JPS63156994A - Finned type heat transfer pipe having longitudinal fine wave surface - Google Patents

Finned type heat transfer pipe having longitudinal fine wave surface

Info

Publication number
JPS63156994A
JPS63156994A JP30145386A JP30145386A JPS63156994A JP S63156994 A JPS63156994 A JP S63156994A JP 30145386 A JP30145386 A JP 30145386A JP 30145386 A JP30145386 A JP 30145386A JP S63156994 A JPS63156994 A JP S63156994A
Authority
JP
Japan
Prior art keywords
heat transfer
pipe
tube
transfer pipe
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30145386A
Other languages
Japanese (ja)
Other versions
JPH0450518B2 (en
Inventor
Shunpei Kawanami
川浪 俊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP30145386A priority Critical patent/JPS63156994A/en
Publication of JPS63156994A publication Critical patent/JPS63156994A/en
Publication of JPH0450518B2 publication Critical patent/JPH0450518B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enhance a heat transfer characteristic of a heat transfer pipe by a method wherein a wavy surface having fine and accute angle corrugations at inner and outer surfaces of the wall of a straight pipe is longitudinally formed on a pipe. CONSTITUTION:A sectional shape of a heat transfer pipe 1 is a starshape having six fins (p). Member of each of the fins (p) is bent in a finepitch, corrugated portions in a longitudinal direction are applied, an area-multiplication rate with respect to a smooth surface pipe is calculated, a bending angle of the corrugation is made as an accute angle and a condensation of steam is promot ed. Partition plates 8 are arranged at the heat transfer pipe 1 with a pitch l, condensation liquid drip 10 flowing along the trough of the fin (p) is collected and discharged. With this arrangement, the heat transfer pipe having fins has a high heat transfer characteristic and at the same time a wall thickness of the heat transfer wall can be made quite thin, so that it is advantageous when an expensive anti-corrosion material is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は凝縮器に用いて有用な、長手方向に微細な波状
表面を有する製型伝熱管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a shaped heat exchanger tube useful for use in a condenser and having a finely corrugated surface in the longitudinal direction.

〔従来の技術とその問題点〕[Conventional technology and its problems]

凝縮器用の伝熱管としては従来種々のものが提案され、
実用に供されているが、未だ充分満足すべきものは知ら
れていない。そのため、本発明の発明者はさきに、両端
に平滑な直管部を有し、それら直管部の間に内側に突出
した複数上の凹凸の襞を形成し且つその中心部に芯体を
挿入して成る襞付管を発明し、特許出願中である(昭和
60年特許願第134793号)。この襞如伝熱管は通
常の伝熱管に比して伝熱面積が大きく、かなりの効果を
挙げることが出来るが、尚、凝縮器用の伝熱管としては
改良されることが望ましい。
Various types of heat transfer tubes for condensers have been proposed in the past.
Although it has been put to practical use, no one that is fully satisfactory is known yet. Therefore, the inventors of the present invention first had smooth straight pipe parts at both ends, formed a plurality of uneven folds protruding inward between the straight pipe parts, and placed a core body in the center of the folds. He invented a pleated tube made by inserting the tube, and is currently applying for a patent (Patent Application No. 134793, 1985). Although this folded heat transfer tube has a larger heat transfer area than a normal heat transfer tube and can produce considerable effects, it is desirable that it be improved as a heat transfer tube for a condenser.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記出願中の発明を改良し、熱交換効率のより
高い製型伝熱管を提供することを目的としてなされもの
で、その構成は、両端に平滑な直管部を有し、それら直
管部の間にその内側に突出した複数条の凹凸の襞を形成
しその中心部に芯金を挿入して成る伝熱管において、該
襞の内外面又は外面に微細且つ鋭角の山と谷をもつ凹凸
の条から成る波状表面を管の長手方向に形成したことを
特徴とするものである。
The present invention has been made for the purpose of improving the above-mentioned pending invention and providing a molded heat exchanger tube with higher heat exchange efficiency. In a heat exchanger tube formed by forming a plurality of concave and convex folds protruding inwardly between the tube parts and inserting a metal core into the center of the folds, minute and acute-angled peaks and valleys are formed on the inner and outer surfaces or outer surfaces of the folds. The tube is characterized by a wavy surface consisting of uneven stripes formed in the longitudinal direction of the tube.

