JPS63156431A - Power switching type amplifier - Google Patents

Power switching type amplifier

Info

Publication number
JPS63156431A
JPS63156431A JP30281386A JP30281386A JPS63156431A JP S63156431 A JPS63156431 A JP S63156431A JP 30281386 A JP30281386 A JP 30281386A JP 30281386 A JP30281386 A JP 30281386A JP S63156431 A JPS63156431 A JP S63156431A
Authority
JP
Japan
Prior art keywords
power
output
switching
amplifier
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30281386A
Other languages
Japanese (ja)
Inventor
Toshiro Sakane
坂根 敏朗
Sadao Takenaka
竹中 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30281386A priority Critical patent/JPS63156431A/en
Publication of JPS63156431A publication Critical patent/JPS63156431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmitters (AREA)

Abstract

PURPOSE:To enable power to be switched corresponding to the presence/absence of fading, etc., and to prevent adverse effect(for example, generation of hit) from being given on a signal to be transmitted at the time of switching the power, by providing a bypassing part having a variable phase shifter controlled by an in-phase synthesizing control part in the inside in parallel with the part. CONSTITUTION:When the power is saved, that is no fading, etc., is generated, power saving is performed by setting an amplifier part 31 as a non-driving part, and also, after an input signal Sin is introduced to the bypassing part 32, it is set as an output signal Sout. In a transient time when a normal operation is switched to a power saving operation, or vice versa, a normal output (output via the amplifier part 31) is mixed transiently with a power saving output (output via the bypassing part 32) on the output side of a switching part 34 at a rear stage. It offers no problem if the above mixing is performed with in-phases with each other, but it is inevitable to prevent phase shift from occurring, Therefore, the phase shift is detected by a detecting part 35, and the in-phase synthesizing control part 36 controls the variable phase shifter 37 so as to reduce the phase shift to zero according to detected phase shift. Thus, it is possible to prevent the phase shift from being generated, and to perform the switching of the power without generating the hit at the time of switching the an operation from the normal operation to the power, saving operation, or vice versa.

Description

【発明の詳細な説明】 〔概 要〕 電力切替形増幅器であって、入力信号を電力増幅する増
幅部に対し並列にバイパス部が設けられ、通常時は増幅
部を介し、節電時はバイパス部を介してそれぞれ出力信
号を送出するようにするとともに、通常時と節電時との
切替過渡期における通常時出力と節電時出力との間の位
相ずれを検出し、一定の制御を加えてこれら通常時出力
と節電時出力とを同相合成することにより、節電時およ
び通常時の切替えを無瞬断で行う。
[Detailed Description of the Invention] [Summary] This is a power switching amplifier, in which a bypass section is provided in parallel to an amplification section that amplifies the power of an input signal. At the same time, the phase shift between the normal output and the power saving output during the transition period between normal and power saving mode is detected, and a certain control is applied to By in-phase combining the output during power saving and the output during power saving, switching between the power saving mode and normal mode is performed without momentary interruption.

〔産業上の利用分野〕[Industrial application field]

本発明は電力切替形増幅器、特にディジタルマイクロ波
無線装置の送信段に応用して好適な電力切替形増幅器に
関する。
The present invention relates to a power switching amplifier, and particularly to a power switching amplifier suitable for application to a transmission stage of a digital microwave radio device.

マイクロ波無線装置の送信段には高周波・高出力の増幅
器が設けられているが、この増幅器での電力消費は無線
装置全体の約半分程度に及び、特にバッテリ給電しか行
えないようなマイクロ波無線中継局では低消費電力化が
強く要望される。
The transmission stage of microwave radio equipment is equipped with a high-frequency, high-output amplifier, but this amplifier consumes about half of the power of the entire radio equipment, especially in microwave radios that can only be powered by batteries. There is a strong demand for low power consumption in relay stations.

〔従来の技術〕[Conventional technology]

第6図はマイクロ波無線通信システムの一般的な構成を
示す図である。本図において、マイクロ波無線通信シス
テムは、図中、上段の送信系10と下段の受信系20と
に大別され、両者間は、空間伝搬によりアンテナ15お
よびアンテナ2N21 ”Jにより結ばれる。なお、各
無線中継局はそれぞれ送信系と受信系の対を有しており
、上りおよび下り回線のデータ伝送を行うが本図では、
簡略化のため上りあるいは下り回線の一方の系統のみ示
す。
FIG. 6 is a diagram showing a general configuration of a microwave wireless communication system. In this figure, the microwave wireless communication system is roughly divided into a transmitting system 10 in the upper stage and a receiving system 20 in the lower stage, and the two are connected by an antenna 15 and an antenna 2N21''J through space propagation. , each wireless relay station has a pair of transmitting system and receiving system, and performs uplink and downlink data transmission, but in this figure,
For simplicity, only one of the uplink and downlink systems is shown.

