JPS6315728B2 - - Google Patents

Info

Publication number
JPS6315728B2
JPS6315728B2 JP6977480A JP6977480A JPS6315728B2 JP S6315728 B2 JPS6315728 B2 JP S6315728B2 JP 6977480 A JP6977480 A JP 6977480A JP 6977480 A JP6977480 A JP 6977480A JP S6315728 B2 JPS6315728 B2 JP S6315728B2
Authority
JP
Japan
Prior art keywords
current
solenoid
coil
circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6977480A
Other languages
Japanese (ja)
Other versions
JPS56165304A (en
Inventor
Noboru Tominari
Shuichi Kamyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP6977480A priority Critical patent/JPS56165304A/en
Publication of JPS56165304A publication Critical patent/JPS56165304A/en
Publication of JPS6315728B2 publication Critical patent/JPS6315728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明はチヨークコイルの定電流特性とトラン
ジスタの電流切換特性とを用いてソレノイドコイ
ル電流の立上り特性を急しゆんならしめるように
したチヨークコイルを用いたソレノイド高速駆動
回路に関するもので、ソレノイドコイルの動作特
性の改善を目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solenoid high-speed drive circuit using a chiyoke coil, which uses the constant current characteristics of the chiyoke coil and the current switching characteristics of a transistor to make the rising characteristics of the solenoid coil current steeper. The purpose is to improve the operating characteristics of solenoid coils.

ソレノイドによつて電気信号を機械的な動きに
変換する方法は、それが安価であることと、機械
構造が簡単であること等から広く用いられてお
り、またその使用方法もソレノイドの電磁吸引力
を利用するに際し、スイツチによつて機械的動作
させる方法と、トランジスタのスイツチング特性
を利用して、信号源の電圧によりソレノイドコイ
ル電流を制御する方法とが一般的であるが、特に
後者は人為的なスイツチによらずにソレノイドの
動作が行なえるため、一定時間内に数多くの動作
を行なわせる場合に用いられている。しかしなが
らこの方式ではソレノイドコイルがインダクタン
スを有するためコイルを流れる電流は急激な変化
を妨げられ、電磁吸引力が発生するときの立上り
特性が悪いという欠点を有している。
The method of converting electrical signals into mechanical movement using a solenoid is widely used because it is inexpensive and has a simple mechanical structure. When using solenoid coils, there are two common methods: mechanical operation using a switch, and controlling the solenoid coil current using the voltage of a signal source using the switching characteristics of a transistor, but the latter method is particularly sensitive to artificial operation. Because the solenoid can be operated without the need for a switch, it is used when a large number of operations are to be performed within a certain period of time. However, this system has the disadvantage that the solenoid coil has inductance, which prevents the current flowing through the coil from changing rapidly, and that the rise characteristics when electromagnetic attractive force is generated are poor.

第1図は従来のソレノイド駆動回路で、付加抵
抗R1を有する抵抗駆動方式である。この回路に
トランジスタ等によるスイツチSWで、バツテリ
ーBの直流(12V)を供給すると、第2図の電流
特性図に見られるように、信号Sは点線で示す如
く立上つてもソレノイドコイルSCを流れる電流
は実線で示す曲線iのように、所謂一次遅れ特性
で一定値に近づく、即ち、このときの電流の立上
り速度を表わす時定数t1はL/Rで示されるから
t1を短かくするには付加抵抗R1の値を大きくすれ
ばよいが、そのようにすると電流値が小さくな
り、磁力が低下するのでソレノイドによつて吸引
されるアクチユエータ等の動きが悪くなる。従つ
て電流を立上らせる速さには自ずと限度を生じ、
またLを小さくすることも同様に磁力を低下させ
ることとなる。
FIG. 1 shows a conventional solenoid drive circuit, which is a resistance drive type having an additional resistor R1 . When DC (12V) from battery B is supplied to this circuit using a switch SW using a transistor or the like, as shown in the current characteristic diagram in Figure 2, the signal S flows through the solenoid coil SC even if it rises as shown by the dotted line. As shown by the solid line curve i, the current approaches a constant value with a so-called first-order lag characteristic.In other words, the time constant t1 representing the rising speed of the current at this time is expressed as L/R.
To shorten t 1 , you can increase the value of the additional resistance R 1 , but if you do so, the current value will decrease and the magnetic force will decrease, making the movement of the actuator etc. attracted by the solenoid worse. . Therefore, there is a natural limit to the speed at which the current can rise,
Furthermore, reducing L also similarly reduces the magnetic force.