即ち、本発明は、凝縮器用の伝熱管の改良であって、そ
の主眼とする所は、襞による伝熱面積増に加え、各装部
の長手方向に微細な凹凸をつけて伝熱面積をさらに増大
させると共に、この凹凸の山と谷の角度を可及的に鋭角
にし、この斜面に衝突して反射した蒸気分子が再びこの
凹み内で促えられて凝縮する確率を大きくすることによ
り凝縮をなお促進させようとするものであって、その詳
細について説明すれば、次の通りである。
That is, the present invention is an improvement of a heat transfer tube for a condenser, and its main purpose is to increase the heat transfer area by providing fine irregularities in the longitudinal direction of each covering part, in addition to increasing the heat transfer area by using pleats. At the same time, the angles between the peaks and valleys of this uneven surface are made as acute as possible, increasing the probability that vapor molecules that collide with this slope and are reflected will be encouraged within this depression and condense again. The aim is to further promote this, and the details are as follows.

本発明の発明者は上記の目的を達成するため、前記先願
の伝熱管の伝熱特性を実験により実測し、種々検討した
結果、該伝熱管においては、芯金にねじを周設したねじ
付芯金を用いた場合、該芯金の撹拌効果が特に著しく、
管内の冷却水側の熱伝達率が管外の蒸気(例えば、真空
度712mm11gの水蒸気)側の熱伝達率の数倍に達
することを知得した。そこで、蒸気側の熱伝達率を高め
れば、熱貫流率を更に大巾に高め得ることが期待される
との観点に立ち、その手段として各襞の部材を微細ピッ
チに折り曲げて長手方向に山と谷をもつ波付は状の凹凸
を施して、平滑管に対する面積倍率を高めると共に前記
凹凸の折り曲げ角を鋭角にして、蒸気の凝縮を促進する
効果を発揮させることにより、管外面の熱伝達率を大巾
に高めることに成功したのである。
In order to achieve the above object, the inventor of the present invention experimentally measured the heat transfer characteristics of the heat transfer tube of the prior application and made various studies. When a cored metal is used, the stirring effect of the cored metal is particularly remarkable.
It has been learned that the heat transfer coefficient on the cooling water side inside the tube is several times higher than the heat transfer coefficient on the steam outside the tube (for example, steam at a vacuum level of 712 mm and 11 g). Therefore, from the viewpoint that it is expected that the heat transmission coefficient can be further increased by increasing the heat transfer coefficient on the steam side, as a means to do so, the members of each fold are bent at a fine pitch to form a mountain in the longitudinal direction. The heat transfer on the outer surface of the tube is improved by applying unevenness in the shape of a wave with grooves and valleys to increase the area magnification compared to a smooth tube, and by making the bending angle of the unevenness acute, which has the effect of promoting steam condensation. They succeeded in dramatically increasing the rate.

次に、鋭角の凹凸面が蒸気の凝縮を促進する現象を第1
図と第2図との比較によって概念的に説明する。
Next, we will explain the phenomenon in which sharp uneven surfaces promote steam condensation.
This will be conceptually explained by comparing the figure and FIG. 2.

第1図は鋭角の凹凸をもった伝熱面、第2図は平滑面、
小さな丸は蒸気の分子を表わし、矢印はその運動の方向
を、また半円形は分子が凝縮したことを表わす。
Figure 1 shows a heat transfer surface with acute irregularities, Figure 2 shows a smooth surface,
Small circles represent vapor molecules, arrows indicate their direction of motion, and semicircles represent condensation of molecules.

第1図において、凹凸のピッチが仮に分子の平均自由行
程より短かければ、凹みaの一つの斜面に衝突して反射
した分子は凹みa内のように直接もう一方の面に到達し
、そこで凝縮するか、または更に反射されてもとの面に
促えられて凝縮するので、一度凹みに入った分子は必ず
凝縮することになると考えてよい。
In Fig. 1, if the pitch of the concavities and convexities is shorter than the mean free path of the molecule, the molecule that collides with one slope of concavity a and is reflected will reach the other surface directly, as in concavity a, and there. It can be thought that once a molecule enters a dent, it will definitely condense, because it will either condense or be further reflected and be pushed back to the original surface and condense.

而して、凹凸のピッチが分子の平均自由行路より長いと
、一旦衝突した分子が凹みbに宗すように再び凹み外に
出る確率が高くはなるが、一部の分子は凹みCに示すよ
うに凹みaと同様な行程を辿ることが可能である。
Therefore, if the pitch of the concavities and convexities is longer than the mean free path of the molecules, there is a high probability that the molecules that have collided will come out of the concavity again, as shown in concavity B, but some molecules will not move as shown in concave C. It is possible to follow the same process as for the depression a.

