JPS63157994A - Production of polysaccharide nsg-1 - Google Patents

Production of polysaccharide nsg-1

Info

Publication number
JPS63157994A
JPS63157994A JP30522286A JP30522286A JPS63157994A JP S63157994 A JPS63157994 A JP S63157994A JP 30522286 A JP30522286 A JP 30522286A JP 30522286 A JP30522286 A JP 30522286A JP S63157994 A JPS63157994 A JP S63157994A
Authority
JP
Japan
Prior art keywords
polysaccharide
nsg
cultured
carbohydrate
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30522286A
Other languages
Japanese (ja)
Other versions
JPH0236235B2 (en
Inventor
Naohito Ono
尚仁 大野
Iwao Suzuki
鈴木 巖
Toshirou Yadomae
宿前 利郎
Shozo Oikawa
及川 昭蔵
Yoshiro Sato
吉朗 佐藤
Masumi Osawa
大沢 真澄
Yoshiyuki Suzuki
良幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Beet Sugar Manufacturing Co Ltd
Original Assignee
Nippon Beet Sugar Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Beet Sugar Manufacturing Co Ltd filed Critical Nippon Beet Sugar Manufacturing Co Ltd
Priority to JP30522286A priority Critical patent/JPH0236235B2/en
Publication of JPS63157994A publication Critical patent/JPS63157994A/en
Publication of JPH0236235B2 publication Critical patent/JPH0236235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound useful as antitumor agent, etc., in high purity, by culturing a microbial strain capable of producing polysaccharide NSG-1, incubating the proliferated cell in a liquid containing a carbohydrate to produce polysaccharide NSG-1 and separating the product from the reaction liquid. CONSTITUTION:A microbial strain capable of producing polysaccharide NSG-1 [e.g. Sclerotinia sclerotiorum (IFO 9353), etc.] is cultured in a medium and the obtained primary seed strain is inoculated and cultured in a medium to obtain secondary seed strain. The strain is added to a jar fermenter, cultured in a mass and filtered to obtain cultured cells. The cell is filled together with a liquid containing a carbohydrate such as glucose, etc., into a jar fermenter and incubated. The objective polysaccharide NSG-1 produced in the reaction liquid is separated therefrom.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多糖NSG−1を製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing polysaccharide NSG-1.

更に詳細には、本発明は抗腫瘍活性を有する多糖NSG
−1を製造する方法に関するものである。
More specifically, the present invention provides polysaccharide NSG with antitumor activity.
The present invention relates to a method for manufacturing -1.

本発明では、インキュベーションによって糖質から直接
多糖NSG−1を生合成するために、きわめて純度の高
い抗腫瘍活性多糖N’5G−1を多量生産することがで
き、医薬界に貢献するところ大なるものがある。
In the present invention, the polysaccharide NSG-1 is directly biosynthesized from carbohydrates by incubation, so it is possible to produce a large amount of extremely pure antitumor active polysaccharide N'5G-1, which will greatly contribute to the medical world. There is something.

(従来の技術) キツネノワンタケ科(Sclerotiniaceae
)に属するきのこ菌がアブラナ科の植物の根や茎に形成
する菌核中にβ−(1→3)結合するD−グルコピラノ
シル残基を骨格とし、この骨格3ケごとにC−6に結合
する1ケのD−グルコピラノシル残基を有する多糖が含
まれていることが知られており(北原等岐1大学農学部
研究報告8,100 (1957)、 9,139(1
958)、日本農芸化学会誌35,468 (1961
)) 、更に上記きのこ菌を液体培養すると培養液中に
北原等の見い出した構造の多糖と同様の多糖が産生する
ことをUENO等スクレロチニア リベルチアナ(Sc
lerotinia lj、bertiana)の菌糸
を(Agric、Boil。
(Prior art) Sclerotiniaceae
) The sclerotia formed on the roots and stems of plants in the Brassicaceae family by mushrooms belonging to the genus A. It is known that polysaccharides containing one D-glucopyranosyl residue are included (Kitahara Toki 1 University Faculty of Agriculture Research Report 8,100 (1957), 9,139 (1)
958), Journal of the Japanese Society of Agricultural Chemistry 35, 468 (1961
)) Furthermore, Sclerotinia libertiana (Sc
mycelia of lerotinia lj, bertiana) (Agric, Boil.

Chem、、 44(2)、 353〜359.198
0)がシュクロース、NaNO3、MgSO4・7H2
0、KH2PO4、イーストエキスを含む培地中で24
〜25℃で数日間振盪培養した後の粘稠な培養液からメ
タノール沈でん法によって得ている。
Chem, 44(2), 353-359.198
0) is sucrose, NaNO3, MgSO4・7H2
0, KH2PO4, 24 in medium containing yeast extract.
It is obtained by the methanol precipitation method from the viscous culture solution after shaking culture at ~25°C for several days.

上記多糖は通常スクレログルカンと称され(糖質の化学
上P95東京化学同人1986.7.1発行)抗腫瘍活
性を有している(ファルマシアレビューNα6 P12
1 日本薬学会)。
The above polysaccharide is usually called scleroglucan (Carbohydrate Chemistry P95 published by Tokyo Kagaku Dojin on July 1, 1986) and has antitumor activity (Pharmacia Review Nα6 P12
1 Pharmaceutical Society of Japan).

