JPS631563B2 - - Google Patents

Info

Publication number
JPS631563B2
JPS631563B2 JP5796980A JP5796980A JPS631563B2 JP S631563 B2 JPS631563 B2 JP S631563B2 JP 5796980 A JP5796980 A JP 5796980A JP 5796980 A JP5796980 A JP 5796980A JP S631563 B2 JPS631563 B2 JP S631563B2
Authority
JP
Japan
Prior art keywords
magnetic pole
optical path
permanent magnet
magnetic
movable permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5796980A
Other languages
Japanese (ja)
Other versions
JPS56154701A (en
Inventor
Akira Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5796980A priority Critical patent/JPS56154701A/en
Publication of JPS56154701A publication Critical patent/JPS56154701A/en
Publication of JPS631563B2 publication Critical patent/JPS631563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3572Magnetic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/352Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs

Description

【発明の詳細な説明】 この発明は光応用回路を構成する光行路変更装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical path changing device constituting an optical application circuit.

光フアイバを用いた通信・計測制御等に用いら
れる光行路変更器としてはレンズ,ミラー,プリ
ズム,又最近では光集積回路技術を用いた光導波
路等がある。これらのうちで光行路変更用として
実用化しているのはレンズ,ミラー,プリズム等
を用いたものが多い。この代表的な従来例とし
て、プリズム可動型光行路変更装置(光スイツ
チ)の概略構造図を第1図に、原理図を第2図に
示す。この方式に関しては例えばOQE―78―105
あるいは、電子通信学会論文誌Vol.J63―C No.
1 JANUARY 1980 P.16〜P.23等で発表され
ている。動作原理を説明する。第1図のプリズム
1aは菱形をしており、このプリズムは可動ハウ
ジング1bに接着剤等で固着されている。可動ハ
ウジング1b内部には、永久磁石1cが装着さ
れ、永久磁石両端面には軟磁性体の磁極片1d,
1eが接着剤で接合され、可動部1を形成してい
る。この可動部1の左右に軟磁性体の固定磁極2
a,2bが配置され、線輪3a,3bで巻回さ
れ、電磁石の磁極を形成し、これを基板6に固定
された非磁性体の磁極ホルダ4a,4bで位置を
固定している。駆動電流制御回路7より電磁石用
線輪3a,3bに正又は負の電圧を印加して電流
を正,逆に切替える事により、可動部1は電磁石
の固定磁極2a,2b間の空隙中を左右に運動す
る。この動作により図に記していない発光源から
の光線10が第1図に示した状態の時、すなわち
可動部1が固定磁極2b側に位置している状態の
時には、第7図に詳細に示すように光線10はプ
リズム1aに入射し、内部で全反射されて光路が
変更し、10aの光行路となる。一方、可動部1
が固定磁極2a側に位置した時は、光線10はプ
リズム1aに入射することなくそのまま直進し1
0bの光行路となる。つまり、光行路を電気的信
号により変更する事が出来る。なお光行路変更器
としては菱形プリズム以外にレンズやミラーを用
いることができ、この場合にも同様に入射光を屈
折や反射させることによつて光行路の変更ができ
ることは前記電子通信学会論文誌に具体的に記載
されているように公知である。可動部に永久磁石
を用いる事により移動動作後駆動電流を停止させ
ても永久磁石の吸引力で一方の固定磁極面(2
a,2bの一方)に吸着され、その位置を保存す
る事が出来る自己保持作用を有する。ここで特に
光行路を10aにする時は、入射光線10に対し
て菱形プリズム1aの入射面の角度及び位置決め
が重要であり、この為に固定磁極2a,2b面に
垂直な軸に対して可動部1の回転運動を極力押え
ながら、平行移動させる事が必要となる。従つ
て、可動部ホルダ5(非磁性体)の可動部1との
接触面に凹形溝を設けこの溝中を摺動させる方法
等がとられる。
Optical path changers used for communication, measurement control, etc. using optical fibers include lenses, mirrors, prisms, and recently, optical waveguides using optical integrated circuit technology. Among these, many of those that have been put into practical use for changing the optical path use lenses, mirrors, prisms, etc. As a typical conventional example, a schematic structural diagram of a prism movable optical path changing device (optical switch) is shown in FIG. 1, and a principle diagram is shown in FIG. 2. Regarding this method, for example, OQE-78-105
Or, Journal of the Institute of Electronics and Communication Engineers Vol. J63-C No.
1 Published in JANUARY 1980 P.16-P.23, etc. The operating principle will be explained. Prism 1a in FIG. 1 has a rhombic shape, and is fixed to movable housing 1b with adhesive or the like. A permanent magnet 1c is mounted inside the movable housing 1b, and magnetic pole pieces 1d of soft magnetic material are attached to both end faces of the permanent magnet.
1e are joined with adhesive to form the movable part 1. Fixed magnetic poles 2 made of soft magnetic material are located on the left and right sides of this movable part 1.
a and 2b are arranged and wound around wire rings 3a and 3b to form the magnetic poles of an electromagnet, and the positions thereof are fixed by non-magnetic magnetic pole holders 4a and 4b fixed to the substrate 6. By applying a positive or negative voltage to the electromagnet wire rings 3a, 3b from the drive current control circuit 7 and switching the current between positive and reverse, the movable part 1 moves left and right in the gap between the fixed magnetic poles 2a, 2b of the electromagnet. exercise. As a result of this operation, when the light beam 10 from a light emitting source (not shown) is in the state shown in FIG. 1, that is, when the movable part 1 is located on the fixed magnetic pole 2b side, the light beam 10 from the light emitting source (not shown) is in the state shown in detail in FIG. 7. As shown, the light beam 10 enters the prism 1a, is totally reflected inside, changes its optical path, and becomes the optical path of 10a. On the other hand, the movable part 1
When is located on the fixed magnetic pole 2a side, the light ray 10 does not enter the prism 1a and goes straight as it is.
This becomes the optical path of 0b. In other words, the optical path can be changed by electrical signals. In addition to the rhombic prism, a lens or mirror can be used as the optical path changer, and in this case as well, the optical path can be changed by refracting or reflecting the incident light, as stated in the Journal of the Institute of Electronics and Communication Engineers. It is publicly known as specifically described in . By using a permanent magnet in the movable part, even if the drive current is stopped after the movement operation, the attractive force of the permanent magnet will keep one fixed magnetic pole surface (2
a, 2b) and has a self-retaining effect that allows it to maintain its position. Here, especially when setting the optical path to 10a, the angle and positioning of the entrance surface of the rhombic prism 1a with respect to the incident light beam 10 are important. It is necessary to move part 1 in parallel while suppressing its rotational movement as much as possible. Therefore, a method is adopted in which a concave groove is provided in the contact surface of the movable part holder 5 (non-magnetic material) with the movable part 1 and the movable part holder 5 (non-magnetic material) is slid in this groove.