第2図においては、一度反射された分子が再びもとの平
面に促えられる為には他の分子に衝突して反射し、うま
く返って来ることが必要で、その確率が第1図より小さ
いことがわかる。
In Figure 2, in order for a molecule that has been reflected to return to its original plane, it must collide with another molecule, be reflected, and return successfully, and the probability of this happening is shown in Figure 1. You can see that it's small.

この凹凸の角度αがより鋭角になり、波のピッチが小さ
くなるほど、一つの面で反射された分子が他の分子に衝
突せずに伝熱面に到達し凝縮する確率が大きくなること
がわかる。
It can be seen that as the angle α of this unevenness becomes more acute and the wave pitch becomes smaller, the probability that molecules reflected from one surface will reach the heat transfer surface and condense without colliding with other molecules increases. .

但し、それには凝縮液排出の上から限度があるのであっ
て、本発明の一要因である液排出用仕切板のピッチとの
兼ね合いも考慮して角度αとピッチとを決定するのであ
るが、それについては追って説明する。
However, there is a limit to this due to the condensate discharge, and the angle α and the pitch are determined in consideration of the pitch of the liquid discharge partition plate, which is one of the factors of the present invention. I'll explain more about that later.

凹凸の形状は、第1図のように三角波形でもよいが、角
々に丸みをつけてもよい。
The shape of the unevenness may be a triangular waveform as shown in FIG. 1, or the corners may be rounded.

第3図は凹凸の山と谷に丸みをつけた形状を示す。この
波の高さとピッチは第1図と同等であるが、丸みをもっ
ただけ面積倍率は第1図より少し大きくなり、且つ凝縮
促進効果は変らない。
Figure 3 shows a shape in which the peaks and valleys of the unevenness are rounded. Although the height and pitch of this wave are the same as in FIG. 1, the area magnification is slightly larger than in FIG. 1 due to the roundness, and the condensation promotion effect remains the same.

このように曲面で構成される波の場合は、山と谷との頂
点を結ぶ線が鋭角αをなす場合に鋭角の波と称すること
とする。
In the case of a wave composed of a curved surface as described above, when a line connecting the vertices of a crest and a trough forms an acute angle α, the wave is referred to as an acute-angle wave.

第4図は上述の意味での山と谷における角度が直角の場
合を示し、明らかに第1図、第3図より分子が凝縮面に
促えられる確率が小さいことを示す。
FIG. 4 shows the case where the angles between the peaks and valleys in the above sense are right angles, and it clearly shows that the probability that molecules are attracted to the condensation surface is smaller than in FIGS. 1 and 3.

平滑面に対する面積倍率mは下記の式 %式%) で決まるので、波高やピッチには一応無関係であり、細
かいピッチを選ぶ理由は上述の分子運動論上の根拠によ
る。
Since the area magnification m for a smooth surface is determined by the following formula (%), it is unrelated to the wave height and pitch, and the reason for choosing a fine pitch is based on the above-mentioned molecular motion theory.

波のピッチを細かくするためには、板を折り曲げてつく
る場合は、板の厚みを極力薄くしなくてはならない。
In order to make the pitch of the waves finer, if the board is bent, the thickness of the board must be made as thin as possible.

第5図は折り曲げと剪断力によ乏滑りの組み合せの加工
によるもの、第6図はローラーによる目立て加工による
ものを示し、ピッチと板厚との関係によってその方法を
選択する。
Fig. 5 shows a process using a combination of bending and shearing force with little slippage, and Fig. 6 shows a process using a roller for sharpening, and the method is selected depending on the relationship between pitch and plate thickness.

次に、凝縮液を速かに排出して、凹み、即ち溝に液が溜
まり、伝熱を阻害するのを防止する方法について述べる
Next, a method for quickly discharging the condensed liquid to prevent liquid from accumulating in the recesses or grooves and inhibiting heat transfer will be described.