送信系10は伝送すべき送信データDsをインタフェー
ス(INT)11 、変調器(門00)12 、アップ
コンバータを有する送信器(Tx)13、高周波・高出
力の増幅器(HPA)14およびアンテナ15を介して
送信系20に送出する。本発明はこのうちの増幅器14
について述べる。
The transmission system 10 transmits transmission data Ds to be transmitted through an interface (INT) 11 , a modulator (gate 00) 12 , a transmitter (Tx) 13 having an up-converter, a high frequency/high output amplifier (HPA) 14 and an antenna 15 . The data is sent to the transmission system 20 via the transmission system 20. The present invention is directed to the amplifier 14 of these
Let's talk about.

一方、受信系ではアンテナ21および21′により送信
系10からの信号を受け、ダウンコンバータを有する受
信器(Rx 、 5D−Rx)22 、22 ’を経た
のち、合成器23で合成する。なお、アンテナ21′、
受信器22′はスペースダイバーシチ(S D)を構成
するためのものである。合成器23からの信号は復調器
(OEM)24 、トランスバーサルイコライザ(TE
QL) 25、データ識別のためのアナログ/ディジタ
ル変換器(A/D)26、インタフェース(INT)2
7を介して、受信データD、lとなる。
On the other hand, in the receiving system, signals from the transmitting system 10 are received by antennas 21 and 21', and after passing through receivers (Rx, 5D-Rx) 22 and 22' having down converters, they are combined in a combiner 23. Note that the antenna 21',
The receiver 22' is for constructing space diversity (SD). The signal from the synthesizer 23 is sent to a demodulator (OEM) 24 and a transversal equalizer (TE).
QL) 25, analog/digital converter (A/D) 26, interface (INT) 2 for data identification
7, the received data D and l are obtained.

ところで、アンテナ15とアンテナ21 、21 ’間
の空間伝搬においては種々要因により伝搬ロスを生ずる
。代表例はフェージングである。フェージングが生じた
ときは、受信系20での受信信号の品質が著しく劣化す
る。このため、−gには送信信号に対し、増幅器14に
て、フェージング時をカバーしうる比較的大きな電力増
幅をしたのち受信系20に送り、受信系20では空間仏
殿状況が良好なときはその受信電力を絞ってから復調等
の処理を行う。この受信電力の絞り込みを行うのがAG
C(Automatic Ga1n Control)
増幅器であり、例えば図中の28で示す位置に置かれる
By the way, in the spatial propagation between the antenna 15 and the antennas 21 and 21', propagation loss occurs due to various factors. A typical example is fading. When fading occurs, the quality of the received signal in the receiving system 20 is significantly degraded. Therefore, in -g, the transmit signal is amplified by a relatively large power that can cover the fading time in the amplifier 14, and then sent to the receiving system 20. Processing such as demodulation is performed after reducing the received power. The AG is responsible for narrowing down the received power.
C (Automatic Galn Control)
This is an amplifier, and is placed, for example, at the position indicated by 28 in the figure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、受信系20では受信電力を絞り込んで使
用するようにし、フェージングが生じたときのみフルゲ
インでAGC増幅器28を動作させる。したがって送信
系10における増幅器14はフェージング時であるか正
常時(フェージング等の影響がないとき)であるかに拘
らず、発生穎度の低いフェージング時に常に対応できる
高出力をもって送信信号の電力増幅を行うことになり、
省電力化の上で非常に支障となるという問題がある。ち
なみに、上記正常時と上記フェージング時の年間の時間
的割合は統計的に約97%対3%である。
As described above, the receiving system 20 uses the received power in a limited manner, and operates the AGC amplifier 28 at full gain only when fading occurs. Therefore, the amplifier 14 in the transmission system 10 amplifies the power of the transmitted signal with a high output that can always cope with fading with a low degree of occurrence, regardless of whether it is fading or normal (when there is no effect of fading etc.). I am going to do it,
There is a problem in that it is a serious hindrance to power saving. Incidentally, the annual time ratio between the above-mentioned normal state and the above-mentioned fading state is statistically about 97% to 3%.

本発明は上記問題に鑑みなされたものであり、フェージ
ング等の有無に応じて電力切替えができるとともに、そ
の切替え時に伝送すべき信号に悪影響(例えば瞬断の発
生)を及ぼすことな(低電力信号から高電力信号または
この逆の切替えができるようにした電力切替形増幅器を
堤供することを目的とするものである。
The present invention has been made in view of the above problems, and it is possible to switch the power depending on the presence or absence of fading, etc., and to avoid adversely affecting the signal to be transmitted (for example, generation of instantaneous interruptions) at the time of switching (low-power signal It is an object of the present invention to provide a power switching amplifier capable of switching from high power signals to high power signals and vice versa.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明に係る電力切替形増幅器の原理ブロック
図である。本図において、電力切替形増幅器30は、増
幅部(AMP)31を中核としてなり、これと並列に設
けられたバイパス部32を有する。
FIG. 1 is a principle block diagram of a power switching amplifier according to the present invention. In this figure, the power switching type amplifier 30 has an amplifying section (AMP) 31 as its core, and has a bypass section 32 provided in parallel with this.

