JPS63156092A - Single crystal growth device - Google Patents

Single crystal growth device

Info

Publication number
JPS63156092A
JPS63156092A JP30116186A JP30116186A JPS63156092A JP S63156092 A JPS63156092 A JP S63156092A JP 30116186 A JP30116186 A JP 30116186A JP 30116186 A JP30116186 A JP 30116186A JP S63156092 A JPS63156092 A JP S63156092A
Authority
JP
Japan
Prior art keywords
seed
holder
hole
single crystal
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30116186A
Other languages
Japanese (ja)
Inventor
Akira Osawa
大沢 昭
Koichiro Honda
耕一郎 本田
Tetsuo Fukuda
哲生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30116186A priority Critical patent/JPS63156092A/en
Publication of JPS63156092A publication Critical patent/JPS63156092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the title single crystal growth device without being contaminated and provided with a seed holder having high mechanical strength, by holding a seed held in a retention hole by a pin inserted into a pinhole orthogonal to the retention hole of the seed holder, and making the above-mentioned parts with a ceramic material. CONSTITUTION:The seed holder 5 is shaped in the form of a taper cylinder, and the retention hole 7 is bored in the leading taper part in the axial direction. The pinhole 8 is bored orthogonally to the hole 7d in the vicinity of the bottom of the hole 7. The holder 5 is made of an alumina ceramic. Meanwhile, a keyway 9 having a semicircular cross section is bored through the base 6a of the seed 6. The seed 6 is inserted into the hole 7 of the holder 5 of a such a structure from the base, the pin 10 is inserted into the hole 8 and engaged with the keyway 9 of the seed 6, and the seed 6 is fixed to the holder 5. Besides, such parts are also made of an alumina ceramic. A single crystal is then grown by the same Czochralski method as before with use of the device shown in the figure.

Description

【発明の詳細な説明】 〔概要〕 シード・ホルダーをアルミナ・セラミック製の部品によ
って構成された単結晶成長装置である。
[Detailed Description of the Invention] [Summary] This is a single crystal growth apparatus in which a seed holder is constructed of parts made of alumina ceramic.

〔産業上の利用分野〕[Industrial application field]

本発明は単結晶成長装置、特にシード・ホルダ一部を改
良した単結晶成長装置に関する。近年、電子技術の発達
に伴い、高純度単結晶体の必要性が高まってきた。また
、高密度化、集積回路の歩留り向上のために大口径の単
結晶体の要望が強まっている。本発明は、炉内汚染を生
ずることなく、大重量の結晶体を支えることのできるシ
ート・ホルダーを具備した単結晶成長装置に関する。
The present invention relates to a single crystal growth apparatus, and more particularly to a single crystal growth apparatus in which a part of the seed holder is improved. In recent years, with the development of electronic technology, the need for high purity single crystals has increased. In addition, there is an increasing demand for large-diameter single crystals in order to increase density and improve the yield of integrated circuits. The present invention relates to a single crystal growth apparatus equipped with a seat holder that can support a large weight of crystal without contaminating the inside of the furnace.

〔従来の技術〕[Conventional technology]

シリコン等の単結晶を得る方法として引上法(チョクラ
ルスキー法・CZ法)、フロート・ゾーン法(FZ法)
等が広く利用されている。引上法は、大直径結晶が得ら
れる利点を有し、FZ法は高純度結晶が得られるという
利点を有する。本発明はC2法の単結晶成長装置に関す
る。
Pulling method (Czochralski method/CZ method) and float zone method (FZ method) are methods for obtaining single crystals of silicon etc.
etc. are widely used. The pulling method has the advantage that large diameter crystals can be obtained, and the FZ method has the advantage that high purity crystals can be obtained. The present invention relates to a C2 method single crystal growth apparatus.

CZ法は第5図に示すように多結晶とドープ剤を石英製
のるつぼ1内に入れ、周囲のヒーター2によって熔解し
た後、シード(種結晶)3の先端を溶液に付ける。3の
先端はわずかに溶解し、温度平衡の保たれたるつぼ内で
引上軸4およびるつぼ1を回転させながら引き上げられ
る。その後、引き上げ速度と温度を調整することにより
単結晶を希望の直径に太らせ、目的の下限抵抗率の推定
長さまで引き上げを行う。
In the CZ method, as shown in FIG. 5, a polycrystal and a doping agent are placed in a quartz crucible 1, and after being melted by a surrounding heater 2, the tip of a seed (seed crystal) 3 is attached to the solution. The tip of 3 is slightly melted and is pulled up while rotating the pulling shaft 4 and crucible 1 in a crucible whose temperature is maintained in equilibrium. Then, by adjusting the pulling speed and temperature, the single crystal is thickened to the desired diameter, and pulled to the estimated length that provides the desired lower limit resistivity.