第7図は前記先願の明細書及び図面に記載したものと同
様な構造の伝熱管の装部の長手方向に微細な波9を付け
たものの一部の縦断面を示し、1は6条の襞Pから成る
菊型伝熱面、2はその一方の側において菊型伝熱面1の
外形に適合し他方の側において管板3の円形の穴に適合
する口金、4は螺旋5を有する芯金、6は口金2に対し
て芯金4を固定し且つ流体の流通孔を有するアダプター
FIG. 7 shows a longitudinal section of a part of a heat exchanger tube having a structure similar to that described in the specification and drawings of the earlier application, with minute waves 9 formed in the longitudinal direction of the covering part; a chrysanthemum-shaped heat transfer surface consisting of folds P, 2 adapted on one side to the contour of the chrysanthemum-shaped heat transfer surface 1 and a base adapted to a circular hole in the tube plate 3 on the other side, 4 a spiral 5; A core bar 6 is an adapter that fixes the core bar 4 to the base 2 and has a fluid communication hole.

7はナツトである。7 is Natsuto.

8は襞pの谷に沿って流れる凝縮液を排出するための仕
切板で、ピッチQで配置されている。
Reference numeral 8 denotes partition plates for discharging condensate flowing along the valleys of the folds p, which are arranged at a pitch Q.

この仕切板8の作用は、第8図に示すように、液滴10
を集めて11のように排出し、なるべく伝熱面が液に被
われないようにすることである。但し、仕切板8が液を
完全に排出し下方に触れないで落下するように、該仕切
板8の形状を考慮することが重要である。
The effect of this partition plate 8 is as shown in FIG.
Collect the liquid and discharge it as shown in step 11, so that the heat transfer surface is not covered with the liquid as much as possible. However, it is important to consider the shape of the partition plate 8 so that the partition plate 8 completely drains the liquid and falls down without touching the bottom.

第9図は6個の襞pに6片の仕切板8が取付けである態
様を示す。襞Pを点線で表わしであるのは、この各々の
襞Pが、第10図に示すように、微細な溝9から成って
いることを意味している。
FIG. 9 shows an embodiment in which six pieces of partition plates 8 are attached to six folds p. The reason that the pleats P are represented by dotted lines means that each pleat P consists of fine grooves 9, as shown in FIG.

第10図において、 12は口金2と溝9との間の隙間
をロー付けないし溶接で塞いだことを示す。但し、仕切
板8の輪郭をギザギザにして管端から嵌めるようにすれ
ばその要はない。
In FIG. 10, 12 indicates that the gap between the cap 2 and the groove 9 is closed by brazing or welding. However, this is not necessary if the contour of the partition plate 8 is made jagged so that it can be fitted from the tube end.

尚、第10図において、内面の波高を外面の波高よりも
低くしであるのは、工作し易さのためであり、更に内面
に波をつけず外面だけに波をつけることも、例えば、フ
ロン系冷媒等には適している。
In Fig. 10, the reason why the wave height on the inner surface is lower than that on the outer surface is to make it easier to work with.Furthermore, it is also possible to create waves only on the outer surface and not on the inner surface, for example. Suitable for fluorocarbon-based refrigerants, etc.

襞Pの谷底には溝9を設けず平滑にしておいた方が管内
冷却水の流れの都合上から好ましく、また、装管の長手
方向の接ぎ目をそこにもって来る関係からも都合がよい
It is preferable to leave the valley bottom of the fold P smooth without providing the groove 9, from the viewpoint of the flow of cooling water in the pipe, and also because it allows the joint in the longitudinal direction of the pipe to be located there. .

このようにすると、接ぎ目は重ね合わせて抵抗溶接で容
易にシール出来る。
In this way, the seams can be overlapped and easily sealed by resistance welding.

襞pの先端部でシールすることも可能であるが。Although it is also possible to seal at the tips of the folds p.

十の場合は若干の波のない平滑部を必要とする。In the case of 10, a smooth part without some waves is required.

垂直壁に凝縮する蒸気側の熱伝達率hokcal/m”
h’cは下記で与えられている。
Heat transfer coefficient hokcal/m on the steam side condensing on the vertical wall
h'c is given below.

ここで、L:垂直壁の高さ又は水平管の外径 mΔθ:
凝縮温度と伝熱壁温度との差  ℃τ:液化流体の潜熱
     Kcal/Kgγ:液化流体の比重量   
  にg/mlλ:液化流体の熱伝導率 Kcal/m
、hr、’cη:液化流体の粘性係数   Kg、h/
++fCは定数で垂直壁では0.943.水平管では0
.725 垂直管で前記仕切板8が完全に作用したとすると、Lは
仕切板のピッチQと取ってよく、温度条件が不変ならば
、式(1)は下記となる。
Here, L: height of vertical wall or outer diameter of horizontal pipe mΔθ:
Difference between condensation temperature and heat transfer wall temperature °Cτ: Latent heat of liquefied fluid Kcal/Kgγ: Specific weight of liquefied fluid
g/mlλ: Thermal conductivity of liquefied fluid Kcal/m
, hr, 'cη: viscosity coefficient of liquefied fluid Kg, h/
++fC is a constant and is 0.943 for a vertical wall. 0 for horizontal pipes
.. 725 Assuming that the partition plate 8 works perfectly in a vertical pipe, L can be taken as the pitch Q of the partition plate, and if the temperature condition remains unchanged, equation (1) becomes as follows.