バイパス部32内には可変移相器37が含まれる。A variable phase shifter 37 is included within the bypass section 32 .

またバイパス部32は、増幅部31の入力側と出力側と
にそれぞれ設けられた前段切替部(SWi)33と後段
切替部(SWo) 34とに接続する。バイパス部32
内の可変移相器37は同相合成制御部36にて制御され
、その制御入力は検出部35にて生成される。
The bypass section 32 is also connected to a front-stage switching section (SWi) 33 and a second-stage switching section (SWo) 34 provided on the input side and output side of the amplification section 31, respectively. Bypass section 32
The variable phase shifter 37 within is controlled by an in-phase synthesis control section 36, and its control input is generated by a detection section 35.

〔作 用〕[For production]

本来の電力増幅が行われるべき通常時、すなわちフェー
ジング等の発生時において、入力信号Sinは増幅部3
1を経由して出力信号5outとなる。この場合、前段
切替部33と後段切替部34は入力信号を、図中左から
右ヘパスさせる。
In normal times when the original power amplification should be performed, that is, when fading etc. occur, the input signal Sin is
1 and becomes the output signal 5out. In this case, the front-stage switching section 33 and the rear-stage switching section 34 pass the input signal from the left to the right in the figure.

一方、節電時、すなわちフェージング等が発生していな
いときは、増幅部31を非駆動として節電を図るととも
に入力信号Sinをバイパス部32へ導いたのち出力信
号5outとなす。この場合、前段切替部33は入力信
号Sinを図中下側へ切り替えるとともに、後段切替部
34は、バイパス部32側からの信号を選択的にバスさ
せ、出力信号5out とする。
On the other hand, when power is being saved, that is, when fading or the like is not occurring, the amplifier section 31 is not driven to save power, and the input signal Sin is guided to the bypass section 32 and then outputted as an output signal 5out. In this case, the front-stage switching section 33 switches the input signal Sin to the lower side in the figure, and the rear-stage switching section 34 selectively passes the signal from the bypass section 32 side to the output signal 5out.

上記通常時から節電時へまたこの逆の切替過渡期におい
て、後段切替部34の出力側では一時的に通常時出力(
増幅部31を経由した出力)と節電時出力(バイパス部
32を経由した出力)とが混じり合う。この混じり合い
が相互に同相で行われれば問題はないが実際には相互の
位相ずれは不可避である。そこで、検出部35にてその
位相ずれを検出し、検出した位相ずれに従って同相合成
制御部36が、その位相ずれを零にするように可変移相
器37を制御する。かくして、位相ずれなく通常時から
節電時へまたはこの逆の切替えが無瞬断で゛行える。
During the above-mentioned transitional period of switching from the normal state to the power saving state and vice versa, the output side of the latter stage switching section 34 temporarily outputs the normal state (
The power saving output (output via the amplifying section 31) and the power saving output (output via the bypass section 32) are mixed. There is no problem if this mixing is done in phase with each other, but in reality, mutual phase shifts are unavoidable. Therefore, the detection section 35 detects the phase shift, and according to the detected phase shift, the in-phase synthesis control section 36 controls the variable phase shifter 37 so as to make the phase shift zero. In this way, switching from normal mode to power saving mode or vice versa can be performed without any phase shift and without any interruption.

