JPS6315208A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS6315208A
JPS6315208A JP15883486A JP15883486A JPS6315208A JP S6315208 A JPS6315208 A JP S6315208A JP 15883486 A JP15883486 A JP 15883486A JP 15883486 A JP15883486 A JP 15883486A JP S6315208 A JPS6315208 A JP S6315208A
Authority
JP
Japan
Prior art keywords
lens
lens system
image
image sensor
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15883486A
Other languages
Japanese (ja)
Inventor
Makoto Sakano
誠 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP15883486A priority Critical patent/JPS6315208A/en
Publication of JPS6315208A publication Critical patent/JPS6315208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive miniaturization and light weight of the titled device by effectively utilizing a part between an interlocking lens of a slave lens system and an image forming surface, executing a pupil division before forming an image, forming two images on a one-dimensional image sensor, and deciding a focused state of an AF optical system from its relative position shift. CONSTITUTION:In case of a state being out-of-focus from an object, an image of the object is formed in a position which has been shifted by DELTAx from an image forming position of an AF first lens system 5 at the focused time. In this case, an image on a one-dimensional image sensor 8, which is formed by an AF third lens system 7 for dividing a luminous flux which has passed through an AF second lens system 6, into two so as to be symmetrical to an optical axis is shifted up and down by DELTAy from an optical axis of the AF third lens system. Therefore, an inter-image distance which has been formed on the one- dimensional image sensor is detected by the one-dimensional image sensor 8, and a focus adjusting lens of an image pickup optical system is brought to a driving control by a driving device such as a motor, etc., so as to become DELTAy=0, by which automatic focusing is executed.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明はカメラにおける合焦装置、特に撮影レンズの
フォーカスFJII整レンズに連動するスレーブレンズ
を有する自動合焦装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a focusing device in a camera, and more particularly to an automatic focusing device having a slave lens linked to a focus FJII focusing lens of a photographing lens.

(従来技術) 従来−眼レフカメラ用の自動合焦装置として、撮影レン
ズのフォーカス調整レンズに連動するスレーブレンズを
有する自動合焦装置であって、光学系の射出瞳を2分割
して、それぞれで形成される像の光軸方向と直交する方
向の相対位置ずれ量から焦点ずれ量を検出するものが知
られており、その例として特開昭57−45510号公
報或いは特開昭60−32012号公報をあげることが
出来る。
(Prior art) Conventional - As an automatic focusing device for an eye reflex camera, it is an automatic focusing device that has a slave lens linked to the focus adjustment lens of the photographing lens, and the exit pupil of the optical system is divided into two, and each It is known that the amount of defocus is detected from the amount of relative positional deviation in the direction orthogonal to the optical axis direction of the image formed by the image forming apparatus. I can give you the publication number.

前者は、第4図にその光学配置を示すように、撮像光学
系中のフォーカス調整レンズ1と連動するスレーブレン
ズ5の結像面近傍にマイクロレンズアレイと、各マイク
ロレンズアレイの後方に。
As shown in FIG. 4, the former has a microlens array near the imaging plane of the slave lens 5 that works with the focus adjustment lens 1 in the imaging optical system, and a microlens array behind each microlens array.

撮影レンズの射出瞳とほぼ共役な位置で射出瞳を光軸を
はさんでほぼ対称に2分割して検出するように一対の受
光素子を配した検出素子9により構成され、2分割され
た射出瞳のそれぞれで形成される像を検出するようにし
た方式であり、後者は、第5図に示すようにスレーブレ
ンズ5の結像面の後方で、スレーブレンズの射出瞳とほ
ぼ共役な位置に、射出瞳を2分割するように一対の再結
像レンズ10を配し、再結像レンズで形成された像を一
次元イメージセンサ11で検出し、撮影レンズ1.2が
合焦しているときの一対の像の間隔を基準に焦点ずれを
像間隔のずれから検出するようにしたものである。
It consists of a detection element 9 with a pair of light-receiving elements arranged so as to detect the exit pupil divided into two parts almost symmetrically across the optical axis at a position almost conjugate with the exit pupil of the photographic lens. This method detects the image formed by each pupil, and the latter method detects the image formed by each pupil, as shown in FIG. A pair of re-imaging lenses 10 are arranged so as to divide the exit pupil into two, the image formed by the re-imaging lenses is detected by a one-dimensional image sensor 11, and the photographic lens 1.2 is focused. The defocus is detected based on the distance between the images, based on the distance between the pair of images.