ho=に/L”’             (2)但
し、には温度一定なら不変の定数 ピッチαが小さい程大きなhoを与えるが、それと同時
に溝9中の液流が溝を埋めて伝熱を妨げることをもよく
防止する。例えば、蒸気側の溝の形状を正三角形とし、
その−辺の長さをantとすると、長さLmについての
溝1本の伝熱面積A1++”は下記のようになる。
ho = /L''' (2) However, if the temperature is constant, the smaller the constant pitch α is, the larger ho will be given, but at the same time, the liquid flow in the groove 9 will fill the groove and impede heat transfer. For example, by making the shape of the groove on the steam side an equilateral triangle,
When the length of the negative side is ant, the heat transfer area A1++'' of one groove with respect to the length Lm is as follows.

A1= 2 a L 流体を水蒸気とし、例えば蒸気側の熱伝達率を10.0
00Kcal/+m”h”C1蒸気温度と壁温との差を
10℃、凝縮潜熱を556Kcal/Kgとすると、1
本の溝の下端における凝縮液流量GxKg/hrは下記
で与えられる。
A1 = 2 a L The fluid is steam, and the heat transfer coefficient on the steam side is, for example, 10.0.
00Kcal/+m”h”C1 If the difference between steam temperature and wall temperature is 10℃, and the latent heat of condensation is 556Kcal/Kg, then 1
The condensate flow rate GxKg/hr at the lower end of the book groove is given below.

毎秒ではG1=0.1a LKg/5ec== a L
 X 10−’ m3/ see液が流下する速度をU
 rn / seeとすると、溝中の液流の断面積S 
1(++” )は仕切板に到達する所では下記のように
なる。
At every second, G1=0.1a LKg/5ec== a L
X 10-' m3/The speed at which the see liquid flows down is U
If rn/see, the cross-sectional area of the liquid flow in the groove S
1(++”) becomes as follows when it reaches the partition plate.

L   − 8工=−XIO’ 溝の断面積は一辺がa (m)の正三角形に9等しく大
まかではあるが、Uの値は溝による摩擦抵抗等でL≧0
.02mにおいて、およそ0.1m/sec以上にはな
らず一定化すると推定すると、 となる、いま、S1/5ti−0,05以下に抑えよう
とするならば。
L - 8mm = -XIO' The cross-sectional area of the groove is roughly equal to 9 of an equilateral triangle with sides of a (m), but the value of U is L≧0 due to frictional resistance due to the groove, etc.
.. If we estimate that it will not become more than about 0.1m/sec and become constant at 0.02m, then if we try to keep it below S1/5ti-0.05.

となり、いま、a =0.001飄とすると、L≦0.
22m =220m となるから、この位のピッチで仕切板8を設け、且つ仕
切板8と溝9との微細な隙間を塞ぐようにすると、ドレ
ンがよく排出され、伝熱を妨げることは殆どなくなるこ
とがわかる。
Now, if a = 0.001, then L≦0.
22m = 220m, so if the partition plates 8 are provided at this pitch and the minute gaps between the partition plates 8 and the grooves 9 are closed, the drain will be well discharged and there will be almost no interference with heat transfer. I understand that.

仕切板のピッチQは小さければ小さい程、式(1)のh
oを大きくする上からも好ましいけれども。
The smaller the pitch Q of the partition plate, the h in equation (1)
Although this is preferable from the standpoint of increasing o.

仕切板をつける手数が増すので、自ら限度があり、その
最適ピッチは伝熱特性と製作費との兼ねあいを考慮して
選択する。
Since the labor involved in attaching partition plates increases, there is a limit to this, and the optimum pitch should be selected in consideration of the balance between heat transfer characteristics and manufacturing costs.

仕切板のピッチを50鵬くらいにまで小さくするならば
、溝9はもっと鋭角に、例えば30°にして、ピッチも
0.5m<らいにまで小さくシ1面積倍率を更に高める
ことが出来る。
If the pitch of the partition plates is reduced to about 50 degrees, the grooves 9 can be made at a more acute angle, for example, 30 degrees, and the pitch can be reduced to less than 0.5 m, thereby further increasing the area magnification.