このような遅れを改善するために従来は、立上
り時の電圧を高くして使う傾向があつたが、特に
車載用等でバツテリー電圧を利用する場合には電
圧の昇圧のための電源装置を付加せねばならず回
路の複雑さやコストを増し、さらに回路内のパワ
ーロスを増加させるという欠点を有している。
In the past, in order to improve this kind of delay, there was a tendency to use a higher voltage at startup, but especially when using battery voltage in automotive applications, it is necessary to add a power supply device to boost the voltage. This has the disadvantage of increasing the complexity and cost of the circuit, as well as increasing the power loss within the circuit.

本発明は上記の点に鑑み、チヨークコイルの定
電流特性とトランジスタの電流切換特性とを利用
してソレノイドコイル電流に立上り特性を急しゆ
んならしめたもので、前記の如き欠点を伴なうこ
となくソレノイドの動作特性を改善できるように
したものである。
In view of the above points, the present invention utilizes the constant current characteristics of the chiyoke coil and the current switching characteristics of the transistor to make the rise characteristics of the solenoid coil current steeper. This makes it possible to improve the operating characteristics of the solenoid.

進んで本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will now be described based on the drawings.

第3図は本発明の基本回路図で、Bはバツテリ
ー、LCはチヨークコイル、CSWはトランジスタ
による切換スイツチ、Rは抵抗、R1は付加抵抗、
SCはソレノイドコイルであり、切換えられる両
側の回路a1,a2は電流値がほぼ等しい回路であ
る。
Figure 3 is a basic circuit diagram of the present invention, where B is a battery, L C is a choke coil, CSW is a transistor-based changeover switch, R is a resistor, and R1 is an additional resistor.
SC is a solenoid coil, and the circuits a 1 and a 2 on both sides to be switched have approximately equal current values.

上記回路において、今a1側に流れている電流を
スイツチCSWによりa2側に切換えると、その電
流変化は第4図の電流特性図におけるスイツチン
グ点Oの右側に示す曲線i2のように非常に変化の
小さいものとなる。即ち、スイツチング点Oの左
側は切換前の電流i1であり、チヨークコイルLC
もつインダクタンスは電流の変化を妨げる性質を
有するので、スイツチング直後の電流値はi1とほ
ぼ同じ値となり、以後僅かに下るのみで定常値と
なるのである。
In the above circuit, if the current currently flowing on the a1 side is switched to the a2 side by the switch CSW, the current change will be very large as shown in the curve i2 shown on the right side of the switching point O in the current characteristic diagram in Figure 4. The change will be small. That is, the left side of the switching point O is the current i 1 before switching, and since the inductance of the chain coil L C has the property of preventing changes in the current, the current value immediately after switching is almost the same value as i 1 , and after that the current value is slightly It becomes a steady value only by falling to .

前記した従来の駆動方式では切換時の電流値が
同図に鎖線で示すように、スイツチング点Oから
なだらかに立上るが本発明ではいきなりある値か
らスタートするため、アクチユエータに必要な吸
引力が従来の方式に較べ極めて短かい時間に発生
する。
In the conventional drive system described above, the current value at the time of switching rises gently from the switching point O, as shown by the chain line in the figure, but in the present invention, it suddenly starts from a certain value, so the attraction force required for the actuator is lower than that of the conventional drive system. This occurs in an extremely short time compared to the above method.

第5図は本発明の実施例を示す回路図で、トラ
ンジスタTr1,Tr2とその信号入力回路に挿入
されたインバータ1,2とによつて交互にON、
OFFされる1対のスイツチング回路の一方にソ
レノイドコイル3と付加抵抗4とを連ね、他方に
抵抗5を連ねて、これら両回路を、チヨークコイ
ル6が電源側に直列に挿入された電源線路7に並
列に接続したもので、この場合、両回はほぼ等し
い電流値に設定する。
FIG. 5 is a circuit diagram showing an embodiment of the present invention, in which transistors Tr1 and Tr2 and inverters 1 and 2 inserted into their signal input circuits are turned on and off alternately.
A solenoid coil 3 and an additional resistor 4 are connected to one side of a pair of switching circuits that are turned off, and a resistor 5 is connected to the other side, and both circuits are connected to a power line 7 in which a switch coil 6 is inserted in series on the power source side. They are connected in parallel, and in this case both times are set to approximately the same current value.

