JPS63156353A - Original reader - Google Patents

Original reader

Info

Publication number
JPS63156353A
JPS63156353A JP61304092A JP30409286A JPS63156353A JP S63156353 A JPS63156353 A JP S63156353A JP 61304092 A JP61304092 A JP 61304092A JP 30409286 A JP30409286 A JP 30409286A JP S63156353 A JPS63156353 A JP S63156353A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
photocurrent
light
common electrode
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304092A
Other languages
Japanese (ja)
Inventor
Hideo Nojima
秀雄 野島
Shuhei Tsuchimoto
修平 土本
Masaya Hijikigawa
正也 枅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61304092A priority Critical patent/JPS63156353A/en
Publication of JPS63156353A publication Critical patent/JPS63156353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14667Colour imagers

Abstract

PURPOSE:To make it possible to read an original having a plurality of colors at high resolution and a high speed, by laminating two photoconductive layers having the different optical forbidden band widths by commonly using a light transmitting common electrode, changing a voltage that is applied to the common electrode, and operating a photocurrent, in which a spectral sensitivity characteristic is changed in correspondence with the applied voltage. CONSTITUTION:As a first photoconductive layer 14, e.g., antimony sulfide is deposited. Electrodes 13 and 15 are formed on both surfaces in the direction of a thickness. Thus a sandwich type optoelectric transducer element 19 is formed. Then, as a second photoconductive layer 16, zinc solenoid is used, and a sandwich type optoelectric transducer element 20 is formed by the same way described above. The photoconductive layers 14 and 16 are laminated by commonly using the light transmitting common electrode 15. When light 18 is inputted from the side of a discrete electrode 17 on the second photoconductive layer 16, the second photoconductive layer 16 works as a filter. Therefore, a photocurrent indicates spectrums approximately close to the tristimulus values of a CIE. All pieces of color information (hue, saturation and lightness) can be accurately detected by the operation based on the photocurrent.

Description

【発明の詳細な説明】 産業上の利用分野 本児明は、ファクシミリやイメージスキャナ等に用いる
原稿読取装置に関し、特に、色フィルタを用いたり照明
光源の色を切り換えたりすることなく、複数色の原稿を
高解像度、高速度で読取る新規な原稿読取装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application Akira Honji relates to document reading devices used in facsimiles, image scanners, etc., and in particular, the ability to read multiple colors without using color filters or switching the color of the illumination light source. The present invention relates to a novel document reading device that reads documents with high resolution and high speed.

従来技術 近年、ファクシミリやイメージスキャナ等の原稿読取装
置に用いる密着型イメージセンサの開発が活発にイテな
われている。蜜着型イメーノセンサは、原稿と同じ幅の
光電変換素子を使用し、原稿にほぼ密着させて読取る光
電変換装置である。従来のCCD(電荷結合素子)等に
よる集積回路イメージセンサは、原稿の尤字像を縮少し
てイメージセンサ上に結像する精密な縮小光学系が必要
であるが、密着型イメージセンサは縮少光学系が不要の
ため、原稿読取装置の大幅な小型、軽量化が達成できる
BACKGROUND OF THE INVENTION In recent years, close-contact image sensors for use in document reading devices such as facsimiles and image scanners have been actively developed. A contact-type image sensor is a photoelectric conversion device that uses a photoelectric conversion element with the same width as the document and reads the document by placing it in almost close contact with the document. Conventional integrated circuit image sensors such as CCDs (charge-coupled devices) require a precise reduction optical system that reduces the original image of the document and forms the image on the image sensor, but contact image sensors Since no optical system is required, the document reading device can be significantly reduced in size and weight.