(発明が解決しようとする問題点) 上記菌核や培養液から多糖を分離採取する従来の方法に
あっては、菌核自体や培養液から移行する各種成分の除
去に多くの煩雑な精製手段を要し、実用面において解決
されなければならない問題が多く残されている。
(Problems to be Solved by the Invention) In the conventional method of separating and collecting polysaccharides from the sclerotia and the culture solution, many complicated purification methods are required to remove various components transferred from the sclerotia themselves and the culture solution. However, many problems remain to be solved in practical terms.

(問題点を解決するための手段) この発明者らは、上記有用な多糖を容易に入手する方法
について鋭意研究した結果、キツネノワンタケ科(Sc
lerotiniaceae)に属する機関保存菌株で
あるスフレロチニアスフレロチオリラム(Sclero
tinia sclerotiorum) IFO93
95の培養菌糸を窒素源、リン、カリ、マグネシウム等
の通常微生物の培養に必要な栄養成分を欠き、PHを酸
性領域とした糖質溶液に添加し、上記菌糸を糖質に酵素
的に作用させると溶液中に多量の多糖NSG−1を生成
することを知り、菌糸を除いた溶液にアルコールを加え
るのみで殆んど純粋な多糖NSG−1を得ることができ
たものであり、動物試験により抗腫瘍活性を確認でき、
物理化学的試験により、多糖NSG−1の構造が、前記
スフレロチニア リベルチアナの培養液から得られてい
るβ−(1→3)結合するD−グルコピラノシル残基3
ケごとに1ケのD−グルコピラノシル残基1ケの分枝構
造の多糖とはその構造を異にし、β−(l→3)結合す
るD−グルコピラノシル残基2ケごとにC−6に1ケの
D−グルコピラノシル残基1ケの分枝を有する構造の多
糖であることが確認できた。
(Means for Solving the Problems) As a result of intensive research on how to easily obtain the above-mentioned useful polysaccharide, the inventors discovered that
Sclerothiolirum (Sclerotinia) is an institutionally preserved strain belonging to the genus Sclerotiniaceae.
tinia sclerotiorum) IFO93
95 cultured mycelia were added to a carbohydrate solution lacking nitrogen sources, phosphorus, potassium, magnesium, and other nutrients necessary for the cultivation of normal microorganisms, and whose pH was in the acidic range, and the mycelia were added to a carbohydrate solution that enzymatically acted on the carbohydrates. They found that a large amount of polysaccharide NSG-1 was produced in the solution when the hyphae were removed, and they were able to obtain almost pure polysaccharide NSG-1 by simply adding alcohol to the solution from which the hyphae had been removed. The antitumor activity can be confirmed by
Physicochemical tests revealed that the structure of polysaccharide NSG-1 was determined from the β-(1→3)-linked D-glucopyranosyl residue 3 obtained from the culture solution of Sufflerotinia libertiana.
Its structure is different from the branched polysaccharide, which has one D-glucopyranosyl residue for every two D-glucopyranosyl residues, and one D-glucopyranosyl residue for every two β-(l→3)-bonded D-glucopyranosyl residues. It was confirmed that the polysaccharide had a branched structure with one D-glucopyranosyl residue.

多糖NSG−1の生成に用いるキツネノヮンタケ科(S
clerotiniaceae)に属する菌株は、今関
六也、本郷次部共著「原色日本菌類図鑑」 (保育社昭
和54年発行)により子のう菌類(Ascomycet
es)、びょうたけ目(Helotiales)、キツ
ネノヮンタケ科(Sclerotiniaceae)に
分類され、同図鑑記載の特性を有するものであり、天然
から分離して純化、継代培養によりその形質を保持して
いるもの或いは各種保存機関に在る保存菌株等この発明
の方法によって、多糖NSG−1を生成する能力を有す
る菌株である。
Acanthaceae (S) used for production of polysaccharide NSG-1
clerotiniaceae) were classified as Ascomycetes by Mutsuya Imazeki and Tsugube Hongo, "Illustrated Encyclopedia of Primary Colors of Japanese Fungi" (published by Yokusha in 1978).
es), the Helotiales order, and the Sclerotiniaceae family, and have the characteristics described in the encyclopedia, and those that have been isolated from nature, purified, and maintained through subculture, or These are strains that have the ability to produce polysaccharide NSG-1 by the method of the present invention, such as strains stored in various preservation institutions.

この発明は、前記のようにキツネワンタケ科(Scle
rotiniaceae)に属する多糖NSG−1を生
成性菌株の菌糸をグルコース等の糖質に酵素的に作用さ
せることによって多@ NSG−1を生成せしめ、これ
を分離採取することを特徴とするものであるが、キツネ
ノワンタケ科(Sclerotiniaceae)に属
する菌株を用いてかかる手法で多糖を生成せしめること
は従来知られていない。
As mentioned above, this invention
The method is characterized in that poly@NSG-1 is produced by enzymatically acting on carbohydrates such as glucose by the hyphae of a strain that produces the polysaccharide NSG-1 belonging to the group Rotiniaceae), and the product is separated and collected. However, it has not been previously known that polysaccharides can be produced by such a method using a strain belonging to the Sclerotiniaceae family.

