JPS63156471A - Linear solid-state image pickup device - Google Patents

Linear solid-state image pickup device

Info

Publication number
JPS63156471A
JPS63156471A JP61304621A JP30462186A JPS63156471A JP S63156471 A JPS63156471 A JP S63156471A JP 61304621 A JP61304621 A JP 61304621A JP 30462186 A JP30462186 A JP 30462186A JP S63156471 A JPS63156471 A JP S63156471A
Authority
JP
Japan
Prior art keywords
output
elements
light
pixel
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304621A
Other languages
Japanese (ja)
Inventor
Shigeki Tojo
東條 茂樹
Akimitsu Nakagami
中上 明光
Hiroshi Hirai
洋 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61304621A priority Critical patent/JPS63156471A/en
Publication of JPS63156471A publication Critical patent/JPS63156471A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a secondary differentiation output in real time and to reduce a device by composing each picture element of a group of successively contiguous photodetecting elements, and outputting the difference between the output of the center photodetecting element in the group and the output sum of two other photodetecting element as a device output. CONSTITUTION:Picture elements A1-A2. AN are arranged in series at a photodetection part 11. The respective picture elements adjoin to one another in order and each consist of a group of photodetecting elements (a), (b), and (c) which are insulated electrically from one another. The photodetection area of the element (b) is twice as large as the photodetection area of the elements (a) and (b). A differential amplifier 16 calculates the difference between the output of the element (b) from a transfer part 12 and the output sum of the elements (a) and (c) from a transfer part 13. Consequently, the output of the differential amplifier 16 is the secondary differentiation output of each picture element, so the linear contour of a body which moves in real time can be extracted and neither a conventional arithmetic processor nor a memory is required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、2次微分出力を発生する一次元個体撮像装
置(CCDライン撮像装置)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a one-dimensional solid-state imaging device (CCD line imaging device) that generates a second-order differential output.

〔従来技術〕[Prior art]

第4図は従来のCCDライン撮像装置を用いた計測シス
テムのブロック図であって、20AはN個の画素(例え
ば、1024個の受光素子)を有するCCDライン撮像
装置、30はメモリ、40は演算処理装置、50はメモ
リ、60はCRTである。第5図は上記CCDライン撮
像装置20Aの内部構成を示したもので、21はN個の
画素(受光素子)AI 、A2 、A3 ・・・Ak 
 ・・・ANが直列する受光部、22は転送用CODか
らなる転送部、23は出力部、24は転送用クロック・
パルスである。
FIG. 4 is a block diagram of a measurement system using a conventional CCD line imaging device, where 20A is a CCD line imaging device having N pixels (for example, 1024 light receiving elements), 30 is a memory, and 40 is a CCD line imaging device having N pixels (for example, 1024 light receiving elements). 50 is a memory, and 60 is a CRT. FIG. 5 shows the internal configuration of the CCD line imaging device 20A, in which 21 denotes N pixels (light receiving elements) AI, A2, A3...Ak.
. . .A light receiving section in which AN is connected in series, 22 is a transfer section consisting of a transfer COD, 23 is an output section, and 24 is a transfer clock.
It's a pulse.

次に、このシステムを用いて、第6図(blの矢印で示
す方向に移動する物体Mの1次元輪郭を抽出する場合に
ついて説明する。受光部21は物体Mからの反射光を図
示しないレンズ系を通し受光して電気信号に変換する。
Next, a case will be described in which this system is used to extract a one-dimensional outline of an object M moving in the direction shown by the arrow in FIG. It receives light through the system and converts it into an electrical signal.