上記の如く構成した本発明の回路において、イ
ンバータ1の入力信号を高レベルにすると、イン
バータ1の出力は低レベルとなり、トランジスタ
Tr1はOFF状態となつてソレノイドコイル3に
は電流が流れないが同時にインバータ2の出力が
高レベルとなるので、トランジスタTr2はON状
態となり、チヨークコイル6、抵抗5およびトラ
ンジスタTr2を通じて電流が流れている。
In the circuit of the present invention configured as described above, when the input signal of inverter 1 is set to high level, the output of inverter 1 becomes low level, and the transistor
Tr1 is in the OFF state and no current flows through the solenoid coil 3, but at the same time, the output of the inverter 2 becomes high level, so the transistor Tr2 is in the ON state, and current flows through the choke coil 6, the resistor 5, and the transistor Tr2. .

この状態で、入力信号を低レベルにするとイン
バータ1,2の出力が逆となるのでトランジスタ
Tr1,Tr2の動作状態も逆転し、トランジスタ
Tr1がONすると同時にトランジスタTr2が
OFFし、チヨークコイル6、抵抗5、トランジ
スタTr2を通じて流れていた電流は、付加抵抗
4、ソレノイド3およびトランジスタTr1とそ
の経路を変えるがチヨークコイル6がその性質上
一定電流を流し続けようとするため、ソレノイド
コイル3の電流としては前記したように立上りの
非常に速いものが得られるものである。
In this state, if the input signal is set to low level, the outputs of inverters 1 and 2 will be reversed, so the transistor
The operating states of Tr1 and Tr2 are also reversed, and the transistor
At the same time as Tr1 turns on, transistor Tr2 turns on.
When the current is turned OFF, the current flowing through the coil 6, the resistor 5, and the transistor Tr2 changes its path to the additional resistor 4, the solenoid 3, and the transistor Tr1. As described above, the current flowing through the coil 3 has a very fast rise.

実際に従来の回路と本発明の回路とで、ソレノ
イドを駆動してみると本発明の回路では立上り時
間を30%短縮できた。
When a solenoid was actually driven using a conventional circuit and a circuit according to the present invention, the rise time was reduced by 30% with the circuit according to the present invention.

第6図は1対のスイツチング回路の双方にソレ
ノイドコイルを挿入し、2個のソレノイドをプツ
シユプル動作させるようにした実施例である。即
ち、スイツチング回路の一方にプツシユ用ソレノ
イドコイル3aを挿入し、他方のスイツチング回
路には第5図に示す抵抗5に代え、プル用ソレノ
イドコイル3bを挿入したものである。なお8は
限流抵抗である。
FIG. 6 shows an embodiment in which solenoid coils are inserted into both of a pair of switching circuits, and the two solenoids are operated in a push-pull manner. That is, a push solenoid coil 3a is inserted into one of the switching circuits, and a pull solenoid coil 3b is inserted into the other switching circuit in place of the resistor 5 shown in FIG. Note that 8 is a current limiting resistor.

この回路は本発明の原理を2個のソレノイドコ
イルに有効に作用させ得る極めて簡単な回路であ
る。
This circuit is an extremely simple circuit that can effectively apply the principle of the present invention to two solenoid coils.

第7図はソレノイドコイルに流れる電流の定常
値を小さくするようにした実施例であり、第5図
に示す付加抵抗4と並列にコンデンサ9を設けた
ものであるが、ここに用いる抵抗4′は上記抵抗
4より高抵抗のものである。コンデンサ9は速い
電圧変化に対してはほとんど抵抗を示さない、即
ちインピーダンスがゼロであるから抵抗4′の値
が高くとも抵抗ゼロの状態となつており、時間の
経過と共にコンデンサ9と抵抗4′の並列回路部
のインピーダンスが抵抗4′の値に近づくので電
流値が一定になつたときの電流の大きさは第1図
に示す従来の回路より小さくなるのである。
Figure 7 shows an embodiment in which the steady-state value of the current flowing through the solenoid coil is reduced, and a capacitor 9 is provided in parallel with the additional resistor 4 shown in Figure 5. has a higher resistance than the resistor 4 above. The capacitor 9 shows almost no resistance against rapid voltage changes, that is, the impedance is zero, so even if the value of the resistor 4' is high, the resistance is zero, and as time passes, the capacitor 9 and the resistor 4' Since the impedance of the parallel circuit portion approaches the value of resistor 4', the magnitude of the current when the current value becomes constant is smaller than that of the conventional circuit shown in FIG.

