される最大誤差1.0〜2.5n+mに比べて著しく
少なく、患者により適合した人工大腿骨を用いた関節置
換術が可能となった。
a z'=68.8 Cz'=57.2 h zp=5
5.8 b z"35.1a z'; 69.4 Cz'
・57.7 h z'□56.3 b z'□35.3
(mm) Furthermore, the third hypothetical patient is a woman whose femur is abnormally small, but with little damage.A wax model with the following representative dimensions was created from the wax model in ■, and was the same as that for the first patient. The artificial joint was manufactured under conditions such as casting. In addition, the representative dimensions of the artificial joint that have been finished and quality inspected after casting are on average 0 with respect to the desirable dimensions indicated by the subscript P.
.. 071 mm, with a standard deviation of 0.032 mm, which is significantly smaller than the maximum error of 1.0 to 2.5 n+m that would be expected when inserting an artificial joint using conventional technology, making the artificial femur more suitable for the patient. Joint replacement surgery using this method has become possible.

a :1p=60.  C3p=51.  h 3’=
47.  b 2’=27a  3’=60.5   
C:l’=51.3   h  3’=47.3   
b  :+”27.5    DI)これらの仮想患者
への人工関節の埋め込状態、及び能動性は、従来法のも
のと比較し、著しく良好であった。また、これらのワッ
クスモデル(を用いた鋳造は、単一のワックスモデルに
湯道を付与して鋳造すること、単一の湯道に多数のワッ
クスモデルを接続したいわゆるツリーの状態で鋳造する
ことがいずれも可能であった。
a :1p=60. C3p=51. h3'=
47. b 2'=27a 3'=60.5
C: l'=51.3 h3'=47.3
b: +”27.5 DI) The implantation status and activity of the artificial joints in these virtual patients were significantly better than those of the conventional method. For casting, it was possible to cast a single wax model with a runner, or to cast a tree in which many wax models were connected to a single runner.

(発明の効果) 以上の説明ならびに実施例の結果から判るように、本発
明作成方法によれば、次のような効果が期待できる。
(Effects of the Invention) As can be seen from the above explanation and the results of the examples, the following effects can be expected according to the production method of the present invention.

+11  患者の関節によく適合した人工関節が製作で
きる。
+11 Artificial joints that fit well with the patient's joints can be manufactured.

(2)シたがって、関節置換術後の運動可能範囲が従来
のものより拡大される。
(2) Therefore, the range of motion after joint replacement surgery is expanded compared to conventional methods.

(3)  さらに、人工関節の寿命の延長が実現できる
と共に再手術の回避が可能となる。
(3) Furthermore, it is possible to extend the life of the artificial joint and avoid reoperation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、膝関節の直立状態の側面図、第2図は、膝関
節の屈曲状態の側面図である。 1・・・大腿骨      2・・・脛骨3・・・高密
度ポリエチレン 4・・・金属サポート
FIG. 1 is a side view of the knee joint in an upright state, and FIG. 2 is a side view of the knee joint in a bent state. 1...Femur 2...Tibia 3...High-density polyethylene 4...Metal support

Claims (1)

【特許請求の範囲】[Claims] 1.基本形状にもとづいて少数の一般型ワックスモデル
を準備し、施術対象者についての関節部X線透視像を基
に正常モデルとの差を求めて前記一般型ワックスモデル
を修正加工し、かくして得られる各個入に適合する精密
ワックスモデルを作成し、この精密ワックスモデルを使
って人工関節を精密鋳造することを特徴とする人工関節
の作成方法。
1. A small number of general wax models are prepared based on the basic shape, and the general wax models are modified by determining the difference from the normal model based on the X-ray fluoroscopic image of the joint of the patient being treated, and thus obtained. A method for creating an artificial joint, characterized by creating a precision wax model suitable for each piece, and precision casting the artificial joint using this precision wax model.
JP30547586A 1986-12-23 1986-12-23 Formation of artificial joint Pending JPS63158053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30547586A JPS63158053A (en) 1986-12-23 1986-12-23 Formation of artificial joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30547586A JPS63158053A (en) 1986-12-23 1986-12-23 Formation of artificial joint

Publications (1)

Publication Number Publication Date
JPS63158053A true JPS63158053A (en) 1988-07-01

Family

ID=17945601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30547586A Pending JPS63158053A (en) 1986-12-23 1986-12-23 Formation of artificial joint

Country Status (1)

Country Link
JP (1) JPS63158053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187415A (en) * 2002-11-27 2012-10-04 Conformis Inc Patient selectable joint arthroplasty device and surgical tool facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012187415A (en) * 2002-11-27 2012-10-04 Conformis Inc Patient selectable joint arthroplasty device and surgical tool facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty

Similar Documents

Publication Publication Date Title
Eufinger et al. Reconstruction of craniofacial bone defects with individual alloplastic implants based on CAD/CAM-manipulated CT-data
Rieger et al. Bone stress distribution for three endosseous implants
Adell et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw
Rothman et al. Cemented versus cementless total hip arthroplasty: a critical review
US5554190A (en) Prosthesis component and a method of producing it
Morscher The cementless fixation of hip endoprostheses
Ryd et al. Porous coated anatomic tricompartmental tibial components: the relationship between prosthetic position and micromotion
Magee et al. A Canine Composite Femoral Stem: An In Vivo Study.
Renganathan et al. Orthopedical and biomedical applications of titanium and zirconium metals
Eufinger et al. Individual prostheses and resection templates for mandibular resection and reconstruction
Lavelle et al. Some advances in endosseous implants
CN114886620A (en) Biological tantalum metal knee joint prosthesis
Sherepo et al. Use of zirconium-based and zirconium-coated implants in traumatology and orthopedics
Bell et al. Fresh osteochondral allografts for advanced giant cell tumors at the knee
JPS63158053A (en) Formation of artificial joint
CN214805722U (en) Partition bone trabecula knee joint femoral condyle prosthesis
US20190231537A1 (en) Method for the production of a mandibular joint endoprosthesis or of an implant for treating bone deficiencies or defects of the face or of the skull or other defects in the body area
CN211561236U (en) Bone defect repair support
Bedogni et al. Replacement of fractured reconstruction plate with customized mandible implant: a novel technique
Uklejewski et al. Prototype of a Biomimetic Multi-Spiked Connecting Scaffold for a New Generation of Resurfacing Endoprostheses
Stein Quantitative histological comparison of bone growth into titanium and cobalt-chromium porous coated canine implants
Gatzka et al. A novel ex vivo model for investigation of fluid displacements in bone after endoprosthesis implantation
Polyakova et al. Foundations of geometric modelling of fixed immediate dentures-prototypes
Eufinger et al. Experimental computer-assisted alloplastic sandwich augmentation of the atrophic mandible
Wang et al. Additive manufacturing of metal implants and surgical plates