受光部21の各画素AI、A2、A3−・・ANの出力
信号Vl 、V2、V3 ・・・VNは転送部22を通
して出力部23に転送され、メモリ30の所定のアドレ
スにデータ(1次元画像データ)として書込まれる。演
算処理装置40では、サンプリング時刻tにメモリ30
に書込まれた上記データV1、V2、v3 ・・・VN
を読出して、各画素につき下記に示す2次微分演算を順
次実行し、 Vk=Vk−(Vk−1+Vk+1 )−・・(1)但
し、VksK番目の画素Akの出力信号Vk−1:に−
を番目の画素Ak−1 の出力信号 vk+1 :に+1番目の画素Ak+1の出力信号 この2次微分演算値をメモリ50の所定のアドレスにデ
ータ(1次元画像輪郭データ)として格納する。この1
次元画像輪郭データは、画素配列方向(X方向)の入射
光変化率の微分値であって、Vkが「有」であることは
、画素Akが物体Mの輪郭線上にあるという輪郭位置情
報と凹凸情報とを含むが、説明の便宜上、この輪郭位置
情報だけに着目した場合、物体MがCCDライン撮像装
置20A下を通過し始めたのちの最初のサンプリング時
刻をtoとすると、サンプリング時刻toから上記サン
プリング時刻むまでにメモリ30に書込まれたデータに
ついての上記2次微分演算値をメモリ50からCRT6
0上に読出すと、CRT60の画面上には、上記物体M
の斜線を施した部分の輪郭が非連続的な輪郭として映像
される。
The output signals Vl, V2, V3, . . . VN of each pixel AI, A2, A3, . . . image data). In the arithmetic processing unit 40, the memory 30 is
The above data written in V1, V2, v3...VN
is read out and sequentially executes the second-order differential operation shown below for each pixel, Vk=Vk-(Vk-1+Vk+1)-(1) However, the output signal Vk-1 of the VksK-th pixel Ak: -
The output signal of the 1st pixel Ak+1 is stored as data (one-dimensional image contour data) at a predetermined address in the memory 50. This one
The dimensional image contour data is a differential value of the rate of change of incident light in the pixel arrangement direction (X direction), and the fact that Vk is "present" means contour position information that the pixel Ak is on the contour line of the object M. However, for convenience of explanation, if we focus only on this contour position information, if to is the first sampling time after the object M starts passing under the CCD line imaging device 20A, then from the sampling time to The above-mentioned second-order differential calculation value for the data written to the memory 30 up to the above-mentioned sampling time is transferred from the memory 50 to the CRT 6.
0, the above object M is displayed on the screen of the CRT 60.
The outline of the shaded part is imaged as a discontinuous outline.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記説明から明らかなように、従来のCCDライン撮像
装置20Aを用いて、物体の1次元画像の輪郭を抽出し
ようとする場合には、メモリ30からの読み出し、上記
(1)式の演算(和算、減算及び割算)、メモリ50へ
の書き込みの各処理を、メモリ30に書き込まれた各1
次元画像データについて、画素数の回数、例えば、画素
数が1024個の場合には1024回数だけ行う必要が
あるので、データ処理時間が太き(なるという問題があ
った。
As is clear from the above description, when attempting to extract the contour of a one-dimensional image of an object using the conventional CCD line imaging device 20A, reading from the memory 30, calculation of the above equation (1) (summation), etc. (calculation, subtraction, and division), and writing to the memory 50, each written in the memory 30
Regarding dimensional image data, it is necessary to perform the process 1024 times for the number of pixels, for example, when the number of pixels is 1024, so there is a problem that the data processing time is long.

この発明は上記従来の問題を解消するためになされたも
ので、リアルタイムで2次微分出力を得ることができ、
装置を小型・軽量にすることができるCCDライン撮像
装置を得ることを目的とする。
This invention was made to solve the above-mentioned conventional problems, and it is possible to obtain second-order differential output in real time.
An object of the present invention is to obtain a CCD line imaging device that can be made compact and lightweight.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するために、各画素を、順次
隣接する3つの電気的に絶縁された受光素子の対として
構成し、各画素の対の中央の受光素子の出力と他の2つ
の受光素子の出力和との差分が装置出力として利用され
る構成としたものである。
In order to achieve the above object, this invention configures each pixel as a pair of three successively adjacent electrically insulated light receiving elements, and outputs the output of the center light receiving element of each pixel pair and the output of the other two electrically insulated light receiving elements. The configuration is such that the difference from the sum of the outputs of the light receiving elements is used as the device output.

〔作用〕[Effect]

この発明では、各画素が順次隣接する3つの受光素子か
らなるので、中央の受光素子の出力と他の2つの受光素
子の出力和との差分を取ることにより、画素配列方向の
入射光量の変化率の一次微分出力をハードウェア構成だ
けで得ることができる。
In this invention, since each pixel consists of three sequentially adjacent light receiving elements, the amount of incident light in the pixel arrangement direction is changed by taking the difference between the output of the central light receiving element and the sum of the outputs of the other two light receiving elements. The first-order differential output of the ratio can be obtained using only the hardware configuration.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、11はN個の画素AI 、 A2、A
3 ・・・Ak  ・・・AN  が直列する受光部で
あって、各画素AI 、A2 、A3  ・・・Ak 
 ・・・AN  (以下、代表してAとする)は順次隣
接し且つ互いに電気的に絶縁された受光素子a、受光素
子す及び受光素子Cの対(以下、画素対という)からな
る。中央の受光素子すの受光面積は受光素子aの受光面
積、受光素子Cの受光面積の2倍となっている。12は
転送用CODからなる転送部であって、各画素Aにおけ
る中央の受光素子すの信号出力を転送する。13は転送
用CCDからなる転送部であって、各画素Aにおける受
光素子aと受光素子Cの信号出力の和を転送する。
In FIG. 1, 11 is N pixels AI, A2, A
3...Ak...AN are connected in series, and each pixel AI, A2, A3...Ak
. . . AN (hereinafter referred to as A as a representative) consists of a pair of light receiving elements a, light receiving element A, and light receiving element C (hereinafter referred to as a pixel pair) which are adjacent to each other and electrically insulated from each other. The light-receiving area of the central light-receiving element is twice that of the light-receiving element a and the light-receiving area of the light-receiving element C. Reference numeral 12 denotes a transfer section consisting of a transfer COD, which transfers the signal output of the central light receiving element in each pixel A. Reference numeral 13 denotes a transfer section consisting of a transfer CCD, which transfers the sum of signal outputs of light receiving element a and light receiving element C in each pixel A.