第8図は従来の回路と本発明の第7図に示す回
路とによつてソレノイドバルブを駆動した場合の
電流とバルブストロークとの変化を実測したオシ
ログラムの波形図であり、同図Aが従来の回路
で、同図Bが本発明の回路である。
FIG. 8 is a waveform diagram of an oscillogram obtained by actually measuring changes in current and valve stroke when a solenoid valve is driven by the conventional circuit and the circuit shown in FIG. 7 of the present invention. The circuit shown in Figure B is the circuit according to the present invention.

この図からも明かなように、同図Aではバルブ
がストローク分0.2mm移動するのに、開方向で約
1.5ミリ秒、閉方向で約0.9ミリ秒を要しているの
に対し、同図Bでは同じストローク分0.2mmで、
開方向に約1ミリ秒、閉方向に約0.6ミリ秒と、
同図Aに較べ第30%の応答速度の向上となつてお
り、さらに電流波形の立上りも同図Aに較べ極端
に速くなつている。そればかりでなくコンデンサ
の追加により、電流の定常値が同図Aでは1.6ア
ンペアであるのに対し同図Bでは0.4アンペア位
となつている。
As is clear from this figure, in figure A, the valve moves by 0.2 mm for the stroke, but in the opening direction it is approximately
1.5 milliseconds, and approximately 0.9 milliseconds in the closing direction, whereas in figure B, the same stroke is 0.2 mm.
Approximately 1 millisecond in the opening direction and approximately 0.6 millisecond in the closing direction.
The response speed is improved by 30% compared to A in the same figure, and the rise of the current waveform is also extremely faster compared to A in the same figure. Furthermore, due to the addition of the capacitor, the steady-state value of the current is 1.6 amperes in figure A, while it is around 0.4 amperes in figure B.

このようにコンデンサを用い、電流の定常値を
小さくするとアクチユエータの位置の保持力を小
さくできるので切換スイツチで、ソレノイドコイ
ルの電流を切断した後のアクチユエータの戻りを
早くすることができ、しかもコンデンサを用いて
も電流の立上りへの影響はほとんどなく、利益の
みが付加される。
In this way, by using a capacitor and reducing the steady-state value of the current, the force that holds the actuator in position can be reduced, so the actuator can return quickly after the current in the solenoid coil is cut off using a changeover switch. Even if it is used, there is almost no effect on the rise of the current, and only benefits are added.

本発明は上述のように、トランジスタにより交
互にON、OFFされる1対のスイツチング回路の
一方にソレノイドコイルを連ね、他方に抵抗を連
ねるか、あるいは双方の回路にソレノイドコイル
を連ねて、これら両回路を、チヨークコイルを有
する電源線路に並列に接続し、チヨークコイルの
定電流特性とトランジスタの電流切換特性とによ
り、ソレノイドコイル電流の立上り特性を急しゆ
んならしめるようにしたので、従来のこの種回路
のように、電圧を高めることなく、低電圧のまま
で、ソレノイドの動作特性を改善でき、従つて高
速駆動が可能となる等優れた効果を発揮する。
As described above, the present invention connects a solenoid coil to one side of a pair of switching circuits that are turned on and off alternately by transistors, and connects a resistor to the other, or connects solenoid coils to both circuits. The circuit is connected in parallel to a power line having a chiyoke coil, and the constant current characteristics of the chiyoke coil and the current switching characteristics of the transistor are used to make the rise characteristics of the solenoid coil current steeper, making it different from conventional circuits of this type. As shown in the figure, the operating characteristics of the solenoid can be improved without increasing the voltage and the voltage remains low, thus achieving excellent effects such as enabling high-speed driving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のソレノイド駆動回路図、第2図
は同上電流特性図、第3図は本発明チヨークコイ
ルを用いたソレノイド高速駆動回路の基本回路
図、第4図は同上電流特性図、第5図は同上実施
例を示す回路図、第6図は同上プツシユプル動作
の回路図、第7図は同上コンデンサを利用した回
路図、第8図は従来の回路と本発明の回路とのオ
シログラムの波形図である。 Tr1,Tr2……トランジスタ、1,2……イ
ンバータ、3,3a,3b……ソレノイドコイ
ル、4……付加抵抗、5……抵抗、6……チヨー
クコイル、7……電源線路。
Fig. 1 is a conventional solenoid drive circuit diagram, Fig. 2 is a current characteristic diagram as above, Fig. 3 is a basic circuit diagram of a solenoid high-speed drive circuit using the inventive chiyoke coil, Fig. 4 is a current characteristic diagram as above, and Fig. 5 is a diagram of a conventional solenoid drive circuit. The figure is a circuit diagram showing the same embodiment as above, Figure 6 is a circuit diagram of push-pull operation as above, Figure 7 is a circuit diagram using a capacitor as above, and Figure 8 is an oscillogram waveform of the conventional circuit and the circuit of the present invention. It is a diagram. Tr1, Tr2...Transistor, 1,2...Inverter, 3,3a,3b...Solenoid coil, 4...Additional resistance, 5...Resistor, 6...Chiyoke coil, 7...Power line.