〔実施例〕〔Example〕

第2図は本発明に係る電力切替形増幅器の一実施例を示
す図である。本図において、既述した構成要素と同様の
ものには同一の参照番号あるいは記号を付して示す(以
下、同じ)。第1図との対応関係をみると、第1図の増
幅部31は第2図のカスケードアンプ41に相当し、バ
イパス部32は、可変移相器37をなすエンドレスフェ
ーズシフタ(無限移相器)42および固定の遅延、I 
(OL)42′に相当し、前段切替部33は例えばPI
Nダイオード等のスイッチング素子43およびサーキュ
レータ43′に相当し、後段切替部34も同様にスイッ
チング素子44およびサーキュレータ44′に相当し、
検出部35はバンドパスフィルタ (BPF)45およ
び検波器45′に相当し、同相合成制御部36はプロセ
ッサ46に相当する。全体のタイミング等の制御を行う
のは制御器48であり、主としてスイッチング素子43
 、44の開閉制御およびアンプ41のオンオフ制御を
行う。制御器48は受信盤49からのサービスチャネル
信号SCによって駆動されるのが好ましい。このサービ
スチャネル信号SCは相手方中継局からの下り回線に乗
せられる通常の信号であり、この信号SCに空間伝搬状
況の良否を示す情報■を含ませる。すなわち、フェージ
ング等が生じれば、相手方中継局からの信号SCは空間
伝搬状況の悪化を表示する。この悪化を表示する情報が
あるとき、制御器48はスイッチング素子43をオン、
スイッチング素子44をオフにする。また素子43をパ
スした入力信号Sinを高電力増幅すべく、カスケード
アンプ41を能動状態にする。例えばバイアス電圧vl
を供給する。なお、スイッチング素子43と44は必ず
相補的にオン、オフするからインバータ52を設ける。
FIG. 2 is a diagram showing an embodiment of the power switching type amplifier according to the present invention. In this figure, the same reference numbers or symbols are attached to the same components as those already described (hereinafter, the same applies). Looking at the correspondence with FIG. 1, the amplifier section 31 in FIG. 1 corresponds to the cascade amplifier 41 in FIG. )42 and fixed delay, I
(OL) 42', and the front stage switching section 33 is, for example, a PI
This corresponds to a switching element 43 such as an N diode and a circulator 43', and the subsequent switching section 34 similarly corresponds to a switching element 44 and a circulator 44'.
The detection section 35 corresponds to a bandpass filter (BPF) 45 and a detector 45', and the in-phase synthesis control section 36 corresponds to a processor 46. The controller 48 controls the overall timing, etc., and mainly controls the switching element 43.
, 44 and on/off control of the amplifier 41. Preferably, controller 48 is driven by a service channel signal SC from receiver board 49. This service channel signal SC is a normal signal carried on the downlink from the other party's relay station, and this signal SC includes information (2) indicating the quality of the spatial propagation situation. That is, if fading or the like occurs, the signal SC from the other party's relay station will indicate a deterioration in the spatial propagation situation. When there is information indicating this deterioration, the controller 48 turns on the switching element 43;
Switching element 44 is turned off. Furthermore, the cascade amplifier 41 is activated to amplify the input signal Sin that has passed through the element 43 with high power. For example, bias voltage vl
supply. Note that since the switching elements 43 and 44 are always turned on and off in a complementary manner, an inverter 52 is provided.

今、スイッチング素子44がオフであり、サーキュレー
タ44′に入力された信号は一旦素子44に至り、ここ
で反射されて再びサーキュレータ44′に戻ってから、
出力信号5outとなる。サーキュレータ44′はカス
ケードアンプ41の出力側への信号のまわり込みを防ぐ
のに有効である。かくしてカスケードアンプ41を駆動
すべき通常時には、バイパス部(42、42’ )は休
止状態となる。
Now, the switching element 44 is off, and the signal input to the circulator 44' once reaches the element 44, where it is reflected and returns to the circulator 44' again.
The output signal becomes 5out. The circulator 44' is effective in preventing signals from going around to the output side of the cascade amplifier 41. Thus, during normal times when the cascade amplifier 41 is to be driven, the bypass section (42, 42') is in a rest state.

ところで、フェージング等が消滅し、空間伝搬状況が良
好になったとすると、入力信号Sinを高出力増幅しな
くても相当良好に出力信号5outが相手方で受信され
る。このため、カスケードアンプ41を停止させる一方
、バイパス部(42、42’ )を使用して、入力信号
Sinを電力増幅せずに出力信号5outとする。これ
が節電時の動作である。
By the way, assuming that fading and the like have disappeared and the spatial propagation situation has become favorable, the output signal 5out can be received fairly well by the other party without amplifying the input signal Sin to a high power. Therefore, while the cascade amplifier 41 is stopped, the bypass section (42, 42') is used to output the input signal Sin to the output signal 5out without power amplifying it. This is the operation when saving power.

この節電時にすべきとき、フェージング等は生じていな
いから前記のサービスチャネル信号SCに空間伝搬状況
の悪化を表示する情報■は含まれていない。そうすると
制御器48はスイッチング素子43をオフ、スイッチン
グ素子44をオンにするとともに、カスケードアンプ4
1へのハイアス電圧■6の供給を断ちカスケードアンプ
41を非駆動とする。この場合、入力信号Sinはサー
キュレータ43′を通って一旦、素子43(オフとなっ
ている)に至りここで反射されて再びサーキュレータ4
3′に戻ってから遅延線42′に至る。
During this power saving period, since no fading or the like has occurred, the service channel signal SC does not include information (2) indicating deterioration of the spatial propagation condition. Then, the controller 48 turns off the switching element 43, turns on the switching element 44, and turns on the cascade amplifier 4.
The supply of the high-ass voltage 6 to the cascade amplifier 41 is cut off, and the cascade amplifier 41 is not driven. In this case, the input signal Sin passes through the circulator 43', reaches the element 43 (which is turned off), is reflected here, and returns to the circulator 43'.
3' and then reaches the delay line 42'.