14.15は出力部、16は差動増幅器、17は転送用
クロック・パルスである。なお、N番目の画素Aにおけ
る受光素子すと受光素子a、cに対する転送用クロック
・パルスは同位相である。なお、矢印は転送方向を示す
14 and 15 are output parts, 16 is a differential amplifier, and 17 is a transfer clock pulse. Note that the transfer clock pulses for the light receiving element a and c in the Nth pixel A have the same phase. Note that the arrow indicates the transfer direction.

この構成においては、第に番目の画素Aを構成する画素
対の受光素子すの信号出力Vkbは転送部12を通して
転送されて出力部14から差動増幅器15の十入力端子
にに取込まれ、また、受光素子aの信号出力■kaと受
光素子Cの信号出力Vkcとの出力和(Vka+Vkc
)は転送部13を通して転送されて出力部15から差動
増幅器16の一入力端子に取込まれる。差動増幅器16
では、同時に到来した上記信号出力Vkbと(Vka+
Vkc)の差Vk。
In this configuration, the signal output Vkb of the light receiving element of the pixel pair constituting the second pixel A is transferred through the transfer section 12 and taken in from the output section 14 to the input terminal of the differential amplifier 15. In addition, the output sum (Vka+Vkc
) is transferred through the transfer section 13 and taken in from the output section 15 to one input terminal of the differential amplifier 16. Differential amplifier 16
Now, the above signal output Vkb and (Vka+
Vk).

vk;vkb−(Vka+vkc)・・・・・・・(2
)を出力する。
vk; vkb-(Vka+vkc) (2
) is output.

今、時刻tにおいて、このCCDライン盪像装置20の
下を通過する物体Mの反射像が第6図(a)に示すもの
であったとすると、第1番目の画素AすなわちAlと第
8番面の画素AすなわちANは「有」の出力を出し、他
の画素Aの出力は零となる。即ち、受光面積の一部だけ
が物体Mの反射光を受光した画素Aの出力だけが「有」
 (正の値もしくは負の値)の出力となる。
Now, at time t, if the reflected image of the object M passing under this CCD line imager 20 is as shown in FIG. Pixel A, ie, AN, on the surface outputs a "presence" output, and the outputs of other pixels A become zero. In other words, only the output of the pixel A whose only part of the light receiving area receives the reflected light from the object M is "present".
(positive value or negative value) is output.

従って、差動増幅器16の出力を第2図に示すようにメ
モリ30に導き各画素への出力を該メモリ30の対応す
るアドレスにデータ(1次元画像輪郭データ)として書
込んで、物体MがCCDライン撮像装置下を通過し始め
たのちの最初のサンプリング時刻toからンサプリング
時刻tまでのデータをCRT60上に読出すと、該CR
T60の画面上に物体Mの輪郭が非連続的な輪郭として
映像されることになる。
Therefore, the output of the differential amplifier 16 is led to the memory 30 as shown in FIG. 2, and the output to each pixel is written as data (one-dimensional image contour data) to the corresponding address of the memory 30, and the object M is When the data from the first sampling time to to the sampling time t after the CCD line starts passing under the imaging device is read onto the CRT 60, the CR
The outline of the object M will be imaged as a discontinuous outline on the screen of T60.

このように、本実施例の差動増幅器16の出力は各画素
Aについての2次微分出力となるので、本実施例の装置
を用いれば、リアルタイムで、移動する物体Mのの1次
元輪郭を抽出することができ、前記した従来の演算処理
装置今やメモリが不要になる。
In this way, the output of the differential amplifier 16 of this embodiment is a second-order differential output for each pixel A, so if the device of this embodiment is used, the one-dimensional contour of the moving object M can be determined in real time. The conventional arithmetic processing unit described above no longer requires memory.