Claims (1)

【特許請求の範囲】 1 トランジスタにより交互にON、OFFされる
1対のスイツチング回路の一方に、ソレノイドコ
イルを連ね、他方に抵抗を連ねるか、あるいは双
方の回路にソレノイドコイルを連ねて、これら両
回路を、チヨークコイルを有する電源線路に並列
に接続したことを特徴とするチヨークコイルを用
いたソレノイド高速駆動回路。 2 トランジスタにより交互にON、OFFされる
1対のスイツチング回路の双方に、2個のソレノ
イドコイルをプツシユプル動作するように接続し
たことを特徴とする特許請求の範囲第1項記載の
チヨークコイルを用いたソレノイド高速駆動回
路。
[Claims] 1. A solenoid coil is connected to one side of a pair of switching circuits that are turned on and off alternately by a transistor, and a resistor is connected to the other side, or a solenoid coil is connected to both circuits, and both of these circuits are connected. A solenoid high-speed drive circuit using a chiyoke coil, characterized in that the circuit is connected in parallel to a power line having a chiyoke coil. 2. A chiyoke coil according to claim 1, characterized in that two solenoid coils are connected to both of a pair of switching circuits that are alternately turned on and off by transistors so as to operate in a push-pull manner. Solenoid high speed drive circuit.
JP6977480A 1980-05-26 1980-05-26 High-speed drive circuit for solenoid using choke coil Granted JPS56165304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6977480A JPS56165304A (en) 1980-05-26 1980-05-26 High-speed drive circuit for solenoid using choke coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6977480A JPS56165304A (en) 1980-05-26 1980-05-26 High-speed drive circuit for solenoid using choke coil

Publications (2)

Publication Number Publication Date
JPS56165304A JPS56165304A (en) 1981-12-18
JPS6315728B2 true JPS6315728B2 (en) 1988-04-06

Family

ID=13412462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6977480A Granted JPS56165304A (en) 1980-05-26 1980-05-26 High-speed drive circuit for solenoid using choke coil

Country Status (1)

Country Link
JP (1) JPS56165304A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012005595B4 (en) * 2012-03-20 2024-03-21 Festo Se & Co. Kg magnetic valve

Also Published As

Publication number Publication date
JPS56165304A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
EP0184940B1 (en) A method of controlling electromagnetic actuators and a controller therefor
US20080048807A1 (en) Electromechanical and Solid-State AC Relay with Reduced Arcing
JPH0442805B2 (en)
TW200511704A (en) A driving method and a driving circuit for a dc motor
KR910021548A (en) Electromagnetic clutch actuator
CN109958816A (en) Control system, solenoid valve and its control method
JPS6315728B2 (en)
JPS61131614A (en) Fast switchgear for electromagnetic load
JPS6045002A (en) Operation controller of electromagnetic load
JP2001132866A (en) Driving circuit for solenoid selector valve
KR920003620A (en) Stepping motor driving circuit and its driving method
JPH0258876B2 (en)
JPS6249966B2 (en)
JP2582460B2 (en) Solenoid operation status detection device
CN216487867U (en) Magnetic latching relay isolation drive circuit and magnetic latching relay
KR100288217B1 (en) Drive of solenoid valve with feedback circuit for current control
JPS605163Y2 (en) Solenoid valve control circuit
JP2543451Y2 (en) Driving circuit for solenoid and solenoid valve using the same
SU1176391A1 (en) Electromagnetic drive
JPH0365881B2 (en)
SU1555791A1 (en) Multimotor electric drive of conveyers
SU1756950A1 (en) Drive electromagnet provided with built-in rectifiers and control elements
JPH0445303Y2 (en)
RU32317U1 (en) Vacuum contactor
KR950004707A (en) Electro-Optical Q-Switching Drive Circuit for Proprism Laser Resonator