仕切板8は式(1)における垂直壁高さLを小さくして
管外熱伝達率hoを大きくすると同時に微細な溝9が液
で埋められないようにして、折角拡大された伝熱面積を
充分に有効に作用させるという二重の効用をもっている
ので、大変重要である。
The partition plate 8 reduces the vertical wall height L in equation (1) to increase the extra-tube heat transfer coefficient ho, and at the same time prevents the fine grooves 9 from being filled with liquid, thereby increasing the heat transfer area. It is very important because it has the dual effect of making it work effectively.

以上の例から理解されるように、仕切板を充分密に設け
ると、溝の角度αを60度よりもある程度小さくしてよ
いことがわかるが、この下限は工作上の問題との兼ねあ
いで決められるので、−概には言えない。
As can be understood from the above example, if the partition plates are provided densely enough, the groove angle α can be made smaller than 60 degrees to some extent, but this lower limit has to be set in consideration of manufacturing issues. Since it is determined, I cannot generalize.

角度αを60度以上にすることは、工作は容易となるが
、手数は殆ど変りないのに効果が低下するので、好まし
くはない。特に角αを鈍角即ち、90度以上にすること
は、上記の効果が急激に低下するので避けるべきである
Setting the angle α to 60 degrees or more makes the work easier, but it is not preferable because the effectiveness decreases even though the number of steps remains the same. In particular, it should be avoided to make the angle α an obtuse angle, that is, 90 degrees or more, as this will rapidly reduce the above effect.

以上の通り、本発明の長手方向に微細な波状表面を有す
る製型伝熱管は、同径の平滑管に比較して甚だ大きな伝
熱特性を有することとなる。
As described above, the shaped heat exchanger tube of the present invention having a finely wavy surface in the longitudinal direction has significantly greater heat transfer characteristics than a smooth tube of the same diameter.

比較の対象として平滑円管を用いた縦型の多管式熱交換
器を考え、それに500 m毎にバラプルプレートを仕
切板として入れた場合と、下記仕様の本発明の一例とを
比較して見る。
As a comparison, we considered a vertical multi-tube heat exchanger using smooth circular tubes, and compared the case where separate plates were installed as partition plates every 500 m and an example of the present invention with the following specifications. Take a look.

本発明の一例と平滑管との比較 管外径40nm、伝熱面の肉厚0.4nwn、剤型の襞
数8、内径ねじ芯金外径=13mm、波の角度α=60
’ 。
Comparison of an example of the present invention and a smooth tube: tube outer diameter 40 nm, heat transfer surface thickness 0.4 nwn, number of folds in dosage form 8, inner diameter screw core outer diameter = 13 mm, wave angle α = 60
'.

仕切板のピッチ20mmとすると、 このとき平滑円管に対する伝熱面積倍率は、剤型による
倍率  2 波による倍率   2 総合面積倍率   2X2=4 以上の相乗効果= 4 X 2.2448.9ここでは
問題を簡単にするため、仕切板8の効果が論理値より実
際は劣るのであるが、溝の分子運動論的効果が1より大
きいので、相乗効果を1と見ることとしている。
Assuming that the pitch of the partition plates is 20 mm, the heat transfer area magnification for the smooth circular tube is: 2. Multiplier due to dosage form 2. Multiplier due to waves 2. Total area multiplier 2X2=4 Synergistic effect of the above = 4 X 2.2448.9 This is the problem here. To simplify the equation, the synergistic effect is assumed to be 1 because the molecular kinetic effect of the groove is greater than 1, although the effect of the partition plate 8 is actually inferior to the theoretical value.

次に水平の平滑管を用いた多管式熱交換器と本発明との
比較をして見る。水平管の場合、管の外径を便宜上仕切
板のピンチと同等の20mmと仮定すると、式(1)に
おいて垂直と水平とで違うところは係数Cのみであり、
従って。
Next, a comparison will be made between a multi-tubular heat exchanger using horizontal smooth tubes and the present invention. In the case of a horizontal pipe, assuming for convenience that the outside diameter of the pipe is 20 mm, which is equivalent to the pinch of the partition plate, the only difference between vertical and horizontal in equation (1) is the coefficient C,
Therefore.