以上のCZ法において、引上軸の先端で結晶の種となる
シード・ホルダーとしてはステンレス製、モリブデン製
、カーボン製のものが主に使用されていた。
In the above CZ method, the seed holder that serves as the crystal seed at the tip of the pulling shaft is mainly made of stainless steel, molybdenum, or carbon.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ステンレス製のシード・ホルダーの場合、材料費が安く
、加工が容易である利点はあるが、融点が低((約14
00℃) 、1000℃以上の高温下でステンレス合金
自身から鉄原子がガス状となって発生し易(、炉内およ
び溶液、結晶を汚染するという欠点があった。
Stainless steel seed holders have the advantages of low material cost and easy processing, but have a low melting point (approx.
00°C), the stainless steel alloy itself tends to generate gaseous iron atoms at high temperatures of 1000°C or higher (there was a drawback that it contaminated the inside of the furnace, the solution, and the crystals).

モリブデン製のシード・ホルダーの場合は融点が高((
約3000℃以上)、純粋なものは不純物ガスを発生し
難いが、高価である上に硬いために加工が困難であり、
超硬バイト等で切削加工しなければならない。また純粋
なモリブデンはシリコンと約400℃で反応し、モリブ
デン・シリサイド(MoS i)となるので、シリコン
単結晶の成長用としては好ましくない。
Seed holders made of molybdenum have a high melting point ((
(approximately 3,000℃ or higher), pure materials are difficult to generate impurity gases, but are difficult to process because they are expensive and hard.
It must be cut with a carbide tool etc. Further, pure molybdenum reacts with silicon at about 400° C. to form molybdenum silicide (MoSi), so it is not suitable for growing silicon single crystals.

更にカーボン製のシード・ホルダーの場合は熱に強く不
純物濃度を低くすることができ、加工も容易であるが、
成長したシリコン結晶を支えるには機械的な強度の点か
ら問題がある。例えば現在50kg0長尺単結晶が製造
されているが、そのような使用例においては機械的強度
が十分でない。
Furthermore, carbon seed holders are heat resistant, have a low impurity concentration, and are easy to process.
There is a problem in terms of mechanical strength in supporting the grown silicon crystal. For example, long single crystals weighing 50 kg are currently produced, but their mechanical strength is insufficient for such applications.

シード・ホルダーの好ましい条件としては高融点であり
、高温下での引張荷重に十分耐え、かつ不純物含有量の
少ない素材を用いることである。
The preferred conditions for the seed holder are to use a material that has a high melting point, can sufficiently withstand tensile loads at high temperatures, and has a low content of impurities.

しかし、上述した3つの素材はそれぞれ一長一短があり
、特にシリコン単結晶成長用としては上記した問題があ
ったものである。
However, each of the above-mentioned three materials has its own advantages and disadvantages, and the above-mentioned problems are particularly true when used for silicon single crystal growth.

本発明はこのような点に鑑みて創作されたもので、汚染
のおそれがな(、高温に耐え、機械的強度が大で、加工
が容易で比較的安価な材料で作ったシード・ホルダーを
もった単結晶成長装置を提供することを目的とする。
The present invention was created with these points in mind, and it provides a seed holder made of a material that is free from contamination, resistant to high temperatures, has high mechanical strength, is easy to process, and is relatively inexpensive. The purpose of the present invention is to provide a single crystal growth device with excellent performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の欠点に鑑みなされたものでアルミナ
・セラミックでシード・ホルダーを製造し、高温に耐え
(融点〜2050℃)鉄原子等ガスの発生するのを防ぐ
と共に大itの結晶を支持できるようにしたシード・ホ
ルダーを備えた単結晶装置を提供する。
The present invention was made in view of the above-mentioned conventional drawbacks, and the seed holder is made of alumina ceramic, which can withstand high temperatures (melting point ~2050℃), prevents the generation of gases such as iron atoms, and supports large IT crystals. To provide a single-crystal device equipped with a seed holder capable of producing a single crystal.

第1図は本発明実施例の断面図で、図中、5はシード・
ホルダー、6はシート、7は保持穴、8はピン穴、9は
キー溝、10はビンである。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, in which 5 is a seed
holder, 6 is a sheet, 7 is a holding hole, 8 is a pin hole, 9 is a keyway, and 10 is a bottle.

本発明実施例は、CZ法による単結晶成長のための装置
において、シード・ホルダー5にはシード6を保持する
保持穴7とそれに直交するピン穴8が設けられてなり、
ピン穴には、シード6に形成した半円状断面のキー溝9
に嵌合されるピン10が差し込まれてシード6を保持す
る構造のもので、これら部品のすべてはアルミナ・セラ
ミックで作られたものである。
The embodiment of the present invention is an apparatus for single crystal growth using the CZ method, in which a seed holder 5 is provided with a holding hole 7 for holding a seed 6 and a pin hole 8 perpendicular to the holding hole 7.
The pin hole has a key groove 9 with a semicircular cross section formed in the seed 6.
It has a structure in which a pin 10 is inserted to hold the seed 6, and all of these parts are made of alumina ceramic.