さらにエンドレスフェーズシフタ42および素子44 
(オンとなっている)を介し、サーキュレータ44′を
経由して出力信号5outとなる。なお前段のサーキュ
レータ43′は、バイパス部42側からカスケードアン
プ41の人力への不要な信号のまわり込みを防ぐのに有
効である。
Furthermore, endless phase shifter 42 and element 44
(which is turned on) and the output signal 5out via the circulator 44'. The circulator 43' at the front stage is effective in preventing unnecessary signals from being transmitted from the bypass section 42 side to the human power of the cascade amplifier 41.

上記のとおり節電時にはバイパス部42 、42 ’を
通り、通常時のみカスケードアンプ41で入力信号Si
nの電力増幅を行うことにより電力切替形増幅器30が
実現される。ところが、通常時から節電時へまたはこの
逆の切替過渡期において、問題が生ずる。
As mentioned above, when saving power, the input signal Si passes through the bypass sections 42 and 42', and only during normal times, the input signal Si passes through the cascade amplifier 41.
The power switching type amplifier 30 is realized by performing power amplification of n. However, a problem arises during the transition period when switching from normal mode to power saving mode or vice versa.

第3図は通常時と節電時の切替状況を説明するためのグ
ラフであり、横軸は時間、縦軸は損失である。カーブ4
3はスイッチング素子43に係り。
FIG. 3 is a graph for explaining the switching situation between normal times and power saving times, where the horizontal axis is time and the vertical axis is loss. curve 4
3 relates to the switching element 43.

カーブ44はスイッチング素子44に係る。節電時は素
子43がオフで損失大となり、素子44がオンで損失小
となる。逆に通常時は素子43がオンで損失小となり、
素子44がオフで損失大となる。そしてこれらの間での
切替過渡期では素子43および43が両者中間的な損失
を示す。つまり、本図中のハツチングを付した領域では
通常時出力(カスケードアンプ41を経由した出力)と
節電時出力(バイパス部42 、42 ’を経由した出
力)とが混じり合う。このとき、通常時出力と節電時出
力が同位相で混じり合えば問題はないが、実際には両者
間に相互に位相ずれを生ずる。このような位相ずれは、
特に多値QAM等、超大容量のデータ伝送を行う場合に
データエラーを引き起こすことになるので、ずれを殆ど
零にする必要がある。
Curve 44 relates to switching element 44 . During power saving, the element 43 is off and the loss is large, and the element 44 is on and the loss is small. Conversely, under normal conditions, element 43 is on and the loss is small.
When the element 44 is off, there is a large loss. In the switching transition period between these elements, elements 43 and 43 exhibit an intermediate loss. That is, in the hatched area in this figure, the normal output (output via the cascade amplifier 41) and the power saving output (output via the bypass sections 42, 42') are mixed. At this time, there is no problem if the normal output and the power saving output are mixed in the same phase, but in reality, a mutual phase shift occurs between the two. Such a phase shift is
Particularly when transmitting extremely large amounts of data, such as multilevel QAM, data errors will occur, so it is necessary to reduce the deviation to almost zero.

上記の位相ずれを零にするためにエンドレスフェーズシ
フタ42が設けられており、ここでバイパス部42 、
42 ’を通過する入力信号Sinの位相を、カスケー
ドアンプ41を通過する入力信号Sinの位相に合わせ
る。この場合、カスケードアンプ41を通過することに
より生ずる位相ずれを予め固定の遅延線42′によって
補償しておくのが有利である。このようにすればシフタ
42での位相調整量を小さい範囲に抑えることができる
An endless phase shifter 42 is provided to reduce the above phase shift to zero, and here the bypass section 42,
The phase of the input signal Sin passing through 42' is matched with the phase of the input signal Sin passing through the cascade amplifier 41. In this case, it is advantageous to compensate for the phase shift caused by passing through the cascade amplifier 41 in advance by means of a fixed delay line 42'. In this way, the amount of phase adjustment by the shifter 42 can be kept within a small range.

