JPS6315511B2 - - Google Patents

Info

Publication number
JPS6315511B2
JPS6315511B2 JP17490182A JP17490182A JPS6315511B2 JP S6315511 B2 JPS6315511 B2 JP S6315511B2 JP 17490182 A JP17490182 A JP 17490182A JP 17490182 A JP17490182 A JP 17490182A JP S6315511 B2 JPS6315511 B2 JP S6315511B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
supply pipe
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17490182A
Other languages
Japanese (ja)
Other versions
JPS5963444A (en
Inventor
Kazuo Fujishita
Hideki Kaneko
Masahiro Indo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57174901A priority Critical patent/JPS5963444A/en
Publication of JPS5963444A publication Critical patent/JPS5963444A/en
Publication of JPS6315511B2 publication Critical patent/JPS6315511B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は貯湯槽の上部より高温湯を噴出し温度
成層してゆく温水ボイラに係り、高温湯の噴出部
に流速減衰体を具備したボイラ構造に関するもの
である。 従来例の構成とその問題点 従来の温水ボイラは第1図に示すように構成さ
れている。すなわち、上部に出湯管1と、下部に
給水管2を有する貯湯槽3に対して、貯湯槽3の
下部より循環ポンプ4、熱源部5、給湯管8を順
次連結管6,7に結合すると共に、給湯管8の先
端を貯湯槽3の略上部に連結し加熱回路を形成し
た温水ボイラ構造である。 この構造においては、貯湯槽3の上部より高温
湯を噴出し温度成層してゆく方式であるので、貯
湯槽3内の水を高温湯に沸き上げる過程におい
て、給湯管8よりの高温湯の噴出条件を相当工夫
して低流速化しないと対流が激しくなり貯湯槽3
内の上下の温度分布が均一にならないものであ
る。(第2図に性能の一例を示す) 次に、沸き上げ後の追焚きの場合に、加熱源と
して瞬間湯沸器を用いていることから、定常状態
に達するまでの過渡時は所定の温度以下の低温水
が噴出されることになり、(第3図に一般的な瞬
間湯沸器の立上り性能を示す)高温湯に沸き上げ
られた貯湯槽内の上部湯温が部分的に急激な低下
をきたすことになる。従つて、この状態下で出湯
すると、出湯々温が部分的に所定温度以下となり
出湯性能を悪化させるなどの問題点がある(第4
図に性能の一例を示す)。 さらに、後者の出湯性能の悪化を緩和する従来
例として第5図に示すものがある。構成の概要と
しては、給湯管8の先端に中空円筒状で側壁に全
域に亘つて小孔14を有する底のない分配筒15
を貯湯槽3の鉛直方向に上から下までの高さに設
けた構成のものがある。 この構成において、瞬間湯沸器の立上りにおけ
る過渡時の低温水が分配筒15の上部から下部向
けて送り込まれる過程で貯湯槽3内の高温湯と熱
交換され温度上昇することになり途中で部分的に
噴出することになる場合と、もともと分配筒15
内に存在していた高温湯を貯湯槽3内下部に送り
込むことから、貯湯槽3下部での温度分布を乱す
ことになり湯温の安定な領域を減少させることに
なる場合など、噴出条件次第にていずれかの場合
の問題点が生じるものである。 発明の目的 本発明はかかる従来の問題点を解決するもので
あり、第1の目的は沸き上げ時の貯湯槽内の湯温
分布を極減することにある。さらに、第2の目的
は出湯々温の急激な低下をなくすることである。
さらに、第3の目的としては、循環ポンプの制御
とか、流量制御せずに簡単な構成にて実現するこ
とにある。 発明の構成 この目的を達成するために本発明は、貯湯槽の
略上部より高温湯を噴出し温度成層してゆく温水
ボイラにおいて、貯湯槽内の略上部に接続した給
湯管の先端に、逆円錐台形状で側壁に多数の小透
孔を形成した有底筒状の流速減衰体を貯湯槽に対
し鉛直方向に連通したものである。 本構成により、沸き上げ時に流速減衰体にて循
環ポンプの圧力および流速の減衰と、貯湯槽内に
水平方向に均一に噴出することで対流が防止でき
高温湯の温度成層が実現できると共に、過渡時の
低温水を低流速でしかも、面状でなく線状に下部
に噴出することにて貯湯槽内での拡散が防止で
き、出湯々温の急激な低下が極減できるものであ
る。 実施例の説明 以下、本発明の実施例について第6図〜第9図
の図面に基ずき説明する。なお、図において従来
例である第1図、第5図と同一部品は同一番号を
付記している。 図において、下部に給水管2を有する貯湯槽3
の他方下部より、入水管6を逆止弁10を介して
連結管6a,6bに分岐し、夫々に、循環ポンプ
4a,4b、熱源部5a,5b、連結管8a,8
bの順に配設させ最後に給湯管8に集結すると共
に、給湯管8を貯湯槽3内の略上部に位置させて
加熱回路を形成している。 この基本構成において、給湯管8の先端に設け
た流速減衰体12は側壁を多孔質材料として多数
の噴出小孔13を有し、有底筒状の逆円錐台形状
にすると共に、貯湯槽3の略上部で、しかも、貯
湯槽3に対し、鉛直方向に位置させている。 次に、貯湯槽3は上端部に同心円状に中央を突
出させた混合室17を有すると共に、混合室17
の側壁より出湯管1を取り出している。さらに、
下部側壁に温度サーミスタa9を備えている。 また、11a,11bは流量調整コツクで熱源
部8a,5bと循環ポンプ4a,4bの間に夫々
設けると共に、熱源部5a,5bの下流側の連結
管8a,8bに温度サーミスタb16a,16b
を備えている。 以下に動作・作用面について、沸き上げ時と出
湯時に分けて説明する。 1 沸き上げ時の場合 貯湯槽3内の水温が所定湯温より低い場合
に、温度サーミスタa9が感知して循環ポンプ
4a,4bに信号を送り駆動する。循環ポンプ
4a,4bが駆動すると、熱源部5a,5bに
設けた流量スイツチ(図示せず)の検知により
熱源部5a,5bが点火し、水は循環加熱され
る。しかる後に、貯湯槽3の下部が所定湯温に
達すると温度サーミスタa9が感知して循環ポ
ンプ4a,4bが停止すると流量スイツチの検
知により熱源部5a,5bが消火する。 この沸き上げ過程において、本実施例のもの
は循環ポンプ4a,4bの能力を一定とし(流
量が一定のこと)、熱源部5a,5bの燃焼量
を比例制御し給湯管8への送り込む湯温を一定
にしている。つまり、温度サーミスタb16
a,16bは、所定湯温以上になると燃焼量を
調整する比例弁(図示せず)に信号を送り燃焼
量を低下させ(TDR燃焼)常に所定湯温とす
るものである。 以上のことから、給湯管8より送り込まれる
温湯は、逆円錐台形状の流速減衰体にて循環ポ
ンプの力を減衰し、流速も減衰することにて静
止に近い噴出となることと、貯湯槽内への噴出
分布については、噴出圧力分布が流速減衰体の
上下方向にほゞ均一になるように逆円錐台形状
にしていることから、水平方向に均一に噴出す
る。一般に有底筒状の流速減衰体で入口近傍よ
り先端部に向けて設けた小孔の噴出面積、流体
の通過する筒状体内部の横断面積が一定である
場合には次のような問題が生じる。すなわち、
流速減衰体内の圧力は入口より先端に向けてし
だいに低下していく変化になるとともに先端に
おける圧力は入口部分が静圧だけであるのに対
し動圧が加わることにより高くなる(圧力は入
口部分<先端部分)。このようなことから、
INDUSTRIAL APPLICATION FIELD The present invention relates to a hot water boiler that spouts high-temperature hot water from the upper part of a hot water storage tank and stratifies the temperature thereof, and relates to a boiler structure that includes a flow rate attenuator at the spouting portion of the high-temperature hot water. Conventional configuration and its problems A conventional hot water boiler is configured as shown in FIG. That is, for a hot water storage tank 3 having a hot water outlet pipe 1 in the upper part and a water supply pipe 2 in the lower part, the circulation pump 4, the heat source part 5, and the hot water supply pipe 8 are sequentially connected to the connecting pipes 6 and 7 from the lower part of the hot water storage tank 3. In addition, it has a hot water boiler structure in which the tip of the hot water supply pipe 8 is connected to the substantially upper part of the hot water storage tank 3 to form a heating circuit. In this structure, high-temperature hot water is ejected from the upper part of the hot water tank 3 and the temperature is stratified. Unless the conditions are modified considerably to reduce the flow rate, convection will become intense and the hot water storage tank 3