前記2つの従来方式はいずれも、−眼レフカメラのよう
に撮影レンズと結像面との間に可動のクイックリターン
ミラーなどが配され、焦点検出用の光学系を結像面以後
に形成しなければならないという制約の下に発明された
ものであり、スチルカメラ、ビデオカメラ等の撮影光学
系のフォーカス調整レンズに連動するレンズ系を有す自
動合焦装置として実施した場合、連動レンズ系と検出素
子の間隔を広く開けなければならず、形状の小型化や重
量の低減に大きな不利をもたらすものであった。
In both of the above two conventional methods, a movable quick return mirror or the like is arranged between the photographing lens and the image forming surface, like an eye reflex camera, and an optical system for focus detection is formed after the image forming surface. It was invented under the constraint that the lens system must be linked to the focus adjustment lens of a photographing optical system of a still camera, video camera, etc. This requires wide spacing between the detection elements, which poses a major disadvantage in reducing the size and weight.

(この発明が解決しようとする問題点)この発明は、レ
ンズと、焦点ずれ検出素子の間にクイックリターンミラ
ー等の4!!構を設けるための空間を必要としないスレ
ーブレンズ方式の自動合焦装置において、スレーブレン
ズ光学系を従来方式のものに比べ小型、軽量にしようと
するものである。
(Problems to be Solved by the Invention) This invention requires a quick return mirror or the like between the lens and the defocus detection element. ! In a slave lens type automatic focusing device that does not require space for a structure, the slave lens optical system is intended to be smaller and lighter than that of a conventional type.

発明の構成 (問題を解決するための手段) この発明は撮像レンズ系のフォーカス調整レンズに連動
して光軸方向に移動する自動合焦レンズ中の連動レンズ
を透過した収斂光束を、該連動レンズ後方に固定して配
した光学系でほぼアフォーカルとし、アフォーカルとな
った光束を光軸対称に設けられた一対の開口を通し、−
次元イメージセンサ上にほぼ等価な一対の被写体像を形
成するように光学系を梼成し、該イメージセンサ上の合
焦時の像位置との像のずれを無くするように撮像レンズ
系のフォーカス調整レンズを光軸方向に制御、移動する
ことでその目的を達成している。
Structure of the Invention (Means for Solving the Problems) This invention provides a method for converting a convergent light beam that has passed through an interlocking lens in an autofocus lens that moves in the optical axis direction in conjunction with a focus adjustment lens of an imaging lens system into the interlocking lens. An optical system fixedly placed at the rear makes it almost afocal, and the afocal light beam is passed through a pair of apertures arranged symmetrically on the optical axis.
The optical system is assembled to form a pair of substantially equivalent subject images on the dimensional image sensor, and the focus of the imaging lens system is adjusted so as to eliminate the deviation of the image from the focused image position on the image sensor. This purpose is achieved by controlling and moving the adjustment lens in the direction of the optical axis.