しかるに以上述べた従来方式では、次の様な問
題点がある。
However, the conventional method described above has the following problems.

駆動電流OFF後の可動部保持力は永久磁石
の全磁束と磁極面積に依存し、一方の電磁石の
磁極面との吸引力のみで位置を保持する為小型
軽量化を計る場合には衝撃・振動に対する耐性
が低くなる。
The holding force of the movable part after the drive current is turned off depends on the total magnetic flux of the permanent magnet and the magnetic pole area, and since the position is held only by the attraction force with the magnetic pole surface of one electromagnet, it is necessary to reduce the impact and vibration when trying to reduce the size and weight. become less resistant to

磁気回路を形成する軟磁性体部(継鉄)が閉
じていない事により、磁気抵抗が大きく、その
為、所望の磁束を得る為に消費される電力が大
きくなる。この駆動電流は正負のパルス状で印
加すれば良いのであるが、切替動作を連続的に
行なう場合には、光スイツチ全体の温度上昇も
無視出来なくなり、光の挿入損失変動の要因と
もなる。
Since the soft magnetic body part (yoke) forming the magnetic circuit is not closed, the magnetic resistance is large, and therefore the power consumed to obtain the desired magnetic flux is large. This drive current can be applied in the form of positive and negative pulses, but if the switching operation is performed continuously, the temperature rise of the entire optical switch cannot be ignored, and this becomes a factor in fluctuations in optical insertion loss.