いま、この発明に用いることができるキツネノワンタケ
科(Sclerotiniaeeae)に属する菌株の
代表例として良好に多糖NSG−1の生成をもたらした
保存菌株スフレロチニアスフレロチオリラム(Scle
rotinia Sclerotiorum)IFO9
395による多糖NSG−1について説明する。
Now, as a representative example of a strain belonging to the family Sclerotiniaeeae that can be used in this invention, the preserved strain Sclerotinia sfulerothiorirum (Sclerotiniae), which successfully produced the polysaccharide NSG-1, is used.
rotinia Sclerotiorum) IFO9
Polysaccharide NSG-1 produced by No. 395 will be explained.

スフレロチニアスフレロチオリラム (Sclerotinia sclerotiorum
)IFO9395の保存斜面から菌糸体を含む寒天培地
切片(5X5X2mm)2片を例えばイーストエキス0
.3%、ペプトン1%、グルコース2%を含む培地10
0社に接種して28℃で4日間振盪培養し、培養物を遠
心分離して菌糸4一 体を分別する。この菌糸体を十分に洗浄して培地成分を
除去した後、再度遠心分離してこの全量をフラスコに移
し水を加えて全量400Jとなし、均一な懸濁液とする
。この懸濁液の40mQ宛を別に用意するグルコース5
g、クエン酸0.5gを含み予めpHを2.5〜6.0
の試験値に調整(NaOHによる)した糖質液60+n
Q宛を分注するフラスコ8本に夫々性態し、28℃で4
日間振盪又は攪拌下で保持せしめると。
Sclerotinia sclerotiorum
) Two agar medium sections (5 x 5 x 2 mm) containing mycelium from the preservation slope of IFO9395 were added with yeast extract 0, for example.
.. Medium 10 containing 3%, peptone 1%, glucose 2%
The mycelia were inoculated into 0 and cultured with shaking at 28° C. for 4 days, and the culture was centrifuged to separate 4 mycelia. After thoroughly washing the mycelium to remove medium components, it is centrifuged again and the entire volume is transferred to a flask and water is added to make a total volume of 400 J to form a uniform suspension. Separately prepare 40 mQ of this suspension. Glucose 5
g, containing 0.5 g of citric acid and adjusting the pH to 2.5 to 6.0 in advance.
Carbohydrate solution adjusted (by NaOH) to the test value of 60+n
Dispense the amount addressed to Q into 8 flasks and incubate at 28℃ for 4 hours.
When kept under shaking or stirring for days.

第1表に示すように各調整P)lに対応して溶液中に多
糖を生成する。
Polysaccharides are produced in solution corresponding to each preparation P)l as shown in Table 1.

すなわち、28℃で4日間保持した後、内容物を夫々遠
心分離により菌糸体を分離液とに分別し、分離液にエタ
ノール50+++Q宛を添加すると沈でん物を生成する
。この沈でん物をエタノールで洗浄後、真空乾燥すると
白色綿状の物質を得る。
That is, after holding at 28° C. for 4 days, the contents are centrifuged to separate the mycelium and a separated liquid, and when ethanol 50+++Q is added to the separated liquid, a precipitate is produced. This precipitate is washed with ethanol and then vacuum dried to obtain a white flocculent material.

上記で得た白色綿状の物質は後述するようにグルコース
のみを構成糖とする β−グルカンで、抗腫瘍活性を有
する多糖NSG−1(以下、多糖と略することが多い)
である。
As described below, the white flocculent substance obtained above is a β-glucan whose only constituent sugar is glucose, and is a polysaccharide NSG-1 (hereinafter often abbreviated as polysaccharide) that has antitumor activity.
It is.

第1表 初発pH最終PH多糖(mg/100mQ分離液)2.
5   2.6         25.93.0  
 2.9        109.73.5   2.
7        213.34.0   3.0  
      168.14.5   3.3     
   159.35.0   3.5        
 59.85.5   4.0         12
.16.0   4.7         32.2第
1表から初発PHを2.5〜6.0とした場合、生成量
の予備はあるがいずれの場合にも多糖の生成が認められ
、初発pHを3.0〜4.5とするとき生成量が顕著で
あり、特に3.5〜4.5の範囲が好ましいことを認め
る。
Table 1 Initial pH Final pH Polysaccharide (mg/100mQ separated liquid) 2.
5 2.6 25.93.0
2.9 109.73.5 2.
7 213.34.0 3.0
168.14.5 3.3
159.35.0 3.5
59.85.5 4.0 12
.. 16.0 4.7 32.2 From Table 1, when the initial pH is set to 2.5 to 6.0, there is a reserve amount of production, but polysaccharide production is observed in all cases, and the initial pH is set to 3. It is recognized that when the value is set to .0 to 4.5, the amount produced is significant, and a range of 3.5 to 4.5 is particularly preferable.