(作用) 以下にこの発明の自動合焦装置による合焦検出方法を説
明する。第2図は、その原理を説明するためのもので、
合焦検出用光学系は、被写体側から撮影光学系のフォー
カス調整レンズと連動する自動合焦(AF)第ルンズ系
5.第ルンズ系5で出来た像を、被写体にピントが合っ
ているときには、はぼアフォーカルとするAF第2レン
ズ系6、そしてAF第2レンズ系6を通った光束を光軸
対称に2分割し一次元イメージセンサ上にほぼ等価な2
つの像を形成する1対のAF第3レンズ系7.及びAP
第3レンズ系の焦点近傍に配された一次元イメージセン
サ8の順で構成されている。第2図(a)は被写体にピ
ントが合っている状態を示し、AF第ルンズ系5による
被写体像はA F第2レンズ系6の物体側焦点上に形成
され、AF第2レンズ系6によって無限遠に投影され、
さらに一対のAF第3レンズ系7によって一次元イメー
ジセンサ8上にAF第3レンズ系の光軸間距離1だけ離
れてほぼ等価な一対の被写体像が最終的に形成される。
(Function) The focus detection method using the automatic focusing device of the present invention will be explained below. Figure 2 is for explaining the principle.
The focus detection optical system includes an automatic focusing (AF) lens system 5. which works in conjunction with the focus adjustment lens of the photographing optical system from the subject side. The AF second lens system 6 makes the image formed by the lens system 5 more afocal when the subject is in focus, and the light flux passing through the AF second lens system 6 is divided into two parts symmetrically on the optical axis. On the one-dimensional image sensor, approximately equivalent 2
A pair of AF third lens systems that form two images7. and AP
The lens system is composed of a one-dimensional image sensor 8 placed near the focal point of the third lens system. FIG. 2(a) shows a state where the subject is in focus, and the subject image by the AF second lens system 5 is formed on the object side focal point of the AF second lens system 6, and the subject image is formed by the AF second lens system 6. projected to infinity,
Furthermore, a pair of substantially equivalent subject images are finally formed on the one-dimensional image sensor 8 by the pair of AF third lens systems 7, separated by the distance 1 between the optical axes of the AF third lens systems.

第2図(b)は被写体からピントが外れた状態を示し1
合焦時のAF第ルンズ系5の結像位置から、光軸方向に
△Xだけずれた位置に被写体像が形成され、このときA
F第2レンズ系6による被写体像のAF第3レンズ系7
からの距離Tは、AF第2レンズ系とAF第3レンズ系
の主点間距離をd2として次式で与えられる。
Figure 2 (b) shows the state where the subject is out of focus 1
A subject image is formed at a position shifted by ΔX in the optical axis direction from the imaging position of the AF lens system 5 at the time of focusing, and at this time A
AF third lens system 7 for subject image by F second lens system 6
The distance T from T is given by the following equation, where d2 is the distance between the principal points of the AF second lens system and the AF third lens system.

T=f2X(−−ニー−1)+d2     (1)Δ
X このとき、AF第3レンズ系7で形成される一次元イメ
ージセンサ8上の像は、AF?第3レンズ系の光軸から
△yだけ上下にずれることになる。
T=f2X(--knee-1)+d2 (1)Δ
X At this time, the image on the one-dimensional image sensor 8 formed by the AF third lens system 7 is AF? This results in a vertical shift of Δy from the optical axis of the third lens system.

一対のAF第3レンズ系7の光軸間距離を1とするとΔ
yは次式で与えられる。
If the distance between the optical axes of the pair of AF third lens systems 7 is 1, then Δ
y is given by the following equation.

Δy=丁〒x  f、        (2)但しここ
でAF第1.2,3レンズ系の焦点距離をfいf2、f
、とした。従って一次元イメージセンサ上の2つの像間
の距離はAF第ルンズ系の焦点ずれΔXに対応して1合
焦時の距離1から1+2Δyに変化し、1f2/ΔXI
>>1の範囲ではΔXとΔyの符号は対応しており、−
次元イメージセンサ上に形成された像間距離を、−次元
イメージセンサ8によって検出し、Δy=oとなるよう
に撮像光学系のフォーカス調整レンズをモータ等の駆動
装置によって駆動制御することで自動合焦が行われる。
Δy=d〒x f, (2) However, here, the focal length of the AF 1st, 2nd and 3rd lens system is f, f2, f
, said. Therefore, the distance between the two images on the one-dimensional image sensor changes from 1 at the time of one focus to 1+2Δy, corresponding to the focal shift ΔX of the AF lens system, and 1f2/ΔXI
In the range of >>1, the signs of ΔX and Δy correspond, and -
The distance between the images formed on the dimensional image sensor is detected by the -dimensional image sensor 8, and the focus adjustment lens of the imaging optical system is driven and controlled by a driving device such as a motor so that Δy=o. Charging is done.