光行路切替時間は駆動電流と相関があり、電
流値を一定とすれば磁気回路中の磁気抵抗と、
機械的摩擦との関係により切替時間が大とな
る。
The optical path switching time is correlated with the drive current, and if the current value is constant, the magnetic resistance in the magnetic circuit,
Switching time increases due to mechanical friction.

本発明は以上の欠点を改良するためになされた
もので、その目的は、耐振動・衝撃及び切替動作
の確実性、迅速性、再現性、長寿命の高信頼性光
行路変更装置を提供するにある。
The present invention has been made in order to improve the above-mentioned drawbacks, and its purpose is to provide a highly reliable optical path changing device that is resistant to vibration and shock, has reliable switching operation, quickness, reproducibility, and long life. It is in.

この発明は、電磁石を形成する継鉄部分を一体
化し、磁極を3磁極設け、中央磁極面上にプリズ
ム等を装着した永久磁石を含む可動部を摺動させ
る事により、耐振動・衝撃特性を向上せしめ、光
切替時間及び消費電力を低減するようにしたもの
である。
This invention improves vibration and shock resistance by integrating the yoke part that forms the electromagnet, providing three magnetic poles, and sliding a movable part that includes a permanent magnet with a prism etc. mounted on the central magnetic pole surface. The optical switching time and power consumption are reduced.

