JPS63156526A - Method and apparatus for mixing gas into liquid - Google Patents

Method and apparatus for mixing gas into liquid

Info

Publication number
JPS63156526A
JPS63156526A JP61303791A JP30379186A JPS63156526A JP S63156526 A JPS63156526 A JP S63156526A JP 61303791 A JP61303791 A JP 61303791A JP 30379186 A JP30379186 A JP 30379186A JP S63156526 A JPS63156526 A JP S63156526A
Authority
JP
Japan
Prior art keywords
liquid
gas
mixing
main body
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61303791A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamada
哲夫 山田
Hideo Tanaka
秀男 田中
Koichi Nagase
公一 長瀬
Tadao Suemitsu
末満 忠男
Eiji Iwama
岩間 詠次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Chiyoda Technical and Industrial Co Ltd
Original Assignee
Taisei Corp
Chiyoda Technical and Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Chiyoda Technical and Industrial Co Ltd filed Critical Taisei Corp
Priority to JP61303791A priority Critical patent/JPS63156526A/en
Publication of JPS63156526A publication Critical patent/JPS63156526A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To uniformly mix all volume of liquid with gas, by simultaneously injecting pressurized gas and liquid from the one side of a closed mass in which many water-resistant fine spheres having smooth surfaces and constant dimensions are closely assembled and ejecting them from the other side. CONSTITUTION:In this case, the injection of compressed gas and raw liquid into a main body 1 is performed by connecting the duct of a feed part 6 of raw liquid to a compressed air pipe 16 and discharging them to a diffusing and mixing chamber 2 through a common injection port 5 at a gas-liquid mixing state. Since air having about 5kg/cm<2> pressure may be ordinarily fed to the compressed air pipe 16, it can be fed from a compressor equipment kept in reserve. Raw liquid is sent under pressure to the T-pipe 14 of a compressed air path through the feed part 6 of raw liquid at about 6kg/cm<2> pressure by means of a pump variable in flow rate. The injection port 5 may be individually provided for gas and liquid but is designed so that they are easily mixed in the mixing chamber 2.

Description

【発明の詳細な説明】 〈産業上の利用分野さ この発明は液体への気体混入方法及びその装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a method and apparatus for mixing gas into a liquid.

〈従来の技術〉 液体へ外部の気体を混入する方法としては、攪拌による
泡立て、養魚槽への空気吹込み等のほか、起泡刻入シ容
液と圧縮空気とを、多重多孔板つきの箱や、砂を入れた
筒の一端から送シ、他端から出す発泡法がある。
<Prior art> Methods for mixing external gas into a liquid include foaming by stirring and blowing air into a fish tank. Alternatively, there is a foaming method in which sand is fed from one end of a cylinder and released from the other end.

〈発明が解決しようとする問題点〉 液体への気体混入方法としては上記発泡法が現在最も進
んでいる。しかし、この発泡法によシ液中に混入した気
体(泡ンの直径は最小で60μ以上あシ、その大きさは
大小入シ混じった状態である。
<Problems to be Solved by the Invention> The above-mentioned foaming method is currently the most advanced method for mixing gas into a liquid. However, due to this foaming method, the gas (foams) mixed into the liquid (the diameter of the bubbles is at least 60 μm or more, and the sizes of the bubbles are mixed in size).

これは液体と空気の混合が十分、均等といえない状態で
ある事を示している。真に均等に空気が混入していれば
、泡の直径はもっと小さく、しかも均等に揃うはずであ
る。
This indicates that the liquid and air are not mixed sufficiently or evenly. If the air were truly evenly mixed in, the bubbles would have smaller diameters and be evenly spaced.

この発明は、液体の全容積がムラなく気体と混合し合え
る混入方法とその装置の開発を目的とする。
The object of the present invention is to develop a mixing method and an apparatus for mixing the entire volume of liquid with gas evenly.