〔作用〕[Effect]

上記した構成によって、シード6はシード・ホルダー7
によって強固に保持される一方で、前記諸都市はすべて
アルミナ・セラミック製のものであるので、高温に耐え
、汚染のおそれがな(、機械的強度が大である一方で加
工が容易である。
With the above configuration, the seed 6 is transferred to the seed holder 7.
All of the above-mentioned cities are made of alumina ceramic, so they can withstand high temperatures and are free from contamination (and have high mechanical strength while being easy to process).

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の単結晶成長装置に使用するシード・ホ
ルダー5の斜視図、第3図はシード・ホルダーの第1図
の紙面の垂直方向の断面図、第4図はシード6の斜視図
である。
FIG. 2 is a perspective view of the seed holder 5 used in the single crystal growth apparatus of the present invention, FIG. 3 is a sectional view of the seed holder in a direction perpendicular to the plane of the paper in FIG. 1, and FIG. 4 is a perspective view of the seed 6. It is a diagram.

シード・ホルダー5は第2図に示される如く先細りの円
筒状形状のものであり、先端テーバ部の軸芯に保持穴7
が穿設されている。また、保持穴フの奥端近傍には、該
保持穴7に直交してピン穴8が穿設されている。シード
・ホルダー5はアルミナ・セラミックで形成されている
The seed holder 5 has a tapered cylindrical shape as shown in FIG.
is drilled. Further, a pin hole 8 is bored near the rear end of the holding hole 7 so as to be perpendicular to the holding hole 7. The seed holder 5 is made of alumina ceramic.

一方、シード6は第4図に示すように基端部6aには半
円状断面のキー溝9が穿設されている。
On the other hand, as shown in FIG. 4, the seed 6 has a keyway 9 with a semicircular cross section formed in the base end 6a.

以上のように構成されたシード・ホルダー5の保持穴7
にシード6を基端から挿入し、ピン穴8からピン10を
差し込むと、シード6のキー溝9に係合しシード・ホル
ダー5とシード6が固定される。なお、これらの部品も
アルミナ・セラミックで形成した。
Holding hole 7 of seed holder 5 configured as above
When the seed 6 is inserted from the base end and the pin 10 is inserted through the pin hole 8, it engages with the keyway 9 of the seed 6 and the seed holder 5 and the seed 6 are fixed. Note that these parts were also made of alumina ceramic.

しかる後に、第5図に示される装置を用いて従来例同様
にCZ法にて単結晶成長を行った。
Thereafter, single crystal growth was performed using the CZ method as in the conventional example using the apparatus shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように構成されたシード・ホルダーを備えた単結
晶装置によれば、 ■高温(約1000℃以上)に耐え得る、■鉄等の重金
属原子ガスの発生を防止できるので炉内汚染がないため
、重金属汚染の少ないfli結晶を製造することができ
る、 ■成長した単結晶のff1lを十分に保持することがで
きる、 ■安価に製造できる、 などの効果が確認された。
According to the single-crystal device equipped with the seed holder configured as described above, it can: - withstand high temperatures (approximately 1000°C or higher); and - prevent the generation of atomic gases from heavy metals such as iron, so there is no contamination in the furnace. Therefore, the following effects were confirmed: fli crystals with less heavy metal contamination can be produced; (1) ff1l of the grown single crystal can be sufficiently retained; and (2) fli crystals can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるシード・ホルダーとシードを示
す断面図、 第2図は本発明にかかるシード・ホルダーの斜視図、 第3図は本発明にかかるシード・ホルダーとシードの嵌
合状態を示す断面図、 第4図はシードの斜視図、 第5図は単結晶成長装置の概略構成図である。 第1図から第5図までにおいて、 1はるつぼ、 2はヒータ、 3はシード、 4は引上軸、 5はシード・ホルダー、 6はシード、 6aはシードの基端部、 7は保持穴、 8はピン穴、 9はキー溝、 10はピンである。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 岑売輯じかシるシード°ホlし7−上シート【ネロ1面
圀第1図 堵5P11:か喝レード糸IL/f−め輯刑1口第2図 第3図 シードの斜視図 v4糸も轟に&懺10操皓填八閃 第5図
Fig. 1 is a sectional view showing a seed holder and a seed according to the present invention, Fig. 2 is a perspective view of a seed holder according to the present invention, and Fig. 3 is a fitted state of the seed holder and seed according to the present invention. FIG. 4 is a perspective view of the seed, and FIG. 5 is a schematic diagram of the single crystal growth apparatus. 1 to 5, 1 is a crucible, 2 is a heater, 3 is a seed, 4 is a pulling shaft, 5 is a seed holder, 6 is a seed, 6a is the base end of the seed, 7 is a holding hole , 8 is a pin hole, 9 is a keyway, and 10 is a pin. Agent Patent Attorney Akifuku Agent Patent Attorney Yoshio Suga - Mechanism 1 Mouth Figure 2 Figure 3 Perspective view of the seed v4 Thread also Todoroki & Print 10 Operation Eight Flashes Figure 5