The temperature distribution above and below the inside is not uniform. (An example of performance is shown in Figure 2.) Next, in the case of reheating after boiling, since an instantaneous water heater is used as the heating source, the predetermined temperature is maintained during the transient period until the steady state is reached. The following low-temperature water will be spouted out (Figure 3 shows the start-up performance of a typical instantaneous water heater). This will cause a decline. Therefore, when hot water is tapped under this condition, there are problems such as the temperature of the hot water partially falling below the predetermined temperature and deteriorating the hot water tap performance (see Section 4).
An example of performance is shown in the figure). Furthermore, there is a conventional example shown in FIG. 5 that alleviates the latter deterioration in hot water tapping performance. The outline of the configuration is as follows: At the tip of the hot water pipe 8, there is a bottomless distribution tube 15 that is hollow and cylindrical and has small holes 14 throughout the side wall.
There is a structure in which the hot water storage tank 3 is provided at a height from top to bottom in the vertical direction. In this configuration, during the transition period when the instantaneous water heater starts up, the low-temperature water is sent from the top to the bottom of the distribution tube 15 and exchanges heat with the high-temperature hot water in the hot water storage tank 3, resulting in a rise in temperature. In some cases, the distribution cylinder 15
Depending on the ejection conditions, the high-temperature hot water that existed in the tank 3 is sent to the lower part of the tank 3, which disturbs the temperature distribution in the lower part of the tank 3 and reduces the area where the hot water temperature is stable. Problems arise in either case. OBJECTS OF THE INVENTION The present invention is intended to solve these conventional problems, and its first purpose is to minimize the distribution of hot water temperature within the hot water storage tank during boiling. Furthermore, the second purpose is to eliminate a sudden drop in the temperature of hot water.
Furthermore, the third objective is to realize the system with a simple configuration without controlling the circulation pump or controlling the flow rate. Structure of the Invention In order to achieve this object, the present invention provides a hot water boiler that spouts high-temperature hot water from approximately the upper part of the hot water storage tank to create temperature stratification. A bottomed cylindrical flow velocity attenuator with a truncated conical shape and a large number of small through holes formed in the side wall is connected vertically to the hot water storage tank. With this configuration, during boiling, the pressure and flow rate of the circulation pump are attenuated by the flow rate attenuator, and the hot water is uniformly jetted horizontally into the hot water storage tank, preventing convection and achieving temperature stratification of high-temperature hot water. By spouting the low-temperature water at a low flow rate and in a line shape rather than a planar shape toward the bottom, diffusion within the hot water storage tank can be prevented, and a sudden drop in the hot water temperature can be minimized. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings of FIGS. 6 to 9. In the drawings, parts that are the same as those in the conventional example shown in FIGS. 1 and 5 are given the same numbers. In the figure, a hot water storage tank 3 with a water supply pipe 2 at the bottom