く問題点を開発するための手段〉 この発明の、液体への気体混入方法は、表面円滑で寸法
一定の耐水性微小球体多数を密に結集した団塊に、その
片側から加圧した気体、液体を同時に圧入し、他側から
噴出させることを特徴とする。
Means for Developing Problems] The method of mixing gas into liquid according to the present invention is to mix gas and liquid into a densely packed mass of water-resistant microspheres with smooth surfaces and constant dimensions from one side of the mass. It is characterized by being press-fitted at the same time and ejected from the other side.

またこの発明の混入装置は、入口側端をふさぎ、出口側
端は開いた筒形本体と、上記本体の入口側に設けた加圧
気体、液体の噴入口と、上記本体内部の入口側に設けた
気液拡散混合室と、上記本体内部の出口側空間を満たし
た、表面円滑で寸法一定の耐水性微小球体多数からなる
通水性団塊と、上記微小球体団塊の結集を保つように上
記本体に取付けた仕切網とを備えることを特徴とする。
Further, the mixing device of the present invention includes a cylindrical body whose inlet side end is closed and whose outlet side end is open, a pressurized gas and liquid injection port provided on the inlet side of the body, and an inlet side inside the body. A gas-liquid diffusion mixing chamber provided, a water-permeable mass consisting of a large number of water-resistant microspheres with a smooth surface and constant dimensions, which filled the outlet side space inside the main body, and the main body so as to maintain the cohesion of the microsphere lumps. It is characterized by comprising a partition screen attached to the.

く作用〉 従来の発泡法は、液と空気を無数の穴か細隙へ送れば多
数の気泡になって出るという経験則によるものである。
Effect> Conventional foaming methods are based on the empirical rule that if liquid and air are sent through numerous holes or slits, they will form many bubbles.

発泡法としては、それでよいため、それ以上の探究はな
されていないようである。
Since this is sufficient as a foaming method, no further research seems to have been conducted.

本発明者等は気液の精密混合を目的として従来技術を検
討した結果、従来の砂による発泡器が有力なヒントにな
った。
The present inventors investigated conventional techniques for the purpose of precise mixing of gas and liquid, and as a result, the conventional foaming device using sand became a promising hint.

研究の結果、気泡はシャボン玉のように小穴から吹出し
て作るものでなく、気液の混合過程で作られてゆく事、
均一に気液混合すれば、微小で均一な気泡群となる事、
そして不定形な砂を均一球体く変えて結集すれば、球体
間隙が理想的な気液混合作用をもつ通路になるという重
大な事実が分シ、この発明に到達した。
Research has shown that bubbles are not created by blowing out from small holes like soap bubbles, but are created during the mixing process of gas and liquid.
If the gas and liquid are mixed uniformly, it will become a group of minute and uniform bubbles,
The present invention was realized based on the important fact that if irregularly shaped sand is transformed into uniform spheres and aggregated, the gaps between the spheres become channels with ideal gas-liquid mixing properties.

すなわち表面円滑で寸法一定の耐水性微小球体、例えば
ガラスピーズ玉、樹脂玉等を密に結集した団塊に、片側
から気、液を圧入し、他側から噴出させると、液体と気
体はこまかく分かれて各球体間隙を走る間、間隙の狭い
所、広い所が交互に続き、また多方向に連絡しているた
め、−緒に走る液体、気体が圧縮、拡散、屈折、分流、
合流を繰返す。拡散、屈折による混合作用、圧縮、分流
による気体細分作用、分流、合流による全体の均等化作
用が進むので、適当な長さの粒体団塊から出てくる時は
、気体を均等に混入した液体になるのである。
In other words, when air or liquid is injected from one side of a densely packed cluster of water-resistant microspheres with a smooth surface and uniform dimensions, such as glass beads or resin beads, and is ejected from the other side, the liquid and gas are finely separated. While running through each spherical gap, narrow and wide gaps continue alternately, and because they communicate in multiple directions, liquids and gases that run together are compressed, diffused, refracted, divided,
Repeat the merge. The mixing action by diffusion and refraction, the gas subdivision action by compression and splitting, and the overall equalization action by splitting and merging progress, so that when a particle aggregate of an appropriate length comes out, the liquid is evenly mixed with gas. It becomes.