この発明は、上記のように通常、微生物の培養に不可欠
な窒素源やリン、カリ、マグネシウム等無機成分を含ま
ず、糖質としてグルコースのみを含み、他にはpH調整
のための僅少のクエン酸とNaOHを含む糖質溶液に菌
糸体を添加してグルコースから多糖を生成せしめたもの
であるから、培養による菌体外多糖産生とは明らかに生
成機構を異にするもので、菌糸体が糖質として用いたグ
ルコースに酵素的に作用したものと認めることができる
As mentioned above, this invention does not contain nitrogen sources or inorganic components such as phosphorus, potassium, and magnesium, which are normally essential for culturing microorganisms, and contains only glucose as a carbohydrate, and a small amount of citric acid for pH adjustment. Since polysaccharide is produced from glucose by adding mycelium to a carbohydrate solution containing acid and NaOH, the production mechanism is clearly different from exopolysaccharide production by culture, and the mycelium is This can be recognized as an enzymatic action on the glucose used as a carbohydrate.

かように、この発明においてはスフレロチニア(Scl
erotinia)属に属する菌を培養して得る菌糸体
を糖質に酵素的に作用せしめるものであり、糖質として
は、上記グルコースの他に各種糖類が使用でき、例えば
、アラビノース、キシロース、フラクトース、マンノー
ス、ガラクトース、マルトース、シュクロース、メリビ
オース、ラクトース、ラフィノース等の単糖類ないし三
糖類、フラクトオリゴ或はガラクトオリゴ等に代表され
る各種オリゴ糖、デンプン、デキストリン、アラビアゴ
ム等の高分子物質及びこれらの加水分解物、その他グリ
セリン、マニトールのような多価アルコール、或は用途
によってはシュクロース、グルコース、フラクトース、
ラフィノース等を含有する甘藷或は甜菜糖蜜を挙げるこ
とができるが、好ましくはグルコース、フラクトース、
シュクロース等を使用するのがよい、また上に挙げた糖
質は夫々単独又は2種以上の混合で用いてよい。
Thus, in this invention, soufflerotinia (Scl
Mycelia obtained by culturing bacteria belonging to the genus Erotinia are enzymatically applied to carbohydrates, and in addition to the above-mentioned glucose, various sugars can be used, such as arabinose, xylose, fructose, Monosaccharides or trisaccharides such as mannose, galactose, maltose, sucrose, melibiose, lactose, raffinose, various oligosaccharides represented by fructooligo or galactooligo, polymeric substances such as starch, dextrin, gum arabic, etc., and their hydration Decomposition products, other polyhydric alcohols such as glycerin and mannitol, or depending on the use, sucrose, glucose, fructose,
Examples include sweet potato or sugar beet molasses containing raffinose etc., but preferably glucose, fructose,
Sucrose and the like are preferably used, and the carbohydrates listed above may be used alone or in combination of two or more.

糖質溶液の初発pHの調整には、通常クエン酸、酒石酸
、乳酸のような緩衝性の強い有機酸を用いるが、塩酸、
硫酸等の鉱酸のほか、緩衝液も使用できる。更に第1表
に見られるように時間の経過につれてPH低下が認めら
れるので、初発pH維持のため、中途において上記酸類
によりpH調整を行ってもよい。
To adjust the initial pH of a carbohydrate solution, organic acids with strong buffering properties such as citric acid, tartaric acid, and lactic acid are usually used, but hydrochloric acid,
In addition to mineral acids such as sulfuric acid, buffers can also be used. Furthermore, as shown in Table 1, a decrease in pH is observed over time, so in order to maintain the initial pH, the pH may be adjusted with the above-mentioned acids midway through the process.

糖質と菌糸体の振盪又は攪拌による両者接触は20〜3
0℃の範囲で2〜8日行うが、28±1℃、3±1日が
より好ましい。
Contact between sugar and mycelium by shaking or stirring is 20 to 3
It is carried out at 0°C for 2 to 8 days, but 28±1°C for 3±1 days is more preferable.

尚、スフレロチニア(Sclerotinia)属に属
する菌株の菌糸体は、培養後分離してただちに用いても
、一旦凍結貯蔵したものを使用の都度解凍使用してもよ
い。更に一度多糖生成に供した使用済の菌糸体を新たに
調製した糖質溶液に添加し多糖生成に供することもでき
、反復使用により多糖生成量は若干減するが、少なくと
も同一菌糸体を3回の多糖生成に使用可能である。
The mycelium of a strain belonging to the genus Sclerotinia may be used immediately after being isolated after culturing, or it may be stored frozen and thawed each time it is used. Furthermore, used mycelium that has been used for polysaccharide production can be added to a newly prepared carbohydrate solution and used for polysaccharide production, and although the amount of polysaccharide produced will decrease slightly with repeated use, the same mycelium can be used at least three times. can be used for polysaccharide production.

次に、第1表において初発pH3,5にて得た多糖NS
G−1の組成及び糖構造について分析した結果は次のと
おりである。
Next, in Table 1, polysaccharide NS obtained at initial pH 3.5
The results of analyzing the composition and sugar structure of G-1 are as follows.

(1)組成分析、 全糖分   全窒素     灰分 95%以上  検出限度以下  検出限度以下但し全糖
分は、フェノール硫酸法により定量し、グルコースとし
て示したものである。
(1) Composition analysis, total sugar content, total nitrogen, ash content of 95% or more, below detection limit, below detection limit, however, total sugar content was determined by the phenol-sulfuric acid method and is expressed as glucose.