現在実用化されている密着型イメーノセンサの光電変換
素子は、基本的にたとえば!lS9図に示すブレーナ型
または第10図に示すいわゆるサンドイッチ型として構
成されている。これら光電変換素子は電気絶縁性基板1
、光導電体MJ2、金属電極3.4.5および透光性電
ff16を含んでvII戊される。電極3,4: 5.
6rfflに直流電圧を印加し、光導電体層2に光7を
照射すると、光7によって生成されたキャリア(Ti子
、正孔)が移動し、電極3.4; 5,6間に光電流が
流れ、これを計測することによって光を検出する。
The photoelectric conversion elements of contact type image sensors that are currently in practical use are basically, for example! It is constructed as a Brehner type shown in FIG. 1S9 or a so-called sandwich type shown in FIG. These photoelectric conversion elements are electrically insulating substrate 1
, photoconductor MJ2, metal electrode 3.4.5 and transparent conductor ff16. Electrodes 3, 4: 5.
When a DC voltage is applied to 6rffl and the photoconductor layer 2 is irradiated with light 7, carriers (Ti atoms, holes) generated by the light 7 move, and a photocurrent is generated between the electrodes 3, 4 and 5 and 6. flows, and light is detected by measuring this flow.

このような光電変換素子は、光導電体層2の分光感度に
対応して充電変換を行なうのみであり、ファクシミリ゛
やイメー7スキャナ等の原稿読取装置に用いた場合、原
稿の色を判別することはできない。現在、事務書類など
には多くの色が使用されており、複数色の原稿を読取る
要求は大きい。
Such a photoelectric conversion element only performs charge conversion according to the spectral sensitivity of the photoconductor layer 2, and when used in a document reading device such as a facsimile or image scanner, it is used to distinguish the color of the document. It is not possible. Currently, many colors are used in office documents and the like, and there is a great demand for reading documents in multiple colors.

したがって、原稿の色を検出するために、従来では第9
図または第10図に示す光電変換素子を用いた画素に色
フィルタを装着する方法または、照明光源の色を走査毎
に切り換える方法等が行なわれている。
Therefore, in order to detect the color of the original, conventionally the ninth
A method of attaching a color filter to a pixel using a photoelectric conversion element as shown in FIG. 1 or FIG. 10, a method of switching the color of an illumination light source for each scan, and the like are used.

発明が解決しようとする問題点 しかしながら、たとえば赤色、緑色、青色の色フィルタ
を画素毎に装着した場合、画素密度がたとえば1/3に
低下し、照明光源の色を切り換えた場合、読取速度が損
なわれ、さらに3FII類の光源が必要となり装置の大
型化が余儀なくされている等、原8S読取装置の特性が
低下してしまうという問題点があった。
Problems to be Solved by the Invention However, when red, green, and blue color filters are attached to each pixel, the pixel density decreases to, for example, 1/3, and when the color of the illumination light source is switched, the reading speed decreases. In addition, there were problems in that the characteristics of the original 8S reader deteriorated, such as the need for a 3FII class light source, which forced the device to be larger.

本発明は、上記諸点に鑑みて成されたものであり、色フ
ィルタを用いることなく、また照明光源の色を切り換え
ることなく、複数色の原稿を高解像度、高速度で読取る
原稿読取装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides a document reading device that reads documents of multiple colors at high resolution and high speed without using color filters or switching the color of the illumination light source. The purpose is to

問題点を解決するための手段 本発明は、電気絶縁性基板上に、第1個別電極、第1光
導電体層、透光性の共通電極、tJS1光導電体層とは
物理光学的特性の異なる第2光導電体層および第1個別
電極がこの順序に積N!されて構成される光電変換装置
であって、 第1個別電極、第1光導電体層および透光性の共通電極
によって構成される第1光電変換素子および、前記透光
性の共通電極、第2光導電体層および前記第2個別電極
によって構成される第2光電変換素子を含む、そのよう
な光電変換装置を備え、 前記透光性の共通電極に少なくとも2f!の異なる電圧
を印加し、これによって得られる前記?tS1光電変換
素子および第2光電変換素子からの各光電流をそれぞれ
検出して演算処理することによって、入射された光の光
学的条件を判別するようにしたことを特徴とする原稿読
取装置である。
Means for Solving the Problems The present invention provides a first individual electrode, a first photoconductor layer, a translucent common electrode, and a tJS1 photoconductor layer having physical-optical properties on an electrically insulating substrate. Different second photoconductor layers and first individual electrodes are stacked in this order N! A first photoelectric conversion device comprising a first individual electrode, a first photoconductor layer, and a light-transmitting common electrode; Such a photoelectric conversion device including a second photoelectric conversion element constituted by two photoconductor layers and the second individual electrode, wherein at least 2f! Applying different voltages of and thus obtained? A document reading device characterized in that the optical condition of incident light is determined by detecting and arithmetic processing each photocurrent from a tS1 photoelectric conversion element and a second photoelectric conversion element. .