(実施例) 第1図に自動合焦装置の1実施例を示し、2Δyの検出
論理を含め、実施例についてこの発明の構成と作用を具
体的に説明する。
(Embodiment) FIG. 1 shows an embodiment of an automatic focusing device, and the structure and operation of the present invention will be specifically explained with respect to the embodiment, including the detection logic of 2Δy.

第1図の実施例において一次元イメージセンサ8で検出
された被写体像信号g T + 1 (i= 1 + 
2 +・・・N;但しiは一次元イメージセンサ上の素
子位置に対応する。)はA/D変換器によりデジタル値
に変換されマイクロコンピュータに読み込まれろ。
In the embodiment shown in FIG. 1, the subject image signal g T + 1 (i= 1 +
2 +...N; where i corresponds to the element position on the one-dimensional image sensor. ) is converted into a digital value by an A/D converter and read into a microcomputer.

一次元イメージセンサの素子ピッチをPとし、像信号は
各々n個ずつで構成されるとすると、第2図の光軸より
下側の像信号はgazes)、gazes)、・・・g
 (n’s )で得られ、上側の像信号はg(。+1や
5)。
Assuming that the element pitch of the one-dimensional image sensor is P, and each image signal is composed of n pieces, the image signals below the optical axis in Fig. 2 are gazes), gazes), ... g
(n's), and the upper image signal is g(.+1 or 5).

g+c+z+s+、・・・g、。+n+s)で得られる
。但し、Cはl/pで、割り切れるものとする。又Sは
最大焦点ずれで発生し得る像ずれに対応する。[−11
’−のため上記像信号を次に置換える。
g+c+z+s+,...g,. +n+s). However, it is assumed that C is divisible by l/p. Further, S corresponds to the image shift that can occur at the maximum focus shift. [-11
'-, the above image signal is replaced by the following.

a(++”g(i+   i=1+s、2+s、・・・
、n+5b(s +”g+ I 1  j=c+14s
、c+2+s、 −c+n”s    (3)上記a、
b信号に対し下記演算を行なう。
a(++”g(i+ i=1+s, 2+s,...
, n+5b(s +”g+ I 1 j=c+14s
, c+2+s, -c+n”s (3) Above a,
The following calculation is performed on the b signal.

発生し得る最大像ずれに対応する素子数Sに対応して上
記演算をj=−s、−s+1.・・・、Sの25+1個
行ない結果を第3図に示すように縦軸をV(J)*横軸
をjとした座標系にプロットし、V=O軸との交点を求
める。複数個の交点があれば、V(k+x)V(K)が
最大となるkを求めkとに+1の間を内挿して、求める
横ずれ@2Δyを得る。すなわち、・ 2△y=−p X (k◆ ■k    )V。K 1
−V(K。t)      (5)以上は特開昭57−
45510号公報に記載の算出方法を応用した場合の例
である。
The above calculation is performed as j=-s, -s+1 .corresponding to the number of elements S corresponding to the maximum image shift that can occur. . . , 25+1 of S is performed, and the results are plotted in a coordinate system with the vertical axis being V(J)*the horizontal axis being j, as shown in FIG. 3, and the intersection with the V=O axis is determined. If there are multiple intersections, find k where V(k+x)V(K) is maximum and interpolate between k and +1 to obtain the desired lateral shift @2Δy. That is, 2△y=−pX (k◆■k)V. K 1
-V(K.t) (5) The above is JP-A-57-
This is an example in which the calculation method described in Publication No. 45510 is applied.

次に、スレーブレンズ系の構成方法について説明する。Next, a method of configuring the slave lens system will be explained.