(2)構成糖、 三弗化酢酸(CF3COOH)による加水分解物を水素
化ホウ素ナトリウム(NaBH,)で還元し、これのア
ルジトールアセテート誘導体をガスクロマトグラフィー
分析した結果、グルコースのみを明確に検出し、フコー
ス、キシロース、マンノース、ガラクトース等の他の糖
は検出しない。
(2) As a result of reducing the hydrolyzate of constituent sugar, trifluoroacetic acid (CF3COOH) with sodium borohydride (NaBH), and analyzing its alditol acetate derivative by gas chromatography, only glucose was clearly detected. However, other sugars such as fucose, xylose, mannose, and galactose are not detected.

(3)構成糖の結合様式 箱守法によるメチル化分析の結果は2,3,4.6−チ
トラメチルー〇−D−グリシドール: 2,4.6− 
トリメチル−〇−D−グリシドール:2.4−ジメチル
−〇−D−グリシトールが1.0 : 0.9〜1.1
 : 0.9〜11の比で得られることから1→3結合
D−グルコピラノシル残基2個ごとに1→6結合D−グ
ルコピラノシル残基1ヶの分枝を有するグルカンである
ことが知られる。
(3) Binding mode of constituent sugars The result of methylation analysis using the Hakomori method is 2,3,4.6-titramethyl-〇-D-glycidol: 2,4.6-
Trimethyl-〇-D-glycidol: 2.4-dimethyl-〇-D-glycitol is 1.0: 0.9-1.1
: Since it is obtained with a ratio of 0.9 to 11, it is known that the glucan has a branch of one 1→6 bond D-glucopyranosyl residue for every two 1→3 bond D-glucopyranosyl residues.

(4)スミス分解生成物 完全スミス分解により、生成物としてグルコースとグリ
セリンを検出し、緩和スミス分解物の透析外液からグリ
セリンをそして内液の加水分解液からグルコースのみを
検出したことから、1→3結合とC−6に分枝を有する
構造のグルカンであることが知られる。
(4) Smith decomposition products Glucose and glycerin were detected as products by complete Smith decomposition, and glycerin was detected from the external dialysis fluid of the relaxed Smith decomposition product, and only glucose was detected from the hydrolyzed internal fluid.1 It is known that this glucan has a structure of →3 bonds and a branch at C-6.

(5)赤外線吸収スペクトル 日立215型赤外線分光々度計を用いKBr法で測定し
た結果は第1図のとおりで、波数880cm−’にβ−
グルコシド結合配向に特徴的な吸収(P)を認めること
から、β−グルコシド結合構造であることが認められる
(5) Infrared absorption spectrum The results measured by the KBr method using a Hitachi 215 model infrared spectrophotometer are shown in Figure 1.
Since absorption (P) characteristic of glucoside bond orientation is observed, it is recognized that it is a β-glucoside bond structure.

(6) 13C−NMRスペクトル 重ジメジメチルスルフオキシドMSO−d、、)に溶解
し、JEOL−FX200スペクトルメーターにより6
0℃で測定した結果は第2図のとおりで、δ値6gpp
m域のβ(1→6)結合に含まれるC−6の炭素の帰属
を含むシグナルS□と、δ値86ppm域のβ(1→3
)結合に含まれるC−3の炭素に帰属するシグナルS2
と、δ値1103pp域のβ−結合のC−1の炭素に帰
属するシグナルS3が特徴的に認められ、更にシグナル
S2が2つのピークを示すことから、β(1→3)結合
が2個あり、β(1→6)が1個あるβ−グルカン構造
が知られる。
(6) 13C-NMR spectrum dissolved in heavy dimedimethyl sulfoxide MSO-d, ) and measured by JEOL-FX200 spectrometer.
The results measured at 0°C are shown in Figure 2, with a δ value of 6 gpp.
The signal S□ includes the assignment of C-6 carbon included in the β (1 → 6) bond in the m region, and the β (1 → 3
) Signal S2 attributed to C-3 carbon included in the bond
Since the signal S3 attributed to the C-1 carbon of the β-bond with a δ value of 1103 pp is characteristically recognized, and furthermore, the signal S2 shows two peaks, indicating that there are two β (1 → 3) bonds. A β-glucan structure with one β(1→6) is known.

以」二の検討結果から、この多糖はβ−1,3結合のD
−グルコピラノシル残基を主鎖としこのD−グルコピラ
ノシル残基2ケごとにβ−1,6結合のグルコピラノシ
ル残基1ケを分枝構造として持つ β−グルカンである
と認められ、以下の諸性質を示す。
From the results of the above two studies, this polysaccharide has β-1,3-linked D
It is recognized that it is β-glucan, which has a main chain of -glucopyranosyl residues and one β-1,6-linked glucopyranosyl residue as a branched structure for every two D-glucopyranosyl residues, and has the following properties. show.

(イ)元素分析値等 C: 42.2〜44.0%、H: 5.9〜6.2%
、N:定量限界以下、ハロゲン、硫黄は定量されない。
(a) Elemental analysis values, etc. C: 42.2-44.0%, H: 5.9-6.2%
, N: Below the quantification limit, halogen and sulfur are not quantified.