作  用 本発明に従えば、透光性の共通電極に少なくとも2種の
異なる電圧を印加し、第1光電変換素子および$2光電
変換素子に印加される電圧に対応して変化したそれぞれ
の光電流を検出して演算処理し、光の色を識別する。
Function According to the present invention, at least two different voltages are applied to the light-transmitting common electrode, and each light is changed in accordance with the voltage applied to the first photoelectric conversion element and the $2 photoelectric conversion element. Detects current and processes it to identify the color of light.

実施例 まず本発明の詳細な説明する。一般に光導電体層の示す
光電流の分光感度と光吸収係数との一例を第2図ライン
ノ1.ノ2に示す。分光感度11が最大になる波長入O
より艮波長側では、分光感度は光吸収係数に対応して減
少する。すなわち、光が吸収されなくなるために光電流
の分光感度が減少する。ところが、光の波長が入0より
短い領域では、光吸収係数は一点鎖線!2で示すように
増加しているにもかかわらず光電流は減少しでいく。
EXAMPLES First, the present invention will be explained in detail. An example of the spectral sensitivity and light absorption coefficient of photocurrent generally exhibited by a photoconductor layer is shown in Figure 2, Line No. 1. It is shown in No.2. Wavelength input O with maximum spectral sensitivity 11
At closer wavelengths, the spectral sensitivity decreases in response to the optical absorption coefficient. That is, since light is no longer absorbed, the spectral sensitivity of photocurrent decreases. However, in the region where the wavelength of light is shorter than 0, the optical absorption coefficient is a dot-dashed line! As shown by 2, the photocurrent continues to decrease even though it is increasing.

これは、光吸収係数が大きくなるに伴い、光が光導電体
層のより光入射側表面近傍で吸収され、生成し°たキャ
リア(電子、正札)の寿命が表面準位による再結合によ
って短かくなるためと考えられている。したがって、光
入射側表面近傍で生成されたキャリアを、表面準位によ
って再結合しないように、光導電体層の光入射側表面か
ら内部へ移動させれば、光電流の分光感度が波長λ0よ
り短波長側で減少する割ひは小さくなるものと考えられ
る。
This is because as the light absorption coefficient increases, light is absorbed closer to the surface of the photoconductor layer on the light incident side, and the lifetime of the generated carriers (electrons, genuine tags) is shortened due to recombination at surface levels. It is thought that this is because it becomes dark. Therefore, if the carriers generated near the light incident surface are moved from the light incident surface to the inside of the photoconductor layer so as not to be recombined by the surface states, the spectral sensitivity of the photocurrent will be lower than the wavelength λ0. It is thought that the decrease in the margin on the shorter wavelength side becomes smaller.

本発明はこの−V察に基づいて、光導電体層とその厚み
方向両側に配置された電極とを有する2つの分光感度の
異るサンドイッチ型の光?+1変換素子を、透光性共通
電甑を共用して積層した構造において、共通電極に印加
する電圧を変化させ、その印加電圧に対応して分光感度
特性の変化する各光電流を演算することによって、入射
光の色をfJ別するものである。
Based on this -V assumption, the present invention is based on a sandwich-type light film having two different spectral sensitivities, each having a photoconductor layer and electrodes disposed on both sides of the photoconductor layer in the thickness direction. In a structure in which +1 conversion elements are stacked using a common light-transmitting electrode, the voltage applied to the common electrode is changed, and each photocurrent whose spectral sensitivity characteristics change in response to the applied voltage is calculated. The color of incident light is classified by fJ.