上記の位相ずれは種々の方法で検出できるが、本発明の
実施例では出力信号5outの周波数スペクトルから検
出することとする。このため、まずバンドパスフィルタ
45において低域(周波数r+)、中域(周波数rz)
、高域(周波数r3)での各周波数成分を抽出し、それ
ぞれ対応のダイオード検波器45′より各電力を検出す
る。第4図は検出部より検出された周波数スペクトルの
一例を示すグラフであり、横軸は周波数、縦軸は電力で
ある。本図のグラフは正常な場合であり、同グラフの各
頂点(f+  、  z  、 fs)をつないだ線が
水平をなす。ところが、通常時と節電時との切替過渡期
には上記位相ずれが生じ、水平線を維持し得なくなる。
The above phase shift can be detected by various methods, but in the embodiment of the present invention, it is detected from the frequency spectrum of the output signal 5out. For this reason, first, in the band pass filter 45, the low range (frequency r+) and the middle range (frequency rz)
, each frequency component in the high range (frequency r3) is extracted, and each power is detected by the corresponding diode detector 45'. FIG. 4 is a graph showing an example of a frequency spectrum detected by the detection unit, where the horizontal axis represents frequency and the vertical axis represents power. The graph in this figure is a normal case, and the lines connecting the vertices (f+, z, fs) of the graph are horizontal. However, during the transition period between the normal state and the power saving state, the above-mentioned phase shift occurs and the horizontal line cannot be maintained.

そこで、第2図のプロセッサ46内のROM(Read
 0nly Memory)に予め、正常時の出力信号
5outが有する周波数スペクトルを記録しておき、バ
ンドパスフィルタ45および検波器45′を経て得られ
た周波数スペクトルと比較する。もし、この検出された
周波数スペクトルに例えば−次傾斜が見られればこれを
水平に戻すような制御信号をプロセッサ46内で演算し
、これをもってフェーズシフタ42を制御する。ここに
、通常時出力と節電時出力との間に位相ずれを生じさせ
ないようにしながら一方から他方への切替えをスムーズ
に行わせる。したがって、この切替過渡期に既述のデー
タエラーを起こさせるようなことはない。
Therefore, the ROM (Read
The frequency spectrum of the output signal 5out during normal operation is recorded in advance in the 0nly Memory), and compared with the frequency spectrum obtained through the bandpass filter 45 and the detector 45'. If, for example, a -th order slope is found in the detected frequency spectrum, a control signal is calculated within the processor 46 to return it to horizontal, and the phase shifter 42 is controlled using this control signal. Here, switching from one output to the other is performed smoothly while preventing a phase shift between the normal output and the power saving output. Therefore, the above-mentioned data error will not occur during this switching transition period.

第5図はサービスチャネル信号に乗せる情報の生成例を
示す図である。サービスチャネル信号SCには既述のよ
うに空間伝搬状況の良否を示す情報Iを含ませる。この
情報■は相手方中継局で生成される。つまりフェージン
グ等により受信状況が悪化すれば、情11が生成される
。ただし情報■は常に相手方局から供給されるものに限
定されず、自局内で生成してもよい。自局での受信状況
が悪くなれば、同一空間伝搬路を使う相手局でも受信状
況が悪くなったものと判断し、情報■を自ら生成し、制
御器48(第2図)に与えるというものである。しかし
、この場合は、自ら送信したものの受信状況の良否を相
手方に判断してもらうという直接的な手法ではな(、む
しろ間接的な判断であるから、上り回線と下り回線とで
送信周波数が若干具なることを考慮すると(フェージン
グの影響の受は方が若干具なる)、相手方で生成した情
報!をサービスチャネル信号SCに乗せて送ってもらう
方が正確である。第5図においてAGC増幅器28は第
6図に示したのと同じであり、相手局のAGC増幅器で
ある。AGC増幅器28はカスケードアンプ51 、5
2とアッテネータ53゜54とコンパレータ55と積分
器56からなり、この増幅器28自身は一般的な構成で
ある。カスケードアンプ52の出力を検波器57で取り
出し、コンパレータ55でそのレベル変動を検出してさ
らに一定の積分を行った上、アッテネータ53および5
4での減衰量を調整し、AGCを行う。そこで、積分器
56の出力を分岐して、レベル検出器58に導き、ここ
でAGC制御電圧の大小を検出する。AGC制御電圧が
小さく、アッテネータ53 、54の減衰量が大きい場
合には空間伝搬状況が良好ということであり、情報1を
送出するに及ばない。一方、AGC制御電圧が大きく、
アッテネータ53 、54の減衰量が小さい場合には空
間伝搬状況が悪化したことを意味し、情報■を出力する
ことになる。これがサービスチャネル信号SCに乗って
自局へ送信されてくる。
FIG. 5 is a diagram showing an example of generation of information to be carried on a service channel signal. As described above, the service channel signal SC includes information I indicating the quality of the spatial propagation situation. This information (■) is generated at the other party's relay station. In other words, if the reception condition deteriorates due to fading or the like, information 11 is generated. However, the information (2) is not limited to always being supplied from the other party's station, and may be generated within the own station. If the reception condition at the own station becomes poor, it is determined that the reception condition at the other station using the same spatial propagation path has also become poor, and the information (2) is generated by itself and given to the controller 48 (Fig. 2). It is. However, in this case, it is not a direct method of asking the other party to judge whether the reception status of what you have transmitted is good or bad (rather, it is an indirect judgment, so the transmission frequency is slightly different between the uplink and downlink). (The effect of fading is slightly greater), it is more accurate to have the information generated by the other party sent on the service channel signal SC.In Fig. 5, the AGC amplifier 28 is the same as shown in FIG. 6, and is the AGC amplifier of the other station.The AGC amplifier 28 is the cascade amplifier 51, 5
2, attenuators 53 and 54, a comparator 55, and an integrator 56, and this amplifier 28 itself has a general configuration. The output of the cascade amplifier 52 is taken out by a detector 57, its level fluctuation is detected by a comparator 55, and a certain degree of integration is performed.
Adjust the attenuation amount in step 4 and perform AGC. Therefore, the output of the integrator 56 is branched and guided to a level detector 58, where the magnitude of the AGC control voltage is detected. If the AGC control voltage is small and the attenuation amount of the attenuators 53 and 54 is large, it means that the spatial propagation situation is good and it is not enough to send out information 1. On the other hand, the AGC control voltage is large,
If the attenuation amount of the attenuators 53 and 54 is small, it means that the spatial propagation situation has worsened, and information (2) is output. This is transmitted to the own station on the service channel signal SC.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、増幅部の通過また
はバイパス部の通過という2段の電力切替えが行われ、
特にフェージング等が生じていないとき(年間の殆どは
この状態である)はバイパス部が使われるので節電効果
は極めて大である。
As explained above, according to the present invention, power switching is performed in two stages, that is, passing through the amplifier section or passing through the bypass section,
In particular, when fading is not occurring (which is the case most of the year), the bypass section is used, so the power saving effect is extremely large.