先ず、−次元イメージセンサ上での2つの像間隔の検出
精度eが、撮像光学系の撮像面で許容される焦点ずれ量
(深度)εよりも小さい一定の値αXE (αく1)に
対応するようにスレーブレンズ系の諸定数、すなわち、
AF光学系の各レンズ系の焦点距離fi、  f2、f
4.第2.第3レンズ系間距fid2.光軸間距離1を
設定する。
First, the detection accuracy e of the distance between two images on the -dimensional image sensor corresponds to a constant value α The various constants of the slave lens system, that is,
Focal length fi, f2, f of each lens system of the AF optical system
4. Second. Third lens system distance fid2. Set the distance between optical axes 1.

次に、撮影光学系で発生する最大焦点ずれに対応する一
次元イメージセンサ上での2つの像間隔の基準位置から
のずれΔy□8より大きくなるように最大像ずらし:l
sを設定し、使用する一次元イメージセンサ長の範囲内
に光軸間距離1を含めて2つの像信号検出部2n個と最
大像ずらし量2S個が収まるかどうかを判定する。以上
の各条件に加えてスレーブレンズ系の各レンズ群の焦点
距離と必要開口が実現可能かどうかとが、−次元イメー
ジセンサへの結像系の等価F値がAF系の被写体光量検
出感度を維持するのに充分かどうが等を考慮して決定さ
れる。
Next, the maximum image shift: l is made so that the distance between the two images on the one-dimensional image sensor is larger than the shift Δy□8 from the reference position, which corresponds to the maximum focus shift that occurs in the photographing optical system.
s is set, and it is determined whether the two image signal detection units 2n and the maximum image shift amount 2S can fit within the range of the length of the one-dimensional image sensor to be used, including the distance 1 between optical axes. In addition to the above conditions, the focal length of each lens group of the slave lens system and whether the required aperture can be achieved are determined by the fact that the equivalent F value of the imaging system to the -dimensional image sensor determines the subject light amount detection sensitivity of the AF system. The decision will be made taking into account whether or not the amount is sufficient for maintenance.

撮影光学系の最大焦点距離をfT、フォーカス調整レン
ズの焦点距離をfF、最至近撮影距離をUmとし、fよ
は撮影光学系のフォーカス調整レンズと1対1に連動す
るためその焦点距離fFと等しい値が選ばれる。像間隔
の検出精度は、使われる検出論理、−次元イメージセン
サの感度のばらつき、A/D変換時の誤差、外来ノイズ
等で決り、前述の論理では(5)式の内挿精度として表
現出来、1素子の1 / m迄のずれが検出可能である
とするとeは次式で与えられる。
The maximum focal length of the photographing optical system is fT, the focal length of the focus adjustment lens is fF, and the closest photographing distance is Um. Equal values are chosen. The detection accuracy of the image interval is determined by the detection logic used, variations in sensitivity of the -dimensional image sensor, errors during A/D conversion, external noise, etc., and can be expressed as the interpolation accuracy of equation (5) using the logic described above. , e is given by the following equation.

e = p / m 従ってeを撮像面の焦点ずれに換算した値をΔεとする
と ΔE=αXE (α≦1)      (6)eに対応
するAF第ルンズの焦点位置ずれ量ΔXeとの関係は(
1)(2)式で 1Δx / f z I < < 1 と近似すると ΔXeは撮影光学系のフォーカス調整レンズの焦点ずれ
量と等価であり、これを撮像画の焦点ずれに換算すると
次式で与えられる。
e = p / m Therefore, if the value obtained by converting e to the focal deviation of the imaging plane is Δε, then ΔE = αXE (α≦1) (6) The relationship between e and the amount of focal position deviation ΔXe of the AF lens corresponding to e is (
1) Approximating 1Δx / f z I << 1 in equation (2), ΔXe is equivalent to the amount of defocus of the focus adjustment lens of the photographing optical system, and converting this to the defocus of the captured image is given by the following formula. It will be done.

従って次式を満たすように1.f2、f、は選ばれる。Therefore, 1. f2,f, is selected.