The water inlet pipe 6 is branched into connecting pipes 6a and 6b from the other lower part through a check valve 10, and the water inlet pipes 6 are connected to circulation pumps 4a and 4b, heat sources 5a and 5b, and connecting pipes 8a and 8, respectively.
They are arranged in the order of b and finally converge in the hot water supply pipe 8, and the hot water supply pipe 8 is located substantially at the upper part of the hot water storage tank 3 to form a heating circuit. In this basic configuration, the flow rate attenuator 12 provided at the tip of the hot water supply pipe 8 has a side wall made of porous material, has a large number of small ejection holes 13, has a bottomed cylindrical inverted truncated cone shape, and has a hot water storage tank 3. It is located substantially above the hot water storage tank 3, and in a vertical direction with respect to the hot water storage tank 3. Next, the hot water storage tank 3 has a mixing chamber 17 whose center protrudes concentrically at the upper end, and the mixing chamber 17
The outlet pipe 1 is taken out from the side wall. moreover,
A temperature thermistor a9 is provided on the lower side wall. In addition, 11a and 11b are flow rate adjustment units installed between the heat sources 8a and 5b and the circulation pumps 4a and 4b, respectively, and temperature thermistors b16a and 16b are installed in the connecting pipes 8a and 8b on the downstream side of the heat sources 5a and 5b.
It is equipped with The operation and effects will be explained below separately for boiling and dispensing. 1 During Boiling When the water temperature in the hot water storage tank 3 is lower than the predetermined water temperature, the temperature thermistor a9 senses it and sends a signal to the circulation pumps 4a and 4b to drive them. When the circulation pumps 4a, 4b are driven, the heat sources 5a, 5b are ignited by detection by flow rate switches (not shown) provided in the heat sources 5a, 5b, and the water is circulated and heated. Thereafter, when the lower part of the hot water storage tank 3 reaches a predetermined hot water temperature, the temperature thermistor a9 senses this and the circulation pumps 4a, 4b stop, and the heat sources 5a, 5b are extinguished as detected by the flow rate switch. In this boiling process, in this embodiment, the capacity of the circulation pumps 4a and 4b is kept constant (the flow rate is constant), and the amount of combustion in the heat sources 5a and 5b is proportionally controlled to increase the temperature of the hot water sent to the hot water supply pipe 8. is kept constant. In other words, temperature thermistor b16
a and 16b send a signal to a proportional valve (not shown) that adjusts the combustion amount when the hot water temperature reaches a predetermined temperature or higher to reduce the combustion amount (TDR combustion) and always maintain the predetermined hot water temperature. From the above, the hot water sent from the hot water supply pipe 8 attenuates the force of the circulation pump with the inverted truncated cone-shaped flow velocity attenuator, and the flow velocity also attenuates, resulting in a nearly stationary spout. Regarding the inward jet distribution, since the jet pressure distribution is made into an inverted truncated cone shape so that the jet pressure distribution is almost uniform in the vertical direction of the flow velocity attenuator, the jet is jetted out uniformly in the horizontal direction. In general, in a bottomed cylindrical flow velocity damping body, when the ejection area of the small hole provided from the vicinity of the inlet toward the tip and the cross-sectional area of the inside of the cylindrical body through which the fluid passes are constant, the following problems occur. arise. That is,
The pressure inside the flow rate attenuator gradually decreases from the inlet toward the tip, and the pressure at the tip increases due to the addition of dynamic pressure, whereas the inlet has only static pressure. <Tip part). From such a thing,