完全な球体に近いガラスピーズ玉等を結集するから、液
体、気体の共通通路が規則的に拡大、縮小、屈折し、計
算可能な気液混合作用を生んだ。しかも、その球体寸法
、団塊寸法の選択により、混合作用を制御可能にした。
Because glass beads and other objects that are close to perfect spheres are brought together, the common path for liquid and gas regularly expands, contracts, and refracts, creating a calculable gas-liquid mixing effect. Moreover, the mixing action can be controlled by selecting the spherical size and nodule size.

また、この発明の装置は、筒形本体に仕切網を張って、
不体出ロ側を微小球体団塊で満たし、本体入口側に気体
、液体の同時噴入口と気液拡散混合室とを設けたから、
狭い噴入口から広い混合室へ出た気体、液体が拡散する
際、予備的る際、例えば下側は液体、上側は気体だけ、
といった偏った状態が避けられる。
Further, the device of the present invention has a cylindrical body covered with a partition net,
The outlet side of the body is filled with micro spherical aggregates, and the inlet side of the main body is provided with a gas and liquid simultaneous injection port and a gas-liquid diffusion mixing chamber.
When gas or liquid exits from a narrow injection port into a wide mixing chamber and diffuses, for example, the lower side is liquid and the upper side is only gas.
Such a biased situation can be avoided.

また本体に設ける仕切網の位置や微小球体の量を変える
事によシ、簡単に団塊の長手寸法を変えられ、団塊中の
気液混合行程を調節して、異なる条件に対応し得る。
In addition, by changing the position of the partition screen provided on the main body and the amount of microspheres, the longitudinal dimension of the nodule can be easily changed, and the gas-liquid mixing process in the nodule can be adjusted to accommodate different conditions.

微小球体は、各種寸法に揃えて量産可能であシ、表面円
滑で耐水性という条件があるが、ガラス球、樹脂球によ
シ、これらの条件は容易に満たされるから、実施容易で
ある。
Microspheres can be mass-produced in various sizes, have smooth surfaces, and are water resistant, but glass and resin spheres easily satisfy these conditions and are therefore easy to implement.

球体団塊出口側の仕切網の存在は、これを通過して出て
くる気体混入液にほとんど影響を与えない。
The presence of the partition screen on the outlet side of the sphere conglomerate has little effect on the gas-containing liquid that passes through it and comes out.

〈実施例〉 第1.2図はこの発明を適用した発泡装置の一実施例主
要部を示し、第3図はそれを気泡コンクリート製造のた
め、コンクリート・ミキサーの上に設置した状態を示す
<Embodiment> Fig. 1.2 shows the main parts of an embodiment of a foaming device to which the present invention is applied, and Fig. 3 shows the device installed on a concrete mixer for producing aerated concrete.

第1.2図において、その/は筒形本体、コ微小球体、
よけ原液、気体の共通噴入口、6は原液供給部、7は入
口側端板、ざは出口側多孔端板、tαは吹出筒、りは多
孔仕切板、IOは球体団塊3の前後を囲む仕切網、//
は調整ボルトで、多孔仕切板9、その内側の仕切網10
と、出口側多孔端板t1その内側の仕切網IOとを締寄
せ固定し、球体団塊3の長さ調整も可能にしている。そ
の他、/コは脚、/3は弁、llIはT管、/夕は圧力
計、16は圧縮空気管、/りは案内用スクリュー羽根で
ある。
In Figure 1.2, the / is a cylindrical body, a microsphere,
A common injection port for the stock solution and gas, 6 is the stock solution supply part, 7 is the end plate on the inlet side, za is the porous end plate on the outlet side, tα is the blowing tube, ri is the porous partition plate, IO is the front and back of the sphere lump 3 Surrounding partition net, //
is an adjustment bolt, which has a porous partition plate 9 and a partition net 10 inside it.
The outlet side porous end plate t1 and the partition net IO inside thereof are tightened and fixed, thereby making it possible to adjust the length of the spherical mass 3. In addition, / is a leg, /3 is a valve, llI is a T pipe, / is a pressure gauge, 16 is a compressed air pipe, and / is a guide screw blade.