次にこの発明の一実施例を述べる。第3図に概
略構造図、第4図に原理図を示す。動作原理及び
構造は、永久磁石(例えばSm―Co系磁石、磁化
方向は摺動方向)1c及び磁極1d,1eを内装
する可動ハウジング1bを電磁石中央磁極(下、
単に中央磁極という)9部上に配置し、駆動電流
制御回路7より駆動電流を線輪3a,3bに通電
する事により、継鉄8a,8b・電磁石磁極部2
a,2bを経て、中央磁極部9に磁束が戻るよう
な3磁極構造をとる。可動ハウジング1b上には
公知の光行路変更器が装着される。この実施例で
は一例として第1図の場合と同様に菱形プリズム
1aを装着した場合を示してる。第3図の如く通
電させた場合は可動部1は電磁石磁極2b側に吸
引される。駆動電流制御回路7で通電方向を逆に
切替えると、電磁石磁極2bと磁極1e間では反
撥,電磁石磁極2aと磁極1d間では吸引の電磁
力が発生し可動部1は2b側より2a側に移動す
る。可動部1の移動時及び移動後の精密位置決め
の為にガイドとなる凹形又はV形溝等を中央磁極
9面上に設け、この溝内面を基準面として摺動さ
せる。可動部1が電磁石磁極2a又は2bのどち
らか一方)に吸着している安定状態から、他方の
電磁石磁極に移動を開始する過渡状態について述
べると、駆動電流制御回路7より発生させる光行
路切替電流パルスにより、電磁石回路が動作す
る。中央磁極9の極性は、可動永久磁石1c(及
び磁極1d,1e)の移動方向側の磁極と同極性
になる。この為、可動部1の移動方向先端部は中
央磁極部9より反撥力を受ける。従つて中央磁極
9面の可動部1案内用凹形溝あるいはV形溝面と
可動部1との接触面で発生する静止摩擦Fsは、
一般にFs=εsNで表わされる。ここでεsは静止摩
擦係数、Nは案内面に対する垂直力であり、また
N=FM±Wと表わされる。FMは永久磁石と中央
磁極9との吸引力、Wは可動部1の自重である。
よつて、切替駆動パルス電流により吸引力は反撥
力となる為、FMは−FM′となり、N=−FM±W
となる。ここで一般に、FM>Wであるから、N
は負になり、静止摩擦は無視出来る事になる。可
動部1が動き出してからは永久磁石の逆側磁極と
の吸引力が中央磁極9との間で増大するが、この
場合は運動摩擦FKとなり、一般にFK<FSである
から、可動部1の運動を阻止する影響力は小さ
い。これは、迅速な可動部の切替動作に寄与す
る。更に、接触面に於ける摩擦係数は、材質の組
合せ、表面の粗さ、潤滑剤の有無、量、雰囲気、
温度などによつて大幅に変わるので、これらにつ
いても検討を要する。この中で潤滑剤を用いる方
法は光路入,出射面への影響(光の挿入損失増
大)を考え、特に材質及び表面粗さが充分考慮さ
れる必要がある。その為可動部1と少なくとも中
央磁極9面上の凹形溝案内面との接触部面には摩
擦係数の小さい(0.05以下)例えばテフロン系の
ドライループ処理を施す。あるいは、可動部1は
低摩擦係数の表面処理,凹形等案内溝内面には耐
摩耗性表面処理例えばニダツクス処理、あるいは
硬質Crメツキ研摩仕上処理を施して、長寿命化
と切替時間の短縮をはかることが望ましい。
Next, one embodiment of this invention will be described. FIG. 3 shows a schematic structural diagram, and FIG. 4 shows a principle diagram. The operating principle and structure is that a movable housing 1b containing a permanent magnet (for example, an Sm-Co magnet, the magnetization direction is the sliding direction) 1c and magnetic poles 1d and 1e is connected to an electromagnet center magnetic pole (lower,
The yoke 8a, 8b and the electromagnet magnetic pole part 2
A three-magnetic pole structure is adopted in which the magnetic flux returns to the central magnetic pole portion 9 via a and 2b. A known optical path changer is mounted on the movable housing 1b. This embodiment shows, as an example, a case in which a rhombic prism 1a is installed as in the case of FIG. When energized as shown in FIG. 3, the movable portion 1 is attracted to the electromagnet magnetic pole 2b side. When the driving current control circuit 7 reverses the current direction, a repulsive electromagnetic force is generated between the electromagnet magnetic pole 2b and the magnetic pole 1e, and an attractive electromagnetic force is generated between the electromagnet magnetic pole 2a and the magnetic pole 1d, and the movable part 1 moves from the 2b side to the 2a side. do. A concave or V-shaped groove or the like is provided on the surface of the central magnetic pole 9 to serve as a guide for precise positioning during and after movement of the movable part 1, and the inner surface of this groove is used as a reference surface for sliding. To describe the transient state in which the movable part 1 starts moving from a stable state where it is attracted to either one of the electromagnet magnetic poles 2a or 2b to the other electromagnet magnetic pole, the optical path switching current generated by the drive current control circuit 7 The pulse activates the electromagnetic circuit. The polarity of the central magnetic pole 9 is the same as the magnetic pole on the moving direction side of the movable permanent magnet 1c (and magnetic poles 1d, 1e). Therefore, the distal end portion of the movable portion 1 in the moving direction receives a repulsive force from the central magnetic pole portion 9. Therefore, the static friction Fs generated at the contact surface between the movable part 1 and the concave groove or V-shaped groove surface for guiding the movable part 1 on the surface of the central magnetic pole 9 is:
Generally, it is expressed as Fs=ε s N. Here, ε s is the coefficient of static friction, N is the normal force to the guide surface, and is expressed as N=F M ±W. F M is the attractive force between the permanent magnet and the central magnetic pole 9, and W is the weight of the movable part 1.
Therefore, the attractive force becomes a repulsive force due to the switching drive pulse current, so F M becomes -F M ', and N=-F M ±W
becomes. Here, in general, since F M > W, N
becomes negative, and static friction can be ignored. After the movable part 1 starts moving, the attractive force between the opposite magnetic pole of the permanent magnet and the central magnetic pole 9 increases, but in this case, it becomes kinetic friction F K , and generally F K < F S , so the movable part 1 The influence that prevents the movement of part 1 is small. This contributes to quick switching operation of the movable part. Furthermore, the coefficient of friction at the contact surface depends on the combination of materials, surface roughness, presence or absence of lubricant, amount, atmosphere,
Since it changes significantly depending on temperature, etc., these also need to be considered. Among these methods, when using a lubricant, it is necessary to consider the influence on the optical path entry and exit surfaces (increased light insertion loss), and in particular, the material and surface roughness must be sufficiently considered. Therefore, the contact surface between the movable part 1 and at least the concave groove guide surface on the surface of the central magnetic pole 9 is treated with a dry loop treatment having a small coefficient of friction (0.05 or less), for example, a Teflon-based material. Alternatively, the movable part 1 may be subjected to a surface treatment with a low coefficient of friction, or the inner surface of the guide groove, such as a concave shape, may be subjected to a wear-resistant surface treatment, such as Nidax treatment, or a hard Cr plating polishing treatment, to extend the service life and shorten the switching time. It is desirable to measure it.