Claims (1)

【特許請求の範囲】 シード(種結晶)を融液に浸漬して連続的に引き上げて
単結晶を成長させるチョクラルスキー法に用いる装置に
おいて、 シード・ホルダー(5)は先端部分がテーパした円筒状
形状のものでその軸芯に沿ってテーパした先端部分から
円筒状部のほぼ中央で終る保持穴(7)が形成されてな
り、 保持穴(7)に直交するピン穴(8)が円筒部の保持穴
(7)が終る前の部分に形成され、シード(6)が保持
穴(7)内に挿入されたとき、ピン(10)はシード(
6)のキー溝(9)と嵌合した状態でピン穴(8)内に
配置される構成であり、 前記した諸部品はセラミック材で作られたものであるこ
とを特徴とする単結晶成長装置。
[Claims] In an apparatus used in the Czochralski method in which a seed (seed crystal) is immersed in a melt and continuously pulled up to grow a single crystal, the seed holder (5) is a cylinder with a tapered tip. A holding hole (7) is formed from the tip tapered along the axis of the cylinder and ends at approximately the center of the cylindrical part, and a pin hole (8) perpendicular to the holding hole (7) is formed in the cylindrical part. The pin (10) is formed in the part before the holding hole (7) ends, and when the seed (6) is inserted into the holding hole (7), the pin (10)
6) is arranged in the pin hole (8) while being fitted with the key groove (9), and the above-mentioned parts are made of ceramic material. Device.
JP30116186A 1986-12-19 1986-12-19 Single crystal growth device Pending JPS63156092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30116186A JPS63156092A (en) 1986-12-19 1986-12-19 Single crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30116186A JPS63156092A (en) 1986-12-19 1986-12-19 Single crystal growth device

Publications (1)

Publication Number Publication Date
JPS63156092A true JPS63156092A (en) 1988-06-29

Family

ID=17893520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30116186A Pending JPS63156092A (en) 1986-12-19 1986-12-19 Single crystal growth device

Country Status (1)

Country Link
JP (1) JPS63156092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106611A (en) * 1998-10-06 2000-08-22 Seh-America, Inc. Insulating and warming shield for a seed crystal and seed chuck and method for using the device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106611A (en) * 1998-10-06 2000-08-22 Seh-America, Inc. Insulating and warming shield for a seed crystal and seed chuck and method for using the device
US6183556B1 (en) 1998-10-06 2001-02-06 Seh-America, Inc. Insulating and warming shield for a seed crystal and seed chuck

Similar Documents

Publication Publication Date Title
US4659421A (en) System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
US5911822A (en) Method of manufacturing silicon monocrystal, and seed crystal used in the method
TW470787B (en) Apparatus for fabricating single-crystal silicon
JPS63156092A (en) Single crystal growth device
JPH1160379A (en) Production of non-dislocation silicon single crystal
US4469552A (en) Process and apparatus for growing a crystal ribbon
JPH03115188A (en) Production of single crystal
JP3004563B2 (en) Seed crystal of silicon single crystal
US3261722A (en) Process for preparing semiconductor ingots within a depression
JPS6110098A (en) Apparatus for growing single crystal
GB803830A (en) Semiconductor comprising silicon and method of making it
JPH0388794A (en) Method and device for pulling up silicon single crystal
Koh et al. Twins in GaAs crystals grown by the vertical gradient freeze technique
Honeycombe The growth of metal single crystals
US6090198A (en) Method for reducing thermal shock in a seed crystal during growth of a crystalline ingot
JPH08751B2 (en) Method for producing silicon ingot with high oxygen content by crucible-free zone tension method
JP2973916B2 (en) Seed crystal holder and single crystal pulling method using the seed crystal holder
JPS62226890A (en) Single crystal and its production
JPH07277875A (en) Method for growing crystal
JP2000128691A (en) Silicon seed crystal and production of silicon single crystal
JPH05294784A (en) Single crystal growth device
JP2755452B2 (en) Silicon single crystal pulling equipment
JP2849537B2 (en) Single crystal pulling method
JP3473477B2 (en) Method for producing silicon single crystal
JPH02217389A (en) Production of single crystal