本体/は筒形であれば、その断面形はあまり問題でない
が、本体/を横に寝かし水平方向に発泡液を噴出させる
場合、第1図のように案内用スクリュー羽根17を入れ
るか、または横に広い扁平筒形にして、重力による上下
差を減することが望ましい。
If the main body is cylindrical, its cross-sectional shape does not matter much, but if the main body is laid on its side and the foaming liquid is spouted horizontally, a guide screw blade 17 must be inserted as shown in Fig. 1, or It is desirable to have a flat cylindrical shape that is wide laterally to reduce the vertical difference due to gravity.

第1図では本体/が横に寝るため、球体団塊3の結集を
保ち、気液拡散混合室コとの間を仕切るため多孔仕切板
り、哀切wi/(R調整ボルト//を使っているが、第
3図のように本体/を縦に使えば、球体団塊3は重力だ
けで、本体l下部に結集を保つから、これらは不要で、
出口側の多孔端板j1仕切網10だけでよい。また多孔
端板tを略し、仕切網10とこれを支える桟でもって団
塊3を受けてもよい。
In Figure 1, since the main body lies on its side, a porous partition plate and R adjustment bolts are used to keep the spherical mass 3 together and to separate it from the gas-liquid diffusion mixing chamber. However, if the main body / is used vertically as shown in Fig. 3, the spherical lump 3 will be kept concentrated at the bottom of the main body l by gravity alone, so these are unnecessary.
Only the porous end plate j1 and the partition net 10 on the outlet side are required. Alternatively, the porous end plate t may be omitted, and the nodules 3 may be received by the partition net 10 and the crosspieces supporting the partition net 10.

本体lへの圧縮気体、原液の噴入は、この場合、圧縮空
気管/6へ原液供給部6の管路を接続し、気液混合の状
態で共通噴入口3から拡散混合室コへ放出している。圧
縮空気管/6へは通常5kl/all程度の圧力の空気
を送ればよいので、手持ちのフンプレッサ設備から取れ
る。原液供給部6は、この実施例では流量可変ポンプに
より6に9/cyllの圧力で、圧縮空気管路のTr?
zqへ原液を圧送した。噴入口まけ気、液が別個でもよ
いが、混合室λ内で混合しやすh設計にする。
In this case, the compressed gas and stock solution are injected into the main body 1 by connecting the pipe line of the stock solution supply section 6 to the compressed air pipe 6 and releasing the gas-liquid mixture from the common injection port 3 to the diffusion mixing chamber 1. are doing. Normally, it is sufficient to send air at a pressure of about 5 kl/all to the compressed air pipe/6, so it can be obtained from the air compressor equipment on hand. In this embodiment, the stock solution supply section 6 is supplied with a pressure of 6 to 9/cyll by a variable flow rate pump, and is supplied to the compressed air line Tr?
The stock solution was pumped to zq. Although the injection port air and liquid may be separated, the design is such that they can be easily mixed in the mixing chamber λ.