このとき、バイパス部と増幅部の切替え時に既述の位相
制御を加味しているから、データエラー等の障害を生じ
させることがない。
At this time, since the above-mentioned phase control is taken into consideration when switching between the bypass section and the amplification section, problems such as data errors do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電力切替形増幅器の原理ブロック
図、 第2図は本発明に係る電力切替形増幅器の一実施例を示
す図、 第3図は通常時と節電時の切替状況を説明するためのグ
ラフ、 第4図は検出部より検出された周波数スペクトルの一例
を示すグラフ、 第5図はサービスチャネル信号に乗せる情報の生成例を
示す図、 第6図はマイクロ波無線通信システムの一般的な構成を
示す図である。 31・・・増幅部、    32・・・バイパス部、3
3・・・前段切替部、 34・・・後段切替部、35・
・・検出部、   36・・・同相合成制御部。 一実施例を示す図 第2図 損失 切替 過渡期 電力 検出部より検出4nた周波数スペクトルの一例を示すグ
ラフ 第4図 サービスチャネル信号に乗せる情報の生成例を示す1第
5図 一般的な構成全示す図 第6図
Fig. 1 is a principle block diagram of the power switching amplifier according to the present invention, Fig. 2 is a diagram showing an embodiment of the power switching amplifier according to the invention, and Fig. 3 shows the switching status during normal and power saving times. Graphs for explanation: Figure 4 is a graph showing an example of a frequency spectrum detected by the detection unit; Figure 5 is a diagram showing an example of generation of information to be added to a service channel signal; Figure 6 is a microwave wireless communication system. FIG. 2 is a diagram showing a general configuration of. 31... Amplification section, 32... Bypass section, 3
3... Front stage switching section, 34... Back stage switching section, 35.
...detection section, 36... in-phase synthesis control section. Figure 2 shows an example of the frequency spectrum detected by the loss switching transient power detection unit Figure 4 shows an example of the generation of information to be added to the service channel signal Figure 5 General configuration Figure 6

Claims (1)