なお、水平管を何層から使用すると、下方の管は上から
の液滴によって被われるので、長い垂直管と同様なho
の低下が起る。これによる低下は平均的には普通は80
%位であると言われているので。
Note that no matter how many layers of horizontal pipes are used, the lower pipes will be covered by droplets from above, so the ho
A decrease in The average decrease due to this is usually 80
It is said that it is about %.

水平多層にしないことの効果=−=1.250.8 また、総合面積倍率=4であるから、 以上の相乗効果= 1.3 X 1.25 X 4 =
 6.5管内面の熱伝達率hiは上述のhoに対して同
等程度に高められていなくてはならないのであるが。
Effect of not using horizontal multilayer = - = 1.250.8 Also, since the total area magnification = 4, the synergistic effect of the above = 1.3 x 1.25 x 4 =
6.5 The heat transfer coefficient hi on the inner surface of the tube must be increased to the same degree as the above-mentioned ho.

この点は冒頭に述べたように、本発明の襞型伝熱管は平
滑円管の数倍の熱伝達率hiを与えるので問題はない。
As stated at the beginning, the pleated heat exchanger tube of the present invention provides a heat transfer coefficient hi several times higher than that of a smooth circular tube, so there is no problem with this point.

〔発明の効果〕〔Effect of the invention〕

本発明の長手方向に微細な波状表面を有する製型伝熱管
は1以上のように高い伝熱特性を有すると同時に、その
伝熱壁の肉厚を非常に薄く構成出来るので、ステンレス
、キュプロニッケル、チタンというような高価な耐食材
を用いる場合に甚だ有利となり、特に高性能と低価格及
び耐食性を要求される用途、例えば、海洋温度差発電等
に適していると考えられる。
The molded heat transfer tube of the present invention having a finely wavy surface in the longitudinal direction has high heat transfer characteristics as compared to 1 or more, and at the same time, the heat transfer wall can be configured to have a very thin wall thickness. This is extremely advantageous when using an expensive corrosion-resistant material such as titanium, and it is considered to be particularly suitable for applications that require high performance, low cost, and corrosion resistance, such as ocean temperature difference power generation.

これまでは凝縮器用として説明して来たが、管内に例え
ば純水を通して蒸発させ、石油や化学プラントの排熱回
収用のボイラーとして使用することも出来、従来槽てら
れて来た大量の排熱を蒸気の形で回収し、原油や装入原
料の予熱、タンク加熱、更に与圧してストリッピングス
チーム等に使用することが出来る。
So far, we have explained that it is for use in condensers, but it can also be used as a boiler for recovering waste heat from petroleum and chemical plants by passing pure water through the pipe and evaporating it. Heat can be recovered in the form of steam and used for preheating crude oil or charging materials, heating tanks, and pressurizing it for stripping steam, etc.

尚、仕切板を装着せず、二重管式熱交換器として使用す
ることも可能である。
In addition, it is also possible to use it as a double pipe heat exchanger without installing a partition plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明において襞の内外面又は外面
に形成する微細且つ鋭角の山と谷を持つ凹凸面が蒸気の
凝縮を促進する現象を説明するための概念図、第5図及
び第6図は前記凹凸面を形成するための加工方法を示す
図、第7図は本発明の実施の一例を示す一部を断面とし
た図、第8図は仕切板の作用を示す図、第9図は6個の
襞に6片の仕切板が取付けられている状態を示す図、第
10図はその部分拡大図である。
Figures 1 to 4 are conceptual diagrams for explaining the phenomenon in which uneven surfaces with minute and acute-angled peaks and valleys formed on the inner and outer surfaces of folds promote condensation of steam in the present invention, and Figure 5 and FIG. 6 is a diagram showing a processing method for forming the uneven surface, FIG. 7 is a partially sectional view showing an example of the implementation of the present invention, and FIG. 8 is a diagram showing the function of the partition plate. 9 is a diagram showing a state in which six partition plates are attached to six folds, and FIG. 10 is a partially enlarged view thereof.