本発明の効果についてまとめると次の様にな
る。
The effects of the present invention can be summarized as follows.

中央磁極9部と、電磁石の磁極2a又は2b
の一方で可動部永久磁石の磁路が形成される事
により、従来の一面支持から2面支持となり、
振動・衝撃に対する性能も向上せしめ、信頼性
を高める事が出来る。
Central magnetic pole 9 part and electromagnet magnetic pole 2a or 2b
On the other hand, by forming the magnetic path of the permanent magnet in the moving part, the conventional one-sided support becomes two-sided support,
It also improves performance against vibrations and shocks, increasing reliability.

継鉄8a,8b、電磁石磁極部2a,2bを
経て磁束が中央磁極部9に戻るような3磁極構
造のため、磁気抵抗が小さく、従つて消費電力
も小さい。
Because of the three-magnetic pole structure in which the magnetic flux returns to the central magnetic pole part 9 via the yokes 8a, 8b and the electromagnet magnetic pole parts 2a, 2b, magnetic resistance is low, and power consumption is also low.

3磁極構造をとることにより駆動時の摩擦を
低減することができるため光行路変更時間の短
縮が図れる。
By adopting a three-magnetic pole structure, friction during driving can be reduced, so that the time required to change the optical path can be shortened.

基準面を固定しているため再現性が向上し、
挿入損失変動の低減が図れる。
Because the reference plane is fixed, reproducibility is improved,
Insertion loss fluctuations can be reduced.

磁極間のair gap長を大きくとれるので光行
路変更器(プリズム,ミラー,レンズ等)の形
状,寸法,位置合せ精度のクリアランスを大き
くでき、作業性を良好ならしめる。
Since the air gap length between the magnetic poles can be increased, the clearance for the shape, size, and alignment accuracy of the optical path changer (prism, mirror, lens, etc.) can be increased, improving workability.