【特許請求の範囲】 1、通常時には入力信号(Sin)を電力増幅した出力
信号(Sout)を送出し、節電時には非駆動とされる
増幅部(31)と、 前記増幅部(31)の入力側および出力側にそれぞれ設
けられ、前記通常時および節電時の切替えを行う前段切
替部(33)および後段切替部(34)と、該前段およ
び後段切替部(33、34)の間に、前記増幅部(31
)と並列に接続されるとともに可変移相器(37)を含
んでなり前記節電時に前記入力信号(Sin)を通過せ
しめるバイパス部(32)と、前記通電時から節電時へ
またはこの逆の切替過渡期において、前記増幅器(31
)からの通常時出力と前記バイパス部(32)からの節
電時出力との間の位相ずれを検出する検出部(35)と
、 該検出部(35)からの検出出力に従って前記通常時出
力と前記節電時出力とを同相で合成する同相合成制御部
(36)とからなることを特徴とする電力切替形増幅器
[Claims] 1. An amplifier section (31) that outputs an output signal (Sout) obtained by power amplifying the input signal (Sin) during normal operation, and is not driven during power saving, and an input of the amplifier section (31). Between the front-stage switching section (33) and the rear-stage switching section (34), which are provided on the side and the output side and perform switching between the normal state and the power-saving state, and the front-stage and second-stage switching sections (33, 34), the Amplification section (31
), and includes a variable phase shifter (37) and allows the input signal (Sin) to pass during the power saving period, and a bypass section (32) that is connected in parallel with the energizing state to the power saving state or vice versa. During the transition period, the amplifier (31
); and a detection unit (35) that detects a phase shift between the normal output from the bypass unit (32) and the power saving output from the bypass unit (32); A power switching amplifier characterized by comprising an in-phase synthesis control section (36) that synthesizes the power-saving output in the same phase.
JP30281386A 1986-12-20 1986-12-20 Power switching type amplifier Pending JPS63156431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30281386A JPS63156431A (en) 1986-12-20 1986-12-20 Power switching type amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30281386A JPS63156431A (en) 1986-12-20 1986-12-20 Power switching type amplifier

Publications (1)

Publication Number Publication Date
JPS63156431A true JPS63156431A (en) 1988-06-29

Family

ID=17913407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30281386A Pending JPS63156431A (en) 1986-12-20 1986-12-20 Power switching type amplifier

Country Status (1)

Country Link
JP (1) JPS63156431A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320913B1 (en) 1997-06-23 2001-11-20 Nec Corporation Circuit and method for controlling transmission amplifiers
EP1300944A2 (en) * 2001-10-05 2003-04-09 Matsushita Electric Industrial Co., Ltd. Variable gain amplifying apparatus and wireless communication apparatus
US6591087B1 (en) 1999-10-13 2003-07-08 Nec Corporation Radio communication apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320913B1 (en) 1997-06-23 2001-11-20 Nec Corporation Circuit and method for controlling transmission amplifiers
US6591087B1 (en) 1999-10-13 2003-07-08 Nec Corporation Radio communication apparatus
AU779157B2 (en) * 1999-10-13 2005-01-06 Lenovo Innovations Limited (Hong Kong) Radio communication apparatus
EP1300944A2 (en) * 2001-10-05 2003-04-09 Matsushita Electric Industrial Co., Ltd. Variable gain amplifying apparatus and wireless communication apparatus
EP1300944A3 (en) * 2001-10-05 2007-01-24 Matsushita Electric Industrial Co., Ltd. Variable gain amplifying apparatus and wireless communication apparatus
US7342442B2 (en) 2001-10-05 2008-03-11 Matsushita Electric Industrial Co., Ltd. Variable gain amplifying apparatus and wireless communication apparatus
US7642848B2 (en) 2001-10-05 2010-01-05 Panasonic Corporation Variable gain amplifying apparatus and wireless communication apparatus

Similar Documents

Publication Publication Date Title
JP2637818B2 (en) Transmission power control device in wireless device
US6125266A (en) Dual band architectures for mobile stations having transmitter linearization feedback
EP0771082B1 (en) Mobile station without a transmission/reception duplexer
US6052572A (en) Mobile communication apparatus
EP1710920A1 (en) Receiving modulated radio signals
JPH06140959A (en) Radio transmitter-receiver
CN102347778A (en) Self-adapting interference cancellation device and debugging method thereof
KR20010063369A (en) Rf block of mobile communication base station
EP2512037B1 (en) Radio frequency signal loopback method and outdoor unit
JPH10173547A (en) Transmission output detection circuit
JPH09162773A (en) Radio transmitter-receiver with consumed current reduction function
US4769825A (en) Communications transmission system for electromagnetic waves
JPS63156431A (en) Power switching type amplifier
US7248846B2 (en) Feedforward amplifier and radio communication apparatus with the amplifier
US6549760B1 (en) Communications device
JP3456405B2 (en) Dual polarization space diversity radio equipment
KR20000030837A (en) A cancellation circuit of inter-modulation product by RF passive component in repeater
JPH10256937A (en) Reception gain switching circuit for radio communication machine
JPH06216803A (en) Radio equipment
KR20130073609A (en) Apparatus and method for controlling transmission power in a wireless communication system
JPH1022895A (en) Radio repetition amplifier
JP3761076B2 (en) Feedforward distortion compensation amplifier
JPH08340274A (en) Portable radio equipment
JPH07336268A (en) Dual mode radio equipment
JPH0888582A (en) Radio communication equipment