(ロ)分子量 0.2モルNaOH/8モル尿素平衡セファロースCL
−4B(ファーマシア・ジャパン)カラムによるゲル濾
過クロマトグラフィーにより分子量の分布範囲が10G
〜io’である。
(b) Molecular weight 0.2 mol NaOH/8 mol urea equilibrium Sepharose CL
The molecular weight distribution range was 10G by gel filtration chromatography using a -4B (Pharmacia Japan) column.
~io'.

(ハ)融 点 約230℃で黒色化熱分解する。(c) Melting point It undergoes blackening thermal decomposition at about 230°C.

(ニ)比旋光度 20℃における水中濃度0.1g/100+nQの〔α
〕Dが10±56を示す。
(d) Specific rotation [α
]D indicates 10±56.

(ホ)溶解性 水、アルカリ、ジメチルスルフオキシド(DMSO)に
易溶、エチルアルコール、メチルアルコール、エーテル
、アセトン等の有機溶媒には不溶である。
(e) Solubility: Easily soluble in water, alkali, and dimethyl sulfoxide (DMSO), but insoluble in organic solvents such as ethyl alcohol, methyl alcohol, ether, and acetone.

(へ)呈色反応 モーリッシュ反応、アンスロン硫酸反応、フェノール硫
酸反応はいずれも陽性を呈し、ニンヒドリン反応、ビュ
ーレット反応が共に陰性であることから蛋白質、ペプチ
ドの存在を示さなり)。
(f) The color reaction Molisch reaction, Anthrone sulfuric acid reaction, and phenol sulfuric acid reaction were all positive, and the ninhydrin reaction and Biuret reaction were both negative, indicating the presence of proteins and peptides).

(ト)水溶液の塩基性、酸性、中性の別1%水溶液は中
性域(pH6〜6.5)を示す。
(g) Basic, acidic, and neutral aqueous solutions A 1% aqueous solution exhibits a neutral range (pH 6 to 6.5).

この発明の方法で得る多糖は、上記した物理、化学的諸
性質を有するβ−グルカンで後述のように抗腫瘍活性を
示すことから、薬用として有用で、かつ製法自体も極め
て簡単であるから、この発明によるときは、抗腫瘍活性
多糖を安価に提供するものであり、この多糖は腹腔内投
与、静脈内投与、腫瘍内投与及び経口投与として使用で
きるほか、各種態様での使用が期待できるものである。
The polysaccharide obtained by the method of the present invention is a β-glucan having the above-mentioned physical and chemical properties and exhibits antitumor activity as described below, so it is useful for medicinal purposes, and the manufacturing method itself is extremely simple. According to this invention, a polysaccharide with antitumor activity is provided at a low cost, and this polysaccharide can be used for intraperitoneal administration, intravenous administration, intratumoral administration, and oral administration, and can be expected to be used in various ways. It is.

以下この発明の製造方法とこれにより得る多糖の薬理作
用について具体的に説明する。
The production method of the present invention and the pharmacological action of the polysaccharide obtained thereby will be specifically explained below.

実施例1 スフレロチニアスフレロチオリラム (Sclerotinia sclerotiorum
)IFO9395の継代培地より5 X 5 X 2m
mの切片2ケをイーストエキス0.3%、ポリペプトン
1%、グルコース2%を含みオートクレーブ処理した培
地50mQに接種し25℃、1週間静置培養してこれを
一次種菌とする。次いで上記と同じ組成のオートクレー
ブ処理培地100mQに一次種菌5tQを接種し、25
℃、4日間振盪培養してこれを二次種菌とする、次いで
上記と同じ組成の培地6Qを10fl容量のジャーファ
ーメンタ−に採り、これに上記二次種菌の2木分(20
0mQ)を加え、通気量3Q/mjn、28℃で3日間
培養して、培養液100mf1当り、菌糸体乾物重量4
23.2mgの培養物を得た。
Example 1 Sclerotinia sclerotiorum
) 5 x 5 x 2 m from subculture medium of IFO9395
Two sections of M.m were inoculated into 50 mQ of an autoclaved medium containing 0.3% yeast extract, 1% polypeptone, and 2% glucose, and were left to stand at 25° C. for one week to serve as a primary inoculum. Next, 5tQ of primary inoculum was inoculated into 100mQ of autoclaved medium having the same composition as above, and 25
℃ for 4 days with shaking and use this as a secondary inoculum.Next, medium 6Q having the same composition as above was taken into a jar fermenter with a capacity of 10 fl, and 2 wood portions (20
0 mQ) and cultured at 28°C for 3 days with an aeration rate of 3Q/mjn, and the mycelium dry weight was 4 per 100 mf of culture solution.
23.2 mg of culture was obtained.