【式】 でも明らかなように、流速も先端の方が大とな
る。これにより、入口から先端の間において流
速分布に差が生じるものとなり、均一な噴出が
小孔から得られない。 これに対し本発明のように流速減衰体の入口
部分より先端部分に向けて噴出面積と内部の通
過断面積を、しだいに小さくすることにより、
上記した側における問題点を解決するものであ
る。すなわち、流速減衰体内の各部分の圧力
は、これによりほぼ一定となる。つまり先端に
おいて動圧の受けにくい横断面積の小さいもの
にしてある。以上のことより、流速減衰体の入
口部分から先端部分に向けての流速分布のない
ものになり、均一な噴出が得られるものであ
る。貯湯槽内での対流が防止でき、温度分布の
ない高温湯の上部成層方式が成立する。この場
合の性能を第8図に示す。 2 出湯時の場合 貯湯槽3内の湯が所定の温度に沸き上げた後
でしかも、加熱回路中の湯が外気温にて低下し
水温(冬期でで一般的に5℃)に達している状
態において出湯管1の先端での蛇口(図示せ
ず)を開栓し出湯すると、給水管2より低温水
が送り込まれ押し上げ方式にて上部の出湯管1
より所定の高温湯が送り出される。 しかる後に、貯湯槽の下部側壁に設けた温度
サーミスタa9が感知して循環ポンプ4a,4
bに信号を送り駆動する。循環ポンプ4a,4
bが駆動すると、熱源部5a,5bが点火し始
め追焚きが開始される。この追焚きの初期に熱
源部5a,5bの立上りにおける過渡時の低温
水が流速減衰体12に送り込まれるものとな
る。 この状況下において、逆円錐台形状の流速減
衰体にて静圧に近い噴出条件にしていること
と、側壁の開口面積および直径を下部向けて小
さくなる方向にて位置していることから、低温
水を面状に噴出させずに線状に下部向けて噴出
させるようにしている。などのことにより、貯
湯槽内での広い範囲での拡散が防止でき出湯時
の出湯々温の急激な低下が極減できる(第9図
に示す)ものとなり、湯温の安定な高温湯が得
られる温水ボイラを提供することができる。な
お、上記実施例では給湯管と出湯管とを同心円
状に配設したが、本発明はこの構成に限定され
るものではなく、給湯管と出湯管とを離して貯
湯槽に設けても良いことは言うまでもない。ま
た上述の突出した混合室は必要に応じて設けれ
ばよく貯湯槽上部を兼用してもよい。 発明の効果 以上のように、本発明の温水ボイラによれば次
の効果が得られる。 1 流速減衰体にて静圧に近い噴出と、水平方向
に均一に噴出することができるので貯湯槽内の
温度分布を極減することができることから、短
時間に湯温の安定な高温が得られ使い勝手の向
上が図れる。 2 逆円錐台形状の流速減衰体にて低温水を線状
でしかも、静圧に近い噴出により貯湯槽内での
拡散がないことから出湯々温の安定な高温湯が
得られる。 3 循環ポンプを立上りから定常状態までをリニ
ア制御する方式、または、熱応動弁などを用い
た方式でなく、流速減衰体の如き簡単な構成に
て目的が達成できるので安価な温水ボイラを提
供することが可能となる。 4 貯湯機能としての湯温の安定な高温湯の多量
出湯と、短時間に高温湯が出湯できる瞬間式機
能を有する熱エネルギ効率の高い温水ボイラが
提供できる。
[Formula] But as is clear, the flow velocity is also greater at the tip. This causes a difference in flow velocity distribution between the inlet and the tip, making it impossible to obtain uniform jets from the small holes. On the other hand, as in the present invention, by gradually decreasing the ejection area and the internal passage cross-sectional area from the inlet part to the tip part of the flow velocity attenuator,
This solves the problems mentioned above. That is, the pressure at each part within the flow rate attenuator is thereby approximately constant. In other words, the tip has a small cross-sectional area that is less susceptible to dynamic pressure. From the above, there is no flow velocity distribution from the inlet to the tip of the flow velocity attenuator, and uniform jetting can be obtained. Convection within the hot water storage tank can be prevented, and an upper stratification system for hot water with no temperature distribution is established. The performance in this case is shown in FIG. 2 In the case of hot water dispensing After the hot water in the hot water storage tank 3 has been boiled to the specified temperature, the hot water in the heating circuit has dropped due to the outside temperature and has reached the water temperature (generally 5 degrees Celsius in winter). When the faucet (not shown) at the tip of hot water tap 1 is opened to dispense hot water, low-temperature water is sent from the water supply pipe 2 and is pushed up to the top of hot water tap 1.
A predetermined high temperature hot water is sent out. After that, the temperature thermistor a9 provided on the lower side wall of the hot water storage tank senses the temperature and turns on the circulation pumps 4a, 4.
Send a signal to b to drive it. Circulation pump 4a, 4
When b is driven, the heat sources 5a and 5b begin to ignite and reheating is started. At the beginning of this reheating, low-temperature water during a transient period when the heat source parts 5a and 5b rise is sent to the flow rate attenuator 12. Under this situation, the jetting conditions are close to static pressure with the inverted truncated cone-shaped flow velocity attenuator, and the opening area and diameter of the side wall are located in the direction that decreases toward the bottom, so the temperature is low. The water is not sprayed in a planar shape, but rather in a linear manner towards the bottom. By doing this, it is possible to prevent diffusion over a wide range within the hot water storage tank, and to minimize the sudden drop in the hot water temperature when hot water is tapped (as shown in Figure 9). The resulting hot water boiler can be provided. In addition, in the above embodiment, the hot water supply pipe and the hot water outlet pipe are arranged concentrically, but the present invention is not limited to this configuration, and the hot water supply pipe and the hot water outlet pipe may be separated and provided in the hot water storage tank. Needless to say. Further, the above-mentioned protruding mixing chamber may be provided as necessary and may also serve as the upper part of the hot water storage tank. Effects of the Invention As described above, the hot water boiler of the present invention provides the following effects. 1 The flow velocity attenuator allows the water to eject to near static pressure and eject uniformly in the horizontal direction, making it possible to minimize the temperature distribution within the hot water storage tank, resulting in stable high water temperature in a short period of time. This will improve usability. 2. The inverted truncated cone-shaped flow rate attenuator allows low-temperature water to be ejected in a linear manner, and since there is no diffusion within the hot water storage tank due to the ejection of low-temperature water at close to static pressure, high-temperature hot water with a stable hot water temperature can be obtained. 3. To provide a hot water boiler that is inexpensive because the purpose can be achieved with a simple configuration such as a flow rate attenuator, rather than using a system that linearly controls the circulation pump from startup to a steady state or a system that uses heat-responsive valves. becomes possible. 4. It is possible to provide a hot water boiler with high thermal energy efficiency, which has a hot water storage function that can discharge a large amount of hot water with a stable temperature, and an instantaneous function that can discharge high temperature hot water in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温水ボイラの概略図、第2図は
同上の沸き上げ性能図、第3図は瞬間湯沸器の一
般的な立上り性能図、第4図は同上の出湯性能
図、第5図は他の従来例の概略図、第6図は本発
明の一実施例の温水ボイラの構成図、第7図は同
上の要部拡大断面図、第8図は同上の沸き上げ性
能図、第9図は同上の出湯性能図である。 1……出湯管、3……貯湯槽、4a,4b……
循環ポンプ、5a,5b……熱源部、8……給湯
管、12……流速減衰体、13……噴出小孔。
Figure 1 is a schematic diagram of a conventional hot water boiler, Figure 2 is a boiling performance diagram of the same as above, Figure 3 is a general start-up performance diagram of an instantaneous water heater, Figure 4 is a hot water output performance diagram of the same as above, Fig. 5 is a schematic diagram of another conventional example, Fig. 6 is a configuration diagram of a hot water boiler according to an embodiment of the present invention, Fig. 7 is an enlarged sectional view of the main parts of the same, and Fig. 8 is a boiling performance diagram of the same. , FIG. 9 is a hot water tapping performance diagram of the same as above. 1... hot water outlet pipe, 3... hot water storage tank, 4a, 4b...
Circulation pump, 5a, 5b... heat source section, 8... hot water supply pipe, 12... flow rate attenuator, 13... small jet hole.