なお、ただ単に、分光感度の異なる光導電体層を積層す
るだけなら、既にいくつかの発明が提案されている (
たとえば特開昭56−27561、特開昭57−841
85、特開昭6O−160660)。しかしながら、色
情報(色相、彩度、明度)を正確に判別するためには、
たとえばCIEの3刺激値が必要であり、一般に分光感
度の異なる3種類の独立な光電流が必要である。このた
め、光導電体層を2/ll積層しただけでは、単色のス
ペクトル色は判別できても、スペクトルの混在した複雑
な原稿の色を判別することはできない9また、そのため
に光導電体層を3層積層することが考えられるが、3層
の積層構造を構成した場合、作製工程が増加するととも
に、1!極配線が著しく複雑化して現実的でない。簡単
な光電変換素子の構造を用いて、色フィルタを用いるこ
となくまた照明光源の色彩を切り換えることなく色情報
を正確に判別することは、後述するように電界によって
分光感度を変調することに着目した本発明によって始め
て可能になる。
In addition, several inventions have already been proposed for simply stacking photoconductor layers with different spectral sensitivities (
For example, JP-A-56-27561, JP-A-57-841
85, Japanese Patent Publication No. 6O-160660). However, in order to accurately determine color information (hue, saturation, brightness),
For example, CIE tristimulus values are required, and generally three types of independent photocurrents with different spectral sensitivities are required. For this reason, if only 2/ll photoconductor layers are laminated, it is possible to distinguish a single spectral color, but it is not possible to distinguish the color of a complex document with mixed spectra9. It is conceivable to laminate 3 layers, but if a 3-layer laminate structure is constructed, the number of manufacturing steps increases, and 1! Pole wiring becomes extremely complicated and impractical. Accurately determining color information using a simple photoelectric conversion element structure without using color filters or without switching the color of the illumination light source focuses on modulating spectral sensitivity using an electric field, as described later. This becomes possible for the first time with the present invention.

以下に、本発明を実施例に基づいて具体的に説明する。The present invention will be specifically described below based on examples.

第3図は本発明の一実施例のV、稿読取装r!121の
構成を示すブロック図である。原稿22を読み取る後述
するような構成を有rる光電変換装置である光電変換素
子11は、第1および第2の光電変換素子である光電変
換素子19.20が積WIされて構成される。各光電変
換素子19.20には直流層1fi23からの直流電圧
がそれぞれ印加される。直流′yl源23がらの印加電
圧は、スイッチング手段SW1.5W2によって導通/
遮断制御される。このスイッチング手段sW1.sW2
と光電変換素子19,20との間には電流検出手段24
.25が介在されており、光電変換素子19.20に流
れる電流を検出する。
FIG. 3 shows V and document reading device r! of an embodiment of the present invention. 121 is a block diagram illustrating the configuration of 121. FIG. The photoelectric conversion element 11, which is a photoelectric conversion device having a configuration as described below and which reads the original 22, is configured by stacking photoelectric conversion elements 19 and 20, which are first and second photoelectric conversion elements. A DC voltage from the DC layer 1fi23 is applied to each photoelectric conversion element 19, 20, respectively. The applied voltage from the DC'yl source 23 is turned on/off by the switching means SW1.5W2.
It is controlled to be cut off. This switching means sW1. sW2
A current detection means 24 is provided between the photoelectric conversion elements 19 and 20.
.. 25 is interposed to detect the current flowing through the photoelectric conversion elements 19 and 20.

前記スイッチング手段SWI、SW2と直流電源23と
は、制御部26によって動作が制御され、電流検出手段
24.25で検出された電流値は、この制御部26によ
って読み取られる。すなわち制御8部26は原稿22の
光学像を検出する。検出された結果は、表示装置27ま
たは印字装置28に出力される。
The operations of the switching means SWI, SW2 and the DC power supply 23 are controlled by a control section 26, and the current values detected by the current detection means 24, 25 are read by the control section 26. That is, the control unit 26 detects the optical image of the original 22. The detected results are output to the display device 27 or the printing device 28.

以下、上述した本実施例の原稿読取装置21に用いられ
る光電変換装置である光電変換素子11の断面を第1図
に示す。本実施例の充電変換索子11は、電気絶縁性基
板12、fjS1個別電極13、第1光導電体M14、
透光性の共通電極15、第2光導電体層16および透光
性の第2個別電極17をこの順序で積層して形成される
。光18は第2個別電極17側から入射するものとし、
第2光導電体層16の光学的禁制帯幅は、第1光導電体
層14の光学的禁制帯幅より大きくなるように構成する
FIG. 1 shows a cross section of a photoelectric conversion element 11, which is a photoelectric conversion device used in the document reading device 21 of the present embodiment described above. The charging conversion cable 11 of this embodiment includes an electrically insulating substrate 12, an fjS1 individual electrode 13, a first photoconductor M14,
It is formed by laminating a light-transmitting common electrode 15, a second photoconductor layer 16, and a light-transmitting second individual electrode 17 in this order. The light 18 is assumed to be incident from the second individual electrode 17 side,
The optical forbidden band width of the second photoconductor layer 16 is configured to be larger than the optical forbidden band width of the first photoconductor layer 14 .