Claims (1)

【特許請求の範囲】[Claims] 1 両端に平滑な直管部を有し、それら直管部の間にそ
の内側に突出した複数条の凹凸の襞を形成しその中心部
に芯金を挿入して成る伝熱管において、該襞の内外面又
は外面に微細且つ鋭角の山と谷をもつ凹凸の条から成る
波状表面を管の長手方向に形成したことを特徴とする長
手方向に微細な波状表面を有する襞型伝熱管。
1. In a heat exchanger tube that has smooth straight pipe parts at both ends, a plurality of uneven folds are formed between the straight pipe parts, and a core bar is inserted in the center of the folds. 1. A pleated heat exchanger tube having a finely wavy surface in the longitudinal direction, characterized in that a wavy surface consisting of uneven striations having fine and acute-angled peaks and troughs is formed in the longitudinal direction of the tube on the inner and outer surfaces or the outer surface of the tube.
JP30145386A 1986-12-19 1986-12-19 Finned type heat transfer pipe having longitudinal fine wave surface Granted JPS63156994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30145386A JPS63156994A (en) 1986-12-19 1986-12-19 Finned type heat transfer pipe having longitudinal fine wave surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30145386A JPS63156994A (en) 1986-12-19 1986-12-19 Finned type heat transfer pipe having longitudinal fine wave surface

Publications (2)

Publication Number Publication Date
JPS63156994A true JPS63156994A (en) 1988-06-30
JPH0450518B2 JPH0450518B2 (en) 1992-08-14

Family

ID=17897071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30145386A Granted JPS63156994A (en) 1986-12-19 1986-12-19 Finned type heat transfer pipe having longitudinal fine wave surface

Country Status (1)

Country Link
JP (1) JPS63156994A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521137A (en) * 1975-06-16 1977-01-06 Johns Manville Heattresistant metallic bushing
JPS5240057A (en) * 1975-09-24 1977-03-28 Zeiss Jena Veb Carl Shiryo kozo bunsekyo no sosa denshi kenbikyo
JPS5827689U (en) * 1981-08-19 1983-02-22 株式会社ミハマ製作所 Synthetic resin turbulator
JPS598081U (en) * 1982-07-07 1984-01-19 三井造船株式会社 heat exchanger tube
JPS59139783U (en) * 1983-03-08 1984-09-18 株式会社神戸製鋼所 Internally grooved tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827689B2 (en) * 1975-04-30 1983-06-10 株式会社日立製作所 Kahengensuito oyster
JPS598081B2 (en) * 1976-03-16 1984-02-22 富士通テン株式会社 Combined beam antenna for automotive radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521137A (en) * 1975-06-16 1977-01-06 Johns Manville Heattresistant metallic bushing
JPS5240057A (en) * 1975-09-24 1977-03-28 Zeiss Jena Veb Carl Shiryo kozo bunsekyo no sosa denshi kenbikyo
JPS5827689U (en) * 1981-08-19 1983-02-22 株式会社ミハマ製作所 Synthetic resin turbulator
JPS598081U (en) * 1982-07-07 1984-01-19 三井造船株式会社 heat exchanger tube
JPS59139783U (en) * 1983-03-08 1984-09-18 株式会社神戸製鋼所 Internally grooved tube

Also Published As

Publication number Publication date
JPH0450518B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US4923002A (en) Heat exchanger rib
US20140131010A1 (en) Condensing air preheater with heat pipes
EP0915313B1 (en) Fin tube heat exchanger
JPS6189497A (en) Heat transfer pipe
CN201828177U (en) Flat pipe and fin structure of parallel flow heat exchanger
WO2014012288A1 (en) High-efficient heat exchange tube piece for filler coupling coil evaporative condenser
US4336838A (en) Heat exchange turbulator
CN101943535A (en) Oblate pipe and fin structure for parallel flow heat exchanger
JPS63156994A (en) Finned type heat transfer pipe having longitudinal fine wave surface
CA2506936C (en) Polyhedral array heat transfer tube
WO2016043341A1 (en) Corrugated fins for heat exchanger
WO2018013415A1 (en) Corrugated tube-in-tube heat exchangers
CN114199068A (en) Continuous H-shaped finned tube with airflow partitions
CN214039704U (en) Elliptical tube for strengthening condensation heat exchange
JPS624638B2 (en)
CN206235218U (en) Outer ripple heat exchange of heat pipe and sea water desalinating unit
SU1828535A3 (en) Heat exchanger
JP3572497B2 (en) Welded pipe with internal groove for heat exchanger for air conditioning
JP2003254626A (en) Heat exchanger
CN217541618U (en) Condenser pipe with enhanced external condensation heat transfer effect
CN106288896A (en) Outer ripple heat exchange of heat pipe and sea water desalinating unit
EP0074384B1 (en) Heat exchanger
RU2000518C1 (en) Air heater
JPS61114092A (en) Heat exchanger
JPH0610594B2 (en) Heat transfer tube with internal groove