この内容物の全量を濾紙(Nn2)にて吸引濾過し水で
十分に洗浄した後、除水してこの全量を、10Q容量の
ジャーファーメンタ−に収容したグルコース5%、クエ
ン酸0.5%を含み5N−NaOHにてpH3,5に調
整した糖質溶液6Qに加え、通気量3Q/min、攪拌
数25Orpm、温度28℃で40時間処理した後、内
容物を濾紙(Nα2)にて吸引濾過、冷水で洗浄後、濾
液5.8Qにエタノール5.8Qを加えて沈でんを生成
せしめ、50〜100メツシユのナイロンネットにて濾
過して得た沈でんを80〜90℃の温水1ρに溶解し、
冷却後エタノールIQを加えて生成した沈でんを80〜
90℃の温水IQに加えて20KHz、140υ、1時
間の超音波処理のもとに溶解し、これを3000r、p
、m 5分で遠心分離して得た分離液全量を凍結乾燥し
て白色綿状の多糖1.972Eを得た。
The entire content was suction filtered through a filter paper (Nn2), thoroughly washed with water, water was removed, and the entire content was mixed with 5% glucose and 0.5% citric acid, which was placed in a jar fermentor with a capacity of 10Q. % and adjusted to pH 3.5 with 5N-NaOH, and treated at aeration rate of 3Q/min, stirring number of 25 rpm, and temperature of 28°C for 40 hours, and then filtered the contents with filter paper (Nα2). After suction filtration and washing with cold water, add 5.8Q of ethanol to 5.8Q of filtrate to form a precipitate, filter through a 50-100 mesh nylon net, and dissolve the obtained precipitate in 1μ of warm water at 80-90℃. death,
After cooling, add ethanol IQ to reduce the resulting precipitate to 80~
In addition to hot water IQ at 90°C, it was dissolved under ultrasonication at 20KHz, 140υ, for 1 hour, and then heated at 3000r, p.
The entire amount of the separated liquid obtained by centrifugation at 5 minutes was freeze-dried to obtain white cotton-like polysaccharide 1.972E.

この多糖は先に説明した物理、化学的諸性質を示した。This polysaccharide exhibited the physical and chemical properties described above.

実施例2 実施例1において、糖質の処理を終えて濾別した湿潤菌
糸体を実施例1に示す糖質溶液6Qを収容するILQ容
量ジャーファーメンタ−に加え、通気量3 Q/min
、攪拌数250r、p、m温度28℃で69時間処理し
た後、内容物を濾紙(Nα2)にて吸引濾過、冷水洗浄
後濾液5.9Qにエタノール5.9fl加えて沈でんを
生成せしめ、前記同様ナイロンネットにて濾過して得た
沈でんを80〜90℃の温水1ρに溶解し、冷却後エタ
ノールIQを加えて生成した沈でんを80〜90℃の温
水0.5Qに加えて超音波処理のもとに溶解し、後は実
施例1と同様に処理して白色綿状の多糖1.595gを
得た。ここで得た多糖も実施例1と同様の性質を示した
Example 2 In Example 1, the wet mycelium that had been filtered after the carbohydrate treatment was added to the ILQ capacity jar fermentor containing 6Q of the carbohydrate solution shown in Example 1, and the aeration rate was 3 Q/min.
After processing for 69 hours at a stirring number of 250 r, p, m and a temperature of 28°C, the contents were suction filtered using filter paper (Nα2), washed with cold water, and 5.9 fl of ethanol was added to the filtrate 5.9Q to form a precipitate. Similarly, the precipitate obtained by filtration with a nylon net was dissolved in 1 ρ of warm water at 80-90°C, and after cooling, ethanol IQ was added. The mixture was dissolved and treated in the same manner as in Example 1 to obtain 1.595 g of white flocculent polysaccharide. The polysaccharide obtained here also showed the same properties as in Example 1.

実施例3 実施例2において、糖質の処理を終えて濾別し、其の後
凍結保存した菌糸体を用い糖質の処理時間を120時間
としたほかは実施例2と同様に処理して白色綿状の多糖
0.830gを得た。
Example 3 The same procedure as in Example 2 was carried out, except that the mycelium was filtered after the carbohydrate treatment and then frozen and preserved, and the carbohydrate treatment time was changed to 120 hours. 0.830 g of white flocculent polysaccharide was obtained.

試験例1 実施例1にて得た多糖について、その薬理作用について
試験した。
Test Example 1 The polysaccharide obtained in Example 1 was tested for its pharmacological action.

IRC−系6週令のマウス(雄、体重27〜30g)1
0匹を1群として、同種移植腫瘍サルコーマ180腫瘍
細胞5X106ケ をそけい部皮下に移植し、その翌日
より生理食塩水に溶解した上記多糖を種々投与方法及び
経路で投与し、移植5週目に腫瘍を摘出してその重量を
測定し、生理食塩水のみを投与した対照群との比較を行
い第2表の結果を得た。
IRC-strain 6-week-old mouse (male, weight 27-30 g) 1
5 x 10 cells of allografted Sarcoma 180 tumor cells were subcutaneously transplanted into the groin area of 0 animals as one group, and from the next day, the above polysaccharide dissolved in physiological saline was administered by various administration methods and routes, and 5 weeks after transplantation. The tumor was removed and its weight was measured, and a comparison was made with a control group to which only physiological saline was administered, and the results shown in Table 2 were obtained.

16一 第2表から判明する如く、いずれの投与経路によっても
高い抑止効果が認められ、特に経口投与により50%以
上の抑止率を認めたことはこの発明の多糖の大きな特徴
である。
As is clear from Table 2, the polysaccharide of the present invention has a high inhibitory effect by any route of administration, and in particular, the inhibition rate of 50% or more was observed by oral administration, which is a major feature of the polysaccharide of the present invention.