拡散混合室コ内の圧力は圧力計l!rに現れるが、その
値をPとし、吹出筒ざαで大気IEEになるとすると、 K4.に2:定数   A:球体団塊断面槽Cf:気液
混合体の摩擦係数 L:団塊長さρ :同上密度 U :同上流速 Q :同上流量 微小球体の直径、団塊長さL1所要発泡倍率(発泡によ
る液の体積増加率)及び混合室コ内圧力をそれぞれ一定
にすれば、上式より本体lの内部断面積Aを大きくすれ
ば、流量Qすなわち原液処理量も比例して多くなる訳で
ある。
The pressure inside the diffusion mixing chamber is measured by a pressure gauge! It appears at r, but if its value is P, and if it becomes atmospheric IEE at the blowout pipe size α, then K4. 2: Constant A: Spherical nodule cross-section tank Cf: Friction coefficient of gas-liquid mixture L: Nodule length ρ: Same as above Density U: Same upstream speed Q: Same as above flow rate Diameter of micro sphere, nodule length L1 Required foaming ratio (foaming If the volume increase rate of the liquid due to .

実施例の微小球体グはガラスピーズ (GB503M)で直径1.4〜2.0IIm、団塊長
さLは400冨私発泡倍率は16〜22、混合室コ内圧
力は5 ky/di  前後、本体/は長さ500mm
の4B管(10011φ)、ボルト//は16t11φ
、仕切網、10は50メッシュ二枚重ねである。
The microspheres used in the example were glass beads (GB503M) with a diameter of 1.4 to 2.0 II m, a nodule length L of 400 m, a foaming ratio of 16 to 22, a pressure inside the mixing chamber of about 5 ky/di, and a main body. / is length 500mm
4B pipe (10011φ), bolt // is 16t11φ
, Partition net 10 is a double layer of 50 mesh.

実験に用いた原液二種を次に示す。The two stock solutions used in the experiment are shown below.

(Aン               (B)小計 1
00kjl  小計100kg(粘性    500−
P)(粘性   200−Pン上記実施例装置による実
験結果を次に示す。
(A) (B) Subtotal 1
00kjl Subtotal 100kg (viscosity 500-
P) (Viscosity 200-Pn) The experimental results using the apparatus of the above embodiment are shown below.

従来の発泡装置による場合も参考に示したが、その数値
は最も良好な結果だけ拾い上げたもので、従来のものの
泡径や発泡倍率は、この発明のものに比べれば不均一、
不安定であった。
The case using a conventional foaming device is also shown for reference, but the values are only the best results, and the bubble diameter and foaming ratio of the conventional device are not uniform compared to that of this invention.
It was unstable.

次に上記実施例装置の本体の太さ、球体団塊の長さLを
変えた場合、第1図のように横向きに吹出す場合と第3
図のように下向きに吹出す場合、横向き姿勢で案内スク
リュー羽根/りを使った場合、使わない場合について、
第4図に流速Uの二乗と発泡倍率の関係、第5図に原液
流量と発泡倍率の関係を示す。第4図にだけ標点の角、
丸の説明をつけているが、「スクリュー無」は上述の団
塊3内にスクリュー羽根/7金入れない通常の場合、「
スクリュー有」はそれを入れた場合で、「水平」 「垂
直」は本体lが横向きか、下向きかを示す。本体直径の
4B。
Next, when the thickness of the main body and the length L of the spherical lump of the above-mentioned embodiment device are changed, the case of blowing sideways as shown in Fig. 1 and the case of blowing out sideways as shown in Fig.
When blowing out downward as shown in the figure, when using the guide screw blade in a horizontal position, and when not using it.
FIG. 4 shows the relationship between the square of the flow velocity U and the foaming ratio, and FIG. 5 shows the relationship between the stock solution flow rate and the foaming ratio. Only in Fig. 4 are the angles of the gauges,
I have added a circle to explain it, but ``No screw'' means ``No screw'' in the normal case where there is no screw blade/7 gold in the above-mentioned baby boom 3.
``With screw'' indicates when the screw is inserted, and ``Horizontal'' and ``Vertical'' indicate whether the main body is facing sideways or downward. The main body diameter is 4B.