第5図に本発明の他の実施例を、また第6図a
およびbに同実施例の可動部1の正面図および側
面図を示す。第3図に示した例と異なる点は、電
磁石中央磁極9を円柱とし、凹形継鉄部中央部に
ハメ合わせる構造をとつた事と、更に、第6図a
およびbから明らかなように、可動部1の案内及
び位置決め用として、中央磁極9の頂部に可動部
1の移動方向に沿つた溝を有する可動部ホルダ1
1を設け、可動ハウジング1bをこの可動部ホル
ダ11の溝内に配置した点である。材質は、中央
磁極部9と継鉄8a,8b及び電磁石磁極2a,
2b又、永久磁石用磁極1d,1eは軟磁性体で
構成されるが、特に中央磁極部材は、最大飽和磁
束密度の高い(2.0wb/以上)例えばスーパパ
ーメンジユール等を用い、断面積の縮少を計つて
いる。勿論、磁極部2a,2b,1d,1eも
BHmaxの大なる軟磁性体で構成しても良い。継
鉄部8a,8bは初透磁率μiが大なる例えば78%
Niパーマロイ、あるいは45%Niパーマロイ等
(いずれも初透磁率10000以上)を用いる事は、第
3図の場合と同様である。可動部ホルダ11は非
磁性体を用いるのが良いが、直径が可動部1の磁
化方向の長さの略1/2以下の場合には磁性体を用
いても良く、この場合は自己保持力を更に増大さ
せる。又、可動部ホルダ11は中央磁極部9にハ
メ合わされた後に、入射光に対する光軸合せ等の
ため、回転微調整が出来る特徴があり、組立調整
時の作業性が向上し性能の向上につながる。
FIG. 5 shows another embodiment of the present invention, and FIG. 6a
and b show a front view and a side view of the movable part 1 of the same embodiment. The difference from the example shown in Fig. 3 is that the electromagnet center magnetic pole 9 is made of a cylinder and is fitted into the center of the concave yoke part, and also that
As is clear from FIGS. and b, the movable part holder 1 has a groove along the moving direction of the movable part 1 on the top of the central magnetic pole 9 for guiding and positioning the movable part 1.
1 is provided, and the movable housing 1b is disposed within the groove of this movable part holder 11. The materials are the central magnetic pole part 9, the yokes 8a, 8b, and the electromagnet magnetic pole 2a,
2b Also, the magnetic poles 1d and 1e for permanent magnets are made of soft magnetic material, but the center magnetic pole member in particular is made of a material with a high maximum saturation magnetic flux density (2.0 wb/or more), such as super mendiure, and has a cross-sectional area. We are planning to reduce the number of Of course, the magnetic pole parts 2a, 2b, 1d, and 1e also
It may also be composed of a soft magnetic material with a large BHmax. The yoke parts 8a and 8b have a large initial permeability μi, for example, 78%.
The use of Ni permalloy, 45% Ni permalloy, etc. (both have an initial magnetic permeability of 10,000 or more) is the same as in the case of Fig. 3. It is preferable to use a non-magnetic material for the movable part holder 11, but if the diameter is approximately 1/2 or less of the length in the magnetization direction of the movable part 1, a magnetic material may be used. further increase. In addition, after the movable part holder 11 is fitted into the central magnetic pole part 9, it can be rotated and finely adjusted to align the optical axis with respect to the incident light, etc., which improves workability during assembly and adjustment, leading to improved performance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の立体図、第2図は従来例の原
理図、第3図は本発明の一実施例の立体図、第4
図は原理図、第5図は本発明の他の実施例の断面
図、第6図は可動部の正面図aと側面図、第7図
は光行路変更器の作用を説明するための図であ
る。 1:可動部、1a:プリズム、1b:可動ハウ
ジング、1c:永久磁石、1d,1e:磁極片、
2a,2b:電磁石磁極片、3a,3b:線輪、
4a,4b:(非磁性体)磁極ホルダ、5:可動
部ホルダ(非磁性体)、6:基板、7:駆動電流
制御回路、8a,8b:継鉄、9:電磁石中央磁
極片、10:光線、10a,10b:出射光線、
11:可動部ホルダ(非磁性体又は磁性体)、1
2:可動部ホルダ表面処理層、13:可動部ハウ
ジング表面処理層。
Fig. 1 is a three-dimensional diagram of the conventional example, Fig. 2 is a principle diagram of the conventional example, Fig. 3 is a three-dimensional diagram of an embodiment of the present invention, and Fig. 4 is a three-dimensional diagram of the conventional example.
5 is a sectional view of another embodiment of the present invention, FIG. 6 is a front view a and a side view of the movable part, and FIG. 7 is a diagram for explaining the operation of the optical path changer. It is. 1: Movable part, 1a: Prism, 1b: Movable housing, 1c: Permanent magnet, 1d, 1e: Magnetic pole piece,
2a, 2b: Electromagnet pole piece, 3a, 3b: wire ring,
4a, 4b: (non-magnetic material) magnetic pole holder, 5: Movable part holder (non-magnetic material), 6: board, 7: drive current control circuit, 8a, 8b: yoke, 9: electromagnet center pole piece, 10: Light rays, 10a, 10b: Outgoing rays,
11: Movable part holder (non-magnetic material or magnetic material), 1
2: Movable part holder surface treatment layer, 13: Movable part housing surface treatment layer.