なお、上記実施例における画素Aは受光面が方形の3つ
の受光素子a、b及びCを組合わせた画素対からなるが
、受光素子a、b及びCの受光面の形状と組合わせは、
第3図に示すような形状の組合わせであっても同様の効
果を得ることができる。
Note that pixel A in the above embodiment is composed of a pixel pair combining three light receiving elements a, b, and C with rectangular light receiving surfaces, but the shape and combination of the light receiving surfaces of light receiving elements a, b, and C are as follows.
Similar effects can be obtained even with a combination of shapes as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、各画素が順次隣接する3
つの受光素子からなり、中央の受光素子の出力と他の2
つの受光素子の出力和との差分を取ることにより、画素
配列方向の入射光量の変化率の一次微分出力をハードウ
ェア構成だけで得ることができ、ソフト処理を行うこと
なく2次微分出力を取出すことができるので、リアルタ
イム処理が可能になる上、演算処理装置等が不要になる
ため装置が従来に比して小型・軽量になる利点がある。
As explained above, in this invention, each pixel sequentially has three adjacent pixels.
Consisting of two photodetectors, the output of the central photodetector and the output of the other two
By taking the difference between the sum of the outputs of two light receiving elements, the first derivative output of the rate of change in the amount of incident light in the pixel arrangement direction can be obtained using only the hardware configuration, and the second derivative output can be obtained without software processing. This makes it possible to perform real-time processing and eliminates the need for an arithmetic processing unit, which has the advantage of making the device smaller and lighter than conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2図は上記
実施例の装置を利用した計測システムのブロック図、第
3図は上記実施例の動作を説明す来のCCDライン撮像
装置を示す回路図、第6図はCCDライン撮像装置の動
作を説明するための図である。 1m−・受光部、12.13−転送部、14.15−・
−出力部、17−差動増幅器、At 、A2、A3 ・
・・Ak ・・・AN−画素、a、b、c−受光素子。 第  2  図 第  3  図 第  4  図 第  5  図 地 第  6  図
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a block diagram of a measurement system using the device of the above embodiment, and Fig. 3 is a conventional CCD line imaging device illustrating the operation of the above embodiment. FIG. 6 is a diagram for explaining the operation of the CCD line imaging device. 1m-・Light receiving section, 12.13-Transfer section, 14.15-・
- Output section, 17- Differential amplifier, At, A2, A3 ・
...Ak...AN-pixel, a, b, c-light receiving element. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)複数の画素が線状に配列する一次元固体撮像装置
において、各画素が、順次隣接しそれぞれが互い電気的
に絶縁された3つの受光素子の対からなり、各画素の対
の中央の受光素子の出力と他の2つの受光素子の出力和
との差分が装置出力として利用されることを特徴とする
一次元固体撮像装置。
(1) In a one-dimensional solid-state imaging device in which a plurality of pixels are arranged in a line, each pixel consists of a pair of three light-receiving elements that are adjacent to each other and electrically insulated from each other, and the center of each pair of pixels is A one-dimensional solid-state imaging device characterized in that the difference between the output of one light-receiving element and the sum of outputs of two other light-receiving elements is used as a device output.
(2)画素の対の中央の受光素子の受光面積は他の2つ
の受光素子の受光面積のそれぞれの2倍であることを特
徴とする特許請求の範囲第1項記載の一次元固体撮像装
置。
(2) The one-dimensional solid-state imaging device according to claim 1, characterized in that the light-receiving area of the central light-receiving element of the pair of pixels is twice the light-receiving area of each of the other two light-receiving elements. .
JP61304621A 1986-12-20 1986-12-20 Linear solid-state image pickup device Pending JPS63156471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304621A JPS63156471A (en) 1986-12-20 1986-12-20 Linear solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304621A JPS63156471A (en) 1986-12-20 1986-12-20 Linear solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS63156471A true JPS63156471A (en) 1988-06-29

Family

ID=17935227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304621A Pending JPS63156471A (en) 1986-12-20 1986-12-20 Linear solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS63156471A (en)

Similar Documents

Publication Publication Date Title
US9681057B2 (en) Exposure timing manipulation in a multi-lens camera
US7724292B2 (en) Color filter array for a CMOS sensor for generating a color signal in an image pickup apparatus
JP2010136413A (en) High-speed vision sensor
JP2000196807A (en) Method of switching sensor resolution and circuit architecture
JPH04295978A (en) Image reader
JP2000188417A (en) Three-color linear image sensor
JPS63156471A (en) Linear solid-state image pickup device
JP2815497B2 (en) Color video camera
JPS63156472A (en) Linear solid-state image pickup device
JP3274704B2 (en) Solid-state imaging device
JPS63156481A (en) Two-dimensional solid-state image pickup device
JPH04295980A (en) Image reader
JP3551670B2 (en) Electronic still camera
JPH03133248A (en) Light source switching type color picture reader
JPH079480Y2 (en) CCD line sensor
JPS58127492A (en) Formation circuit of color video signal
JPS6231161A (en) Solid-state image pickup device
JPH01314063A (en) Solid-state image pickup device
JPS6386672A (en) Conversion method for density of ccd image sensor
JPS61116475A (en) Image pickup device
JPS62241467A (en) Color image sensor
JPS60199265A (en) Multi-color original reader
JPS632457A (en) Image reader
JPH0574979B2 (en)
JPS63208982A (en) Encoding device