6Bは、本体として4インチ管、6インチ管を使った場
合であシ、数字100. 150. 200という書込
みは、第1図の実施例寸法である団塊長さL = 40
0 mm以外の長さの乙にした場合だけ、その長さil
mを示す。
6B is applicable when a 4-inch tube or 6-inch tube is used as the main body, and the number is 100. 150. The writing 200 means the length of the baby boom L = 40, which is the example dimension in Fig. 1.
Only if the length is other than 0 mm, the length il
Indicates m.

実験を通して、各条件の泡への影響を考えると、 (α)微小球体の径dは泡の状態(大きさ、強さ〕に関
わる。
Considering the influence of each condition on the bubbles through experiments, (α) The diameter d of the microsphere is related to the state (size, strength) of the bubbles.

(A)  球体団塊の長さLは、dと充填方法によって
、必要最小限があり、最大限は圧力Pによって決まる。
(A) The length L of the spherical mass has a necessary minimum length depending on d and the filling method, and the maximum length is determined by the pressure P.

(C)  流速Uの最適値は圧力Pをはじめとする諸条
件によって決まるようであるが、ある範囲ということに
なシそうである。
(C) The optimum value of the flow rate U seems to be determined by various conditions including the pressure P, but it is unlikely to be within a certain range.

上記装置使用上の注意事項をあげると次のようになる。The precautions to be taken when using the above device are as follows.

(1)  液体圧送用圧力と気体圧力とははソ同じにす
る。
(1) The liquid pressure and gas pressure shall be the same.

(2)  液体圧送ポンプの吐出量は一定に保つ。(2) Keep the discharge amount of the liquid pressure pump constant.

(3)気体は液体の15倍以上送給し、それだけの配管
が必要である。
(3) Gas is delivered 15 times more than liquid, and that much piping is required.

(4)  本体の姿勢は下向き噴出がよく、横向き噴出
させる場合は、球体団塊内に案内スクリュー羽根を入れ
て液体、気体がらせん状【回シつ\出口へ向うようにし
てやると、上下の泡径差が防げる。
(4) It is best to spray the main body downward, but if you want to spray sideways, insert a guide screw blade into the spherical mass so that the liquid or gas flows in a spiral direction toward the exit, and the upper and lower bubbles Prevents diameter differences.

(5)原液処理量は上述のd、D、Lの値ではソ決まっ
てしまりので、d、D、Lを基準として、良い泡の出る
圧力Pの範囲を試験で求めるとよAo 以上、この発明を発泡装置に適用した一実施例について
説明したが、この発明の用途をこれに限定するものでな
く、液体全量に気体をムラなく接触させるように送込む
精密混合の必要な各種用途に有効である。そして、実施
条件に応じて、この発明の要旨の範囲内で、当業者の公
知技術によシ、多様に変化、応用し得るもので、微小球
体の材質、寸法、その団塊の結集手段、結集寸法の調整
手段、筒形本体の形状、液体、気体の供給、調節手段等
は実施目的によシ変化するのが当然である。
(5) Since the amount of stock solution processed is fixed by the values of d, D, and L mentioned above, let's use d, D, and L as standards to find the range of pressure P that produces good foam by testing. Although an embodiment in which the invention is applied to a foaming device has been described, the application of the invention is not limited to this, and is effective in various applications that require precision mixing in which gas is fed evenly into contact with the entire amount of liquid. It is. Depending on the implementation conditions, and within the scope of the gist of this invention, various changes and applications can be made using techniques known to those skilled in the art. Naturally, the size adjustment means, the shape of the cylindrical body, the supply of liquid and gas, the adjustment means, etc. will vary depending on the purpose of implementation.

〈発明の効果〉 この発明は微小球体団塊の片側から液体と気体を圧入し
、他側から噴出させる、という極めて簡素な方法、装置
により、液体と気体の精密混合が可能なことを実証した
<Effects of the Invention> This invention has demonstrated that precise mixing of liquid and gas is possible using an extremely simple method and device in which liquid and gas are pressurized from one side of a microsphere aggregate and ejected from the other side.