Claims (1)

【特許請求の範囲】[Claims] 1 上部に出湯管、下部に給水管を備えた貯湯槽
の他方下部より入水管、循環ポンプ、連結管、熱
源部、給湯管の順に接続するとともに前記給湯管
の先端を前記貯湯槽内の略上部に接続して加熱回
路を形成し、前記給湯管の先端には逆円錐台形状
で側壁に多数の小透孔を形成した有底筒状の流速
減衰体を貯湯槽に対し鉛直方向に連通してなる温
水ボイラ。
1. Connect a hot water tank with a hot water outlet pipe at the top and a water supply pipe at the bottom in the order of the water inlet pipe, circulation pump, connecting pipe, heat source, and hot water supply pipe from the other bottom of the tank, and connect the tip of the hot water pipe to the top of the hot water tank. A heating circuit is formed by connecting to the upper part of the hot water supply pipe, and at the tip of the hot water supply pipe, a bottomed cylindrical flow velocity damping body with an inverted truncated conical shape and many small through holes formed in the side wall is communicated vertically to the hot water storage tank. A hot water boiler.
JP57174901A 1982-10-04 1982-10-04 hot water boiler Granted JPS5963444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174901A JPS5963444A (en) 1982-10-04 1982-10-04 hot water boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174901A JPS5963444A (en) 1982-10-04 1982-10-04 hot water boiler