本実施例の動作原理を、第1光導電体層14および第2
光導電体層16をそれぞれ単独で用いた場合の分光感度
に基づいて詳細に説明する。Pt51光導電体層14と
してたとえば硫化アンチモン (Sb2Ss)を用いる
。硫化アンチモン5b2S、は蒸着技術によって容易に
大面積に均一に作製される。
The operating principle of this embodiment is as follows:
A detailed explanation will be given based on the spectral sensitivity when each photoconductor layer 16 is used alone. For example, antimony sulfide (Sb2Ss) is used as the Pt51 photoconductor layer 14. Antimony sulfide 5b2S can be easily produced uniformly over a large area by vapor deposition technology.

硫化アレチモンS[1,S、を約1μ(至)の厚さに堆
積して厚み方向両表面に電fi13,15を形成してサ
ンドイッチ型の光電変換素子19を作製し、印加電圧を
変化させた場合の光電流の分光感度を、第4図に示す。
A sandwich-type photoelectric conversion element 19 was prepared by depositing alethimony sulfide S[1,S, to a thickness of about 1 μm (up to) to form electric fi 13, 15 on both surfaces in the thickness direction, and by varying the applied voltage. Figure 4 shows the spectral sensitivity of photocurrent when

印加電圧v=vi  (rことえば5ポルト)のときの
光電流11はライン13で、V=V 2(たとえば1ボ
ルト)のときの光電流12はラインノ4で示される。こ
の光電流i1.i2をmt++で、次の式で光電流J1
+J2を求める。
The photocurrent 11 when the applied voltage v=vi (r, say 5 ports) is shown by line 13, and the photocurrent 12 when V=V2 (for example 1 volt) is shown by line 4. This photocurrent i1. When i2 is mt++, the photocurrent J1 is calculated by the following formula.
Find +J2.

jl =al ii +a2 i2       ・・
・(1)j2 =b1i1 +b2 i2      
 ・・・(2)ここで、たとえばal=−1,0、a2
=2.07、b1=2.0、b2=−2,0としたとき
の光電流j1、j2の変化を第5図のラインノ5.!6
に示す。
jl =al ii +a2 i2...
・(1) j2 = b1i1 +b2 i2
...(2) Here, for example, al=-1,0, a2
= 2.07, b1 = 2.0, and b2 = -2.0, the changes in photocurrents j1 and j2 are shown in line 5. of Fig. 5. ! 6
Shown below.

次にrjfJ2光導電体層16として、スパッタリング
法によって作製した厚さ約1μ論のセレン化亜鉛(Z 
nS e)を用いて、上記と同様にサンドイッチ型の光
電変換素子20を作製した場合の光電流の分光感度を、
第6図に示す。このときの光電流j3はラインノアで示
される。このような特性を有する光導電体層14.16
を透光性の共通電極15を共用して積層し、第2光導電
体層16の個別電極17側から光を入射した場合、第2
光導電体層16がフィルタの働きをするため、結局、光
電流j11j2tj3は第7図のライン、128.79
 、、/ 10に示すようになる。これはCIEのr+
g+ b三刺激値には;r近いスペクトルを示すことが
確認された。この光電流J1+J2+J3に基づく演算
によって、前記全ての色情報(色相、彩度、明度)が正
確に検出できる。
Next, as the rjfJ2 photoconductor layer 16, zinc selenide (Z
The spectral sensitivity of the photocurrent when the sandwich type photoelectric conversion element 20 is produced in the same manner as above using nS e) is
It is shown in FIG. The photocurrent j3 at this time is represented by a line NOR. Photoconductor layer 14.16 having such properties
are laminated by sharing a light-transmitting common electrode 15, and when light is incident from the individual electrode 17 side of the second photoconductor layer 16, the second
Since the photoconductor layer 16 acts as a filter, the photocurrent j11j2tj3 is equal to the line 128.79 in FIG.
,,/10. This is CIE's r+
It was confirmed that the g+b tristimulus value showed a spectrum close to ;r. By calculation based on this photocurrent J1+J2+J3, all the color information (hue, saturation, brightness) can be detected accurately.