均質微小球体を密集させた団塊は、最も簡単に1最も寸
法正確な間隙通路を分布させる。それは圧入された液体
、気体をもろ共に、無数の球体間隙へ分散して走らせ、
その間、拡散、屈折による混合作用、圧縮、分流による
気体細分作用、分流、合流による均等化作用をもつ理想
的な気液混合用通路となる。しかも、この複雑に入組み
ながら整然と構成された気液混合路は今後の研究、計算
に好都合な事に、微小球体直径の関数になる。
A densely packed mass of homogeneous microspheres most easily distributes the interstitial passages with the most precise dimensions. It disperses the injected liquid and gas into countless spherical gaps and runs them.
During this time, it becomes an ideal gas-liquid mixing passage that has a mixing effect by diffusion and refraction, a gas subdivision effect by compression and splitting, and an equalizing effect by splitting and merging. Moreover, this intricate yet well-organized gas-liquid mixing path becomes a function of the microsphere diameter, which is convenient for future research and calculations.

また、この発明の装置は、筒状本体の内部出口側に仕切
網により微2小球体の密集団塊を設けるから、実施目的
に応じて球体を入換えたり、その蓋を加減したシ、清掃
したりするのが容易である。装置の操作は液体、気体の
送給圧力を加減するだけであるから、混合、攪拌装置と
して最も簡素で、保守も容易である。
Furthermore, since the device of the present invention provides a dense cluster of two microspheres with a partition net on the internal outlet side of the cylindrical body, it is possible to replace the spheres, adjust the lid, or clean it depending on the purpose of implementation. It is easy to The device is operated simply by adjusting the supply pressure of liquid and gas, so it is the simplest mixing and stirring device and is easy to maintain.

そして本体入口側に液体、気体の噴入口と、気、液拡散
混合が行われる混合室を有するから、球体団塊へ入る前
に気、液の予備混合が行われ、団塊内での混合度均等化
作用の負担を減する。
Since the main body inlet side has a liquid and gas injection port and a mixing chamber where gas and liquid diffusion mixing is performed, the gas and liquid are premixed before entering the spherical nodule, and the mixing degree is even within the nodule. Reduce the burden of oxidation.

この発明によシ、液体への気体混入が極めて精密に行わ
れ、しかも簡素な装置で足シるようになる事は、この方
面の関係技術向上に少なからぬ貢献をなすものである。
This invention makes it possible to mix gas into liquid with extreme precision and to do so with a simple device, making a considerable contribution to the improvement of related technology in this field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例装置縦断面図、第2図はそ
の側面図、第3図は他の実施例の使用状況説明図、第4
図は異る実験条件で得られた流速と発泡倍率との関係図
、第5図は同じく原液流量と発泡倍率との関係図である
。 /・・・筒形本体、コ・・・気液拡散混合室、3・・・
微小球体団塊、!・・・噴入口、10・・・仕切網。 El  (t。 幻 を祝褌肇− 1面 [・ 驚奴管軒
Fig. 1 is a longitudinal cross-sectional view of an apparatus according to one embodiment of the present invention, Fig. 2 is a side view thereof, Fig. 3 is an explanatory diagram of the usage situation of another embodiment, and Fig. 4
The figure is a diagram showing the relationship between flow rate and foaming ratio obtained under different experimental conditions, and FIG. 5 is a diagram showing the relationship between stock solution flow rate and foaming ratio. /...Cylindrical body, C...Gas-liquid diffusion mixing chamber, 3...
Microscopic spherical masses! ...Injection port, 10...Partition net. El (t. Celebrating the illusion, Hajime Futoshi - Page 1

Claims (2)