Publications (2)

Publication Number Publication Date
JPS5963444A JPS5963444A (en) 1984-04-11
JPS6315511B2 true JPS6315511B2 (en) 1988-04-05

Family

ID=15986666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174901A Granted JPS5963444A (en) 1982-10-04 1982-10-04 hot water boiler

Country Status (1)

Country Link
JP (1) JPS5963444A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194604B2 (en) * 2007-07-24 2013-05-08 パナソニック株式会社 Hot water storage water heater

Also Published As

Publication number Publication date
JPS5963444A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US2711756A (en) Baffle plate for tanks
JPS6315511B2 (en)
JPH02290465A (en) Gas combustion type derect contact water boilr
CN110145862B (en) Double-throttling accurate instant-heating type pure water boiler and heating method
US4850427A (en) Device for controlling overheating and scaling in an apparatus for heating a fluid and apparatus equipped with such a device
JPH0132911B2 (en)
JPH0313499B2 (en)
JPS6235581B2 (en)
JPS6361578B2 (en)
JPS6315510B2 (en)
US2076087A (en) Water heater
EP0151779A2 (en) Hot-water washing apparatus for personal hygiene
JPS5938548A (en) Hot-water boiler
CN2337926Y (en) Full automatic electric water boiler
JPH0457938B2 (en)
JPH0136017B2 (en)
US4017006A (en) Apparatus for heating and dispensing boiling liquids
JPS5938550A (en) Hot-water boiler
EP0034186A1 (en) Natural circulation-type hot water storage heater
JPS5963445A (en) hot water boiler
US4592504A (en) Hot-water storage type hot-water supply apparatus operating under a natural circulation principle
CN213687278U (en) Water heater
JPS5938546A (en) Hot-water boiler
JPH0670522B2 (en) Hot water boiler
JPS5938547A (en) Hot-water boiler