色情報を検出する場合、分光感度の異なる独立な3種類
の光電流があれば充分であるが、出力機器と接続するこ
とを考慮すれば、3!11類の光電流の分光感度はCI
Eの’Igr bスペクトル三刺激値であることが最も
望ましい。本実施例では、得られる光電流Jl +J2
 +J3の分光感度が、r+li+tlスペクトル三刺
激値に非常に近いことも大きな特徴である。
When detecting color information, it is sufficient to have three types of independent photocurrents with different spectral sensitivities, but if you take into account the connection with output equipment, the spectral sensitivity of photocurrents of class 3!11 is CI
E'Igr b spectral tristimulus values are most desirable. In this example, the obtained photocurrent Jl +J2
Another major feature is that the spectral sensitivity of +J3 is very close to the r+li+tl spectral tristimulus values.

上記実施例の光導電体材料以外に、第1光導電体屑14
として、窒素を添加した非晶質水素化シリコン(a −
S iN x:H)、炭素を添加した非晶質水素化シリ
コン(a  S iCx:H)、硫化カドミウムとセレ
ン化カドミツムとの混晶(CdS xS eビ×)、セ
レンーヒ素−テルル(S e −A s −T e)、
硫化インジウム(I n2S *)などを用いてもよく
、第2光導電体層1Gとして、上記a−S iN x:
)I 、 a −S iCx : H1硫化カドミウム
(CdS)、硫化亜鉛(Z no )などを用いてもよ
い。また、これらの組み合せで光電変換素子11を作製
した結果、それぞれの材料の組合せについて光学的禁制
帯幅と、印加電圧と光電流の演算方法とを最適化すれば
、上記実施例と同様に原稿の色情報が正確に検出された
In addition to the photoconductor material of the above embodiment, first photoconductor scrap 14
Nitrogen-doped amorphous hydrogenated silicon (a-
S iN -A s -T e),
Indium sulfide (In2S*) or the like may be used as the second photoconductor layer 1G, and the above a-SiNx:
) I, a-S iCx : H1 Cadmium sulfide (CdS), zinc sulfide (Z no ), etc. may be used. In addition, as a result of manufacturing the photoelectric conversion element 11 using these combinations, if the optical forbidden band width and the calculation method of the applied voltage and photocurrent are optimized for each combination of materials, the manuscript can be converted as in the above embodiment. color information was detected accurately.

本発明の他の実施例に従う光電変換素子11aの断面図
をvJB図に示す。本実施例は前述の実施例に類似し、
対応する部分には同一の参照符を付す。本実施例の特徴
は、Pt51光導電体層14の光学的禁制帯幅が、第2
光導電体N16の光学的禁制帯幅より大きくなるように
、上記実施例の第1および第2光導電体14.16の材
料を逆にして構成し、Pt51個別電極13および電気
絶縁性基板12を透光性とし、絶縁性基板12側から光
18を入射するようにしたことである。この結果、上記
実施例と同様に、原稿の色情報を正確に検出することの
できる光電変換素子11aが作製された。
A cross-sectional view of a photoelectric conversion element 11a according to another embodiment of the present invention is shown in diagram vJB. This example is similar to the previous example;
Corresponding parts are given the same reference numerals. The feature of this embodiment is that the optical forbidden band width of the Pt51 photoconductor layer 14 is
The materials of the first and second photoconductors 14 and 16 of the above embodiment are reversed so that the width is larger than the optical forbidden band width of the photoconductor N16, and the Pt51 individual electrodes 13 and the electrically insulating substrate 12 is made transparent so that light 18 enters from the insulating substrate 12 side. As a result, a photoelectric conversion element 11a capable of accurately detecting color information of a document was manufactured, similar to the above embodiment.