【特許請求の範囲】[Claims] (1)表面円滑で寸法一定の耐水性微小球体多数を密に
結集した団塊に、その片側から加圧した気体、液体を同
時に圧入し、他側から噴出させることを特徴とする液体
への気体混入方法。
(1) Gas to liquid characterized by simultaneously injecting pressurized gas or liquid from one side of a lump made of a large number of water-resistant microspheres with a smooth surface and constant dimensions, and ejecting it from the other side. Method of mixing.
(2)入口側端をふさぎ、出口側端は開いた筒形本体と
、 上記本体の入口側に設けた加圧気体、液体 の噴入口と、 上記本体内部の入口側に設けた気液拡散混 合室と、 上記本体内部の出口側空間を満たした、表 面円滑で寸法一定の耐水性微小球体多数からなる通水性
団塊と、 上記微小球体団塊の結集を保つように上記 本体に取付けた仕切網と、 を備えることを特徴とする液体への気体混 入装置。
(2) A cylindrical body with the inlet end closed and the outlet end open; a pressurized gas and liquid injection port provided on the inlet side of the main body; and a gas-liquid diffusion provided on the inlet side inside the main body. a mixing chamber, a water-permeable mass consisting of a large number of water-resistant microspheres with a smooth surface and constant dimensions, which fills the outlet side space inside the main body, and a partition net attached to the main body to keep the microsphere clusters together. A device for mixing gas into a liquid, comprising:
JP61303791A 1986-12-22 1986-12-22 Method and apparatus for mixing gas into liquid Pending JPS63156526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61303791A JPS63156526A (en) 1986-12-22 1986-12-22 Method and apparatus for mixing gas into liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61303791A JPS63156526A (en) 1986-12-22 1986-12-22 Method and apparatus for mixing gas into liquid

Publications (1)

Publication Number Publication Date
JPS63156526A true JPS63156526A (en) 1988-06-29

Family

ID=17925338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61303791A Pending JPS63156526A (en) 1986-12-22 1986-12-22 Method and apparatus for mixing gas into liquid

Country Status (1)

Country Link
JP (1) JPS63156526A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190727A (en) * 1984-10-12 1986-05-08 Kumagai Gumi Ltd Method and device for frothing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190727A (en) * 1984-10-12 1986-05-08 Kumagai Gumi Ltd Method and device for frothing

Similar Documents

Publication Publication Date Title
CA2556584C (en) Process and apparatus for manufacturing set cellular cement
US4455271A (en) Foamed gypsum wallboard
USRE37012E1 (en) Froth system for continuous manufacture of polyurethane foam slab-stocks
US4132838A (en) Process and apparatus for the preparation of a reaction mixture for the production of plastic foams
US3776702A (en) Apparatus for mineral-filled foam production
US5620710A (en) Froth system for continuous manufacture of polyurethane foam slab-stocks
US3773098A (en) Method of static mixing to produce metal foam
CN1063702C (en) Process and device for producing foam using carbon bioxide dissolved under pressure
US9540281B2 (en) Progressive bubble generating system used in making cementitious foam
US3627706A (en) Mineral-filled foam production
US20060175723A1 (en) Process For Manufacturing Sound Absorbing Cement Tile
CN106313324B (en) A kind of device being used to prepare foam slurry
JPS63156526A (en) Method and apparatus for mixing gas into liquid
US1541352A (en) Method of and apparatus for mixing materials
US2791404A (en) Apparatus for making cellular products
EP0474835A1 (en) Apparatus and method for sparging a gas into a liquid
CN106113368B (en) A kind of Multifunctional high pressure mixing head
KR100498842B1 (en) Manufacturing apparatus for air-entrained concrete slurry having foaming machine
JP3145391B2 (en) Supply device for foaming liquid to concrete mixer
CN212471950U (en) Foaming cement agitator tank
JP2013085989A (en) Powder mixture manufacturing apparatus
JP2831365B2 (en) Production control apparatus and production control method for bubble-containing material
WO1989010247A1 (en) Apparatus for preparing foamed concrete or other foamed products
RU2109629C1 (en) Method of preparation of cellular building mixes based on gypsum-containing mineral binder and device for its realization
RU2336121C1 (en) Multi-conical jet foam generator