試験例2 実施例1にて得た多糖について同系移植腫瘍Meth 
A繊維肉腫及び乳ガンMM46に対する活性を試験した
結果第3表の如くで同系腫瘍に対しても抗腫瘍活性を認
めた。
Test Example 2 Regarding the polysaccharide obtained in Example 1, syngeneic transplanted tumor Meth
As a result of testing the activity against A fibrosarcoma and breast cancer MM46, as shown in Table 3, antitumor activity was also observed against syngeneic tumors.

一19= (発明の効果) この発明の方法によるときは、煩雑な精製手段を用いる
ことなくきわめて容易に純良な製品として収得できるの
で安価に量産をもたらし、収得した多糖は各種腫瘍に対
し抗腫瘍活性を示し、使用に当っては注射による投与の
ほか経口による投与も可能とするので、各種剤形で使用
でき薬剤としてきわめて有用である。
119 = (Effects of the invention) When the method of this invention is used, it can be obtained very easily as a pure product without using complicated purification means, resulting in mass production at low cost, and the obtained polysaccharide has antitumor effects against various tumors. It exhibits activity and can be administered orally in addition to injection, so it can be used in various dosage forms and is extremely useful as a drug.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の多糖の赤外線吸収スペクトルを示し
、第2図は同多糖のジメチルスルフオキシド中における
”C−NMRスペクトルを示す。
FIG. 1 shows the infrared absorption spectrum of the polysaccharide of the present invention, and FIG. 2 shows the "C-NMR spectrum" of the same polysaccharide in dimethyl sulfoxide.

Claims (1)

【特許請求の範囲】[Claims] 多糖NSG−1生成性菌を培養し、得られた培養菌体を
、糖質含有液中でインキュベーシヨンし、多糖NSG−
1を生成せしめ、反応液から多糖NSG−1を採取する
ことを特徴とする多糖NSG−1の製造方法。
Polysaccharide NSG-1-producing bacteria were cultured, and the resulting cultured cells were incubated in a carbohydrate-containing solution to produce polysaccharide NSG-1.
1. A method for producing polysaccharide NSG-1, which comprises producing polysaccharide NSG-1 and collecting polysaccharide NSG-1 from the reaction solution.
JP30522286A 1986-12-23 1986-12-23 TATONSGG1NOSEIZOHOHO Expired - Lifetime JPH0236235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30522286A JPH0236235B2 (en) 1986-12-23 1986-12-23 TATONSGG1NOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30522286A JPH0236235B2 (en) 1986-12-23 1986-12-23 TATONSGG1NOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS63157994A true JPS63157994A (en) 1988-06-30
JPH0236235B2 JPH0236235B2 (en) 1990-08-16

Family

ID=17942510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30522286A Expired - Lifetime JPH0236235B2 (en) 1986-12-23 1986-12-23 TATONSGG1NOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0236235B2 (en)

Also Published As

Publication number Publication date
JPH0236235B2 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
Umezawa et al. Marinactan, antitumor polysaccharide produced by marine bacteria
EP0733647B1 (en) Polysaccharides and preparation thereof
Nwe et al. Characterization of chitosan and chitosan–glucan complex extracted from the cell wall of fungus Gongronella butleri USDB 0201 by enzymatic method
CN111978421B (en) Phellinus igniarius polysaccharide and preparation and application thereof
Pidoux et al. Characterization of the polysaccharides from a Lactobacillus brevis and from sugary kefir grains
CH634855A5 (en) PROCESS FOR THE PRODUCTION OF NEW BETA-1,3-GLUCAN DERIVATIVES.
EP0459367B1 (en) Method for preparing an antitumor dextran
US4398023A (en) β-1,3-Glucanpolyol, process for preparation thereof, and utilization thereof
CN111321183A (en) Polysaccharide fermentation composition with anticancer, antiviral, anti-inflammation, osteoblast proliferation promoting and intestinal stem cell proliferation promoting effects and preparation method thereof
US4614733A (en) Polysaccharides pharmaceutical compositions and the use thereof
EP1002541B1 (en) Oral drugs for amelioration of aids symptoms
JPH0372084B2 (en)
JPS63157994A (en) Production of polysaccharide nsg-1
US4774183A (en) Process for producing fructose
JPS603319B2 (en) amino sugar derivative
JPS63159401A (en) Antitumor-active polysaccharide nsg-1
KR100340735B1 (en) Method for preparation of Chicory oligosaccharides
JPS6359679B2 (en)
JPS5836395A (en) Preparation of polysaccharide
Premjet et al. High bacterial cellulose production by Acetobacter xylinum ATCC 10245 in a new culture medium with a sulfite pulping waste fraction
CN115947876B (en) beta-D-galactoglucan and preparation and application thereof
JP2804991B2 (en) Gel form derived from Ganoderma lucidum, method for producing the same, and Ganoderma lucidum extract containing the same
Bai et al. Effect of tween 40 and ethanol on the secretion, structure and antioxidant activities of exopolysaccharides from Inonotus rickii
US3995026A (en) Amylase inhibitor
RO137243A2 (en) Microorganism and process for preparing a microbial polysaccharide by biological synthesis