Claims (1)

【特許請求の範囲】 1 中央磁極部、およびその両側に互いに対向す
るよう配置された一対の磁極部を一体化してなる
3磁極継鉄と、 この3磁極継鉄に巻回された線輪と、 この線輪に電流を通電することにより前記一対
の磁極部および中央磁極部にそれぞれ所定の磁極
を生じさせる手段と、 前記中央磁極部上に可動的に保持されるととも
に前記一対の磁極部に生じた磁極との間の吸引・
反発力により前記一対の磁極部間で移動する可動
永久磁石部と、 この可動永久磁石部に取着されて一体的に移動
し、前記一対の磁極部の一方側に位置したときに
光線を受光し、これを屈折又は反射して、前記一
対の磁極部の他方側に位置したときの前記光線の
光行路とは異なる光行路で出射する光学素子から
なる光行路変更器とを備えることを特徴とする光
行路変更装置。 2 前記可動永久磁石部はハウジングとこのハウ
ジングに内装された永久磁石よりなり、このハウ
ジングに前記光行路変更器が装着されていること
を特徴とする特許請求の範囲第1項記載の光行路
変更装置。 3 前記3磁極継鉄のうちの中央磁極部の前記可
動永久磁石部との対向面には前記可動永久磁石部
の回転止のための溝が設けられていることを特徴
とする特許請求の範囲第1項記載の光行路変更装
置。 4 前記可動永久磁石部と前記3磁極継鉄のうち
の中央磁極部との接触面の摩擦係数はほぼ0.05以
下であることを特徴とする特許請求の範囲第1項
記載の光行路変更装置。 5 前記可動永久磁石部と前記3磁極継鉄のうち
の中央磁極部との接触面はテフロン系合成樹脂に
よるコーテイングが施されていることを特徴とす
る特許請求の範囲第1項記載の光行路変更装置。 6 前記3磁極継鉄のうちの中央磁極部を円柱状
に形成し、この円柱状の中央磁極部に非磁極性体
ホルダをはめ合わせてなることを特徴とする特許
請求の範囲第1項記載の光行路変更装置。 7 前記3磁極継鉄のうちの中央磁極部は他の磁
極部よりも最大飽和磁束密度が大きい軟磁性体で
形成されていることを特徴とする特許請求の範囲
第1項記載の光行路変更装置。 8 前記3磁極継鉄のうちの前記可動永久磁石面
と平行な磁極面を有する磁極部分は、初透磁率
10000以上の軟磁性体で構成されていることを特
徴とする特許請求の範囲第1項記載の光行路変更
装置。
[Scope of Claims] 1. A three-pole yoke formed by integrating a central magnetic pole portion and a pair of magnetic pole portions disposed opposite to each other on both sides thereof, and a wire wound around the three-pole yoke. , means for generating predetermined magnetic poles in the pair of magnetic pole parts and the central magnetic pole part by applying current to the wire ring; Attraction between the generated magnetic poles and
A movable permanent magnet section that moves between the pair of magnetic pole sections due to repulsive force, and a movable permanent magnet section that is attached to the movable permanent magnet section and moves integrally with the movable permanent magnet section, and receives light when positioned on one side of the pair of magnetic pole sections. and an optical path changer comprising an optical element that refracts or reflects the light beam and outputs the light beam in a different optical path than the optical path of the light beam when the light beam is located on the other side of the pair of magnetic pole parts. Optical path changing device. 2. The optical path changing device according to claim 1, wherein the movable permanent magnet section is made up of a housing and a permanent magnet housed in the housing, and the optical path changing device is attached to the housing. Device. 3. Claims characterized in that a groove for stopping the rotation of the movable permanent magnet part is provided on the surface of the central magnetic pole part of the three magnetic pole yoke facing the movable permanent magnet part. 2. The optical path changing device according to item 1. 4. The optical path changing device according to claim 1, wherein a friction coefficient of a contact surface between the movable permanent magnet portion and the central magnetic pole portion of the three magnetic pole yoke is approximately 0.05 or less. 5. The optical path according to claim 1, wherein a contact surface between the movable permanent magnet part and the central magnetic pole part of the three-pole yoke is coated with a Teflon-based synthetic resin. Change device. 6. Claim 1, characterized in that the central magnetic pole part of the three magnetic pole yoke is formed into a cylindrical shape, and a non-magnetic polarity holder is fitted into the cylindrical central magnetic pole part. optical path changing device. 7. The optical path change according to claim 1, wherein the central magnetic pole part of the three magnetic pole yoke is formed of a soft magnetic material having a larger maximum saturation magnetic flux density than the other magnetic pole parts. Device. 8 Of the three magnetic pole yoke, the magnetic pole portion having a magnetic pole surface parallel to the movable permanent magnet surface has an initial magnetic permeability.
The optical path changing device according to claim 1, characterized in that the optical path changing device is made up of 10,000 or more soft magnetic materials.
JP5796980A 1980-05-02 1980-05-02 Optical path changer Granted JPS56154701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5796980A JPS56154701A (en) 1980-05-02 1980-05-02 Optical path changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5796980A JPS56154701A (en) 1980-05-02 1980-05-02 Optical path changer