なお、一般にほとんどの光導電体材料は、表面僧位の関
与した再結合によって入射光の短波長側での分光感度が
減少するので、本発明の原理に基づいて原稿読取装置を
作製すれば、光導電体材料として上記以外の材料を用い
ても実施例と同様の効果が得られることは言うまでもな
い。
Note that, in general, most photoconductor materials have a reduced spectral sensitivity on the shorter wavelength side of incident light due to recombination involving surface strata, so if a document reading device is manufactured based on the principles of the present invention, It goes without saying that the same effects as in the examples can be obtained even if materials other than those mentioned above are used as the photoconductor material.

効  果 以上説明したように本発明によれば、光学的禁制帯幅の
異なる2個の光導電体層を、透光性の共通電極を共用し
て積層し、共通電極に印加する電圧を変化させ、その印
加電圧に対応して分光感度特性の変化する光電流を演算
するようにした。これによって、入射光の色を正確にf
JI別すること力Cできる。その結果として、色フィル
タを用いることなく、また照明光源の色を切り換えるこ
となく、複数色の原稿を高解像度、高速度で読取る原稿
読取装置が得られる。
Effects As explained above, according to the present invention, two photoconductor layers having different optical forbidden band widths are laminated using a common transparent electrode, and the voltage applied to the common electrode is changed. Then, a photocurrent whose spectral sensitivity characteristics change in response to the applied voltage is calculated. This allows the color of the incident light to be accurately f
It is possible to distinguish between JI and C. As a result, it is possible to obtain a document reading device that can read documents of multiple colors at high resolution and high speed without using color filters or switching the color of the illumination light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原稿読取装置に用いられる
光電変m素子11の断面図、第2図は光導電体の発生す
る光電流の分光感度と光吸収係数とを示すグラフ、第3
図は本発明の一実施例の原稿読取装置21の構成を示す
ブロック図、第4図は第1光導電体W114の印加電圧
を変化させたときの分光感度を示すグラフ、第5図は第
1式および第2式による演算結果を示すグラフ、f:t
S6図は第2光導電体層16の分光感度を示すグラフ、
第7図は第1および第2光導電体層14.16を積層し
共通電ff115に印加する電圧に対応して変化する光
電流を演算しr二結果得られた分光感度を示すグラフ、
m8図は本発明の他の実施例の原稿読取装置の光電変換
素子11aの断面図、tpJS図は従来技術の密着型イ
メージセンサなとの光電変換素子の断面図、第10図は
他の従来技術の密着型イメージセンサの光電変換素子の
断面図である。 11.11a、19.20−−−光電変換X T112
 ・・・電気絶縁性基板、13・・・第1個別電極、1
4.16・・・光導電体層、15・・・透光性共通電極
、17・・・透光性第2個別電極、21・・・原稿読取
装置、23・・・直流電源、24.25・・・電流検出
手段、26・・・制御部 代理人  弁理士 画数 圭一部 第 1 図 人O□ 第2図        :i表 ?、; 3ム 第4囚 第7図 第9図 第10図
FIG. 1 is a cross-sectional view of a photoelectric variable element 11 used in a document reading device according to an embodiment of the present invention, and FIG. 2 is a graph showing the spectral sensitivity and light absorption coefficient of photocurrent generated by a photoconductor. Third
The figure is a block diagram showing the configuration of a document reading device 21 according to an embodiment of the present invention, FIG. 4 is a graph showing the spectral sensitivity when the voltage applied to the first photoconductor W114 is changed, and FIG. Graph showing the calculation results according to equation 1 and equation 2, f:t
Figure S6 is a graph showing the spectral sensitivity of the second photoconductor layer 16;
FIG. 7 is a graph showing the spectral sensitivity obtained by laminating the first and second photoconductor layers 14 and 16 and calculating the photocurrent that changes in response to the voltage applied to the common voltage ff115,
Figure m8 is a cross-sectional view of a photoelectric conversion element 11a of a document reading device according to another embodiment of the present invention, Figure tpJS is a cross-sectional view of a photoelectric conversion element of a conventional contact type image sensor, and Figure 10 is a cross-sectional view of a photoelectric conversion element 11a of a document reading device according to another embodiment of the present invention. It is a sectional view of a photoelectric conversion element of a contact type image sensor of the technology. 11.11a, 19.20---Photoelectric conversion X T112
... electrically insulating substrate, 13 ... first individual electrode, 1
4.16... Photoconductor layer, 15... Transparent common electrode, 17... Transparent second individual electrode, 21... Original reading device, 23... DC power supply, 24. 25...Current detection means, 26...Control unit agent Patent attorney Number of strokes Keiichi 1st figure person O□ 2nd figure: i table? , ; 3m 4th prisoner Figure 7 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】  電気絶縁性基板上に、第1個別電極、第1光導電体層
、透光性の共通電極、第1光導電体層とは物理光学的特
性の異なる第2光導電体層および第2個別電極がこの順
序に積層されて構成される光電変換装置であつて、 第1個別電極、第1光導電体層および透光性の共通電極
によって構成される第1光電変換素子および、前記透光
性の共通電極、第2光導電体層および前記第2個別電極
によって構成される第2光電変換素子を含む、そのよう
な光電変換装置を備え、 前記透光性の共通電極に少なくとも2種の異なる電圧を
印加し、これによつて得られる前記第1光電変換素子お
よび第2光電変換素子からの各光電流をそれぞれ検出し
て演算処理することによって、入射された光の光学的条
件を判別するようにしたことを特徴とする原稿読取装置
[Scope of Claims] A first individual electrode, a first photoconductor layer, a light-transmitting common electrode, and a second photoconductor having physical-optical characteristics different from those of the first photoconductor layer are formed on an electrically insulating substrate. A photoelectric conversion device configured by laminating a body layer and a second individual electrode in this order, the first photoelectric conversion device consisting of a first individual electrode, a first photoconductor layer, and a translucent common electrode. and a second photoelectric conversion element constituted by the light-transmitting common electrode, the second photoconductor layer, and the second individual electrode; By applying at least two different voltages to the electrodes, and detecting and arithmetic processing each photocurrent from the first photoelectric conversion element and the second photoelectric conversion element obtained thereby, the incident light is A document reading device characterized in that the optical condition of the document is determined.
JP61304092A 1986-12-19 1986-12-19 Original reader Pending JPS63156353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304092A JPS63156353A (en) 1986-12-19 1986-12-19 Original reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304092A JPS63156353A (en) 1986-12-19 1986-12-19 Original reader

Publications (1)

Publication Number Publication Date
JPS63156353A true JPS63156353A (en) 1988-06-29

Family

ID=17928923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304092A Pending JPS63156353A (en) 1986-12-19 1986-12-19 Original reader

Country Status (1)

Country Link
JP (1) JPS63156353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071057A (en) * 2007-09-13 2009-04-02 Fujifilm Corp Image sensor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071057A (en) * 2007-09-13 2009-04-02 Fujifilm Corp Image sensor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR970011763B1 (en) Solid-state image pick-up device
US4862237A (en) Solid state image sensor
US4654536A (en) Contact color image sensor
US4758734A (en) High resolution image sensor array using amorphous photo-diodes
US4737833A (en) Solid-state color image pickup device with accumulated-layer structure
JP2003234460A (en) Multilayer photoconductive film and solid state imaging device
US4581625A (en) Vertically integrated solid state color imager
JPH06204445A (en) Optical sensor and image information processing device having the same
US5138416A (en) Multi-color photosensitive element with heterojunctions
GB2188482A (en) Optical sensor
JPS6156912B2 (en)
EP0509820B1 (en) Image pickup apparatus
US4804833A (en) Color sensing method and device therefor
US4656109A (en) Layered solid state color photosensitive device
JPS63156353A (en) Original reader
Zhu et al. A Novel α-Si (C): H Color Sensor Array
JPS6064467A (en) Solid-state image sensor
US6534808B2 (en) Metal-insulator-semiconductor photocell and imager
JPS6015969A (en) Colored solid-state image pickup element
JPS59163860A (en) Solid-state image pickup element
Takada et al. CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band
JPS60192361A (en) Color image senser
JPS60160660A (en) Reading element for original and color original reader using said reading element
JPS623628A (en) Color discriminating device
JPS6262022B2 (en)