Publications (2)

Publication Number Publication Date
JPS56154701A JPS56154701A (en) 1981-11-30
JPS631563B2 true JPS631563B2 (en) 1988-01-13

Family

ID=13070834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5796980A Granted JPS56154701A (en) 1980-05-02 1980-05-02 Optical path changer

Country Status (1)

Country Link
JP (1) JPS56154701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588569U (en) * 1991-07-17 1993-12-03 秀雄 福田 Structure of putter used for golf

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870754B2 (en) 2001-04-27 2007-01-24 松下電工株式会社 Light switch
WO2005024489A1 (en) * 2003-09-05 2005-03-17 Nabtesco Corporation Optical part guide mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588569U (en) * 1991-07-17 1993-12-03 秀雄 福田 Structure of putter used for golf

Also Published As

Publication number Publication date
JPS56154701A (en) 1981-11-30

Similar Documents

Publication Publication Date Title
US7429808B2 (en) Gliding field linear motor
KR100195313B1 (en) Lens barrel for a camera
KR970006069B1 (en) Linear motor
JP2881959B2 (en) Camera lens barrel
JPH02133057A (en) Noncontact type high-speed linear-motor
US6607305B2 (en) Bi-directional micromechanical latching linear actuator
US6606429B1 (en) Electromechanically controlled optical element
JPS631563B2 (en)
JP2003262802A (en) Actuator device
JP2020043703A (en) Driving device, lens driving device, and electronic apparatus
JPS6411925B2 (en)
JPS5831563B2 (en) light switch
US6898344B2 (en) Fiber optic switch actuator
JPWO2006106773A1 (en) Actuator unit
JPH07146430A (en) Electromagnetic driving device and focus control device by using electromagnetic driving device
JP4331086B2 (en) Electromagnetic actuator and optical device using the same
JP2848016B2 (en) Objective lens actuator and optical head
JPH09171630A (en) Objective support device for optical pickup
JPH04322155A (en) Linear motor
JPH0415608A (en) Lens driving device
JPH04145409A (en) Optical switch
JP2001235690A (en) Optical switch
JP2006323295A (en) Lens-driving device
JPH0493907A (en) Lens driving device
JPS5815923Y2 (en) optical fiber switch