又、最大像ずらし量Sは、撮影光学系の最大焦点ずれ景
ΔXTmが次の(10)式で与えられることと、(9)
式との対応関係から次のように求められる。
Furthermore, the maximum image shift amount S is determined by the fact that the maximum focus shift scene ΔXTm of the photographing optical system is given by the following equation (10), and (9)
From the correspondence with Eq.

Δ XTII中 f 丁2/U1.l        
      (10)ただしく11)式は e:czi−i=2Δy+++ax:  ΔXrmがほ
ぼ成り立つとして求めている。
Δ XTII Medium f D2/U1. l
(10) However, equation 11) is obtained on the assumption that e:czi-i=2Δy+++ax:ΔXrm approximately holds true.

さらに、−次元イメージセンサの全長りは、(9)(1
1)式を満たすように決められた1゜Sと、像の比較演
算に使用する素子数各nに対し、素子ピッチをpとして
次のように求められる。
Furthermore, the total length of the -dimensional image sensor is (9) (1
1) For each 1°S determined to satisfy equation 1 and the number n of elements used for image comparison calculations, the element pitch is determined as follows, with p being the element pitch.

pn+2ps+L≦L      (12)例えば1ピ
ツチ30μm、128素子の一次元イメージセンサを用
い、撮像系として、焦点距離f=8.5〜51mm (
fr=51m)フォーカス調整レンズの焦点距離fF=
38nn、g=0.05 mm、 Uvm= 1000
 waのAF光学系を考えると。
pn+2ps+L≦L (12) For example, using a one-dimensional image sensor with 128 elements and a pitch of 30 μm, the focal length f=8.5 to 51 mm (
fr=51m) Focal length of focus adjustment lens fF=
38nn, g=0.05mm, Uvm=1000
Considering wa's AF optical system.

f 1= f r = 38 va (4)、(5)式によって内挿できる1素子内の像ずれ
精度e=p/40としEがほぼ2eに対応するように構
成すればよい。
f 1 = f r = 38 va (4) The image shift precision within one element that can be interpolated by equations (5) is e=p/40, and the configuration is such that E approximately corresponds to 2e.

撮像系の最大焦点ずれ量ΔXTIIは次で与えられる。The maximum defocus amount ΔXTII of the imaging system is given by the following equation.

ΔスT11=       =2.601s 従って必要最大素子ずらし量Sは次を満たせば良いこと
になる。
ΔS T11==2.601s Therefore, the required maximum element shift amount S should satisfy the following.

S=3を設定する。nとしては20素子を選択するとす
れば。
Set S=3. Suppose that 20 elements are selected as n.

1 <30X 128−20X30−3x30=315
0 (tt m)従って、l=3mを選択する。
1 <30X 128-20X30-3x30=315
0 (tt m) Therefore, choose l=3m.

εが28と対応するようにするには、EをAF第ルンズ
の焦点ずれε′に換算し、(8)式を用いて1.f2、
f、の関係を求めれば良い。
In order to make ε correspond to 28, convert E to the focus shift ε' of the AF lens, and use equation (8) to calculate 1. f2,
All you have to do is find the relationship between f.

から f%≦55.5f。from f%≦55.5f.

f 、 = 5 ytnとすると、1f21≦16.6
mmとなりf、=−15IInを選択する。又AF第2
レンズと第3レンズの間隔d2としてはa=2.5mm
を選択する。
If f, = 5 ytn, 1f21≦16.6
mm, and select f,=-15IIn. Also AF 2nd
The distance d2 between the lens and the third lens is a = 2.5 mm.
Select.

以上をまとめると次のようになる。The above can be summarized as follows.

実施例 fl    dl    1 第ルンズ  38閤   23i* 第2レンズ  15 m    2 、5 m第3レン
ズ  5 na        3 mレンズ全長  
23+2.5+5=30.5m発明の詳細 な説明したように本発明によればスレーブレンズ系の連
動レンズから結像面の間を有効に利用して結像前に瞳分
割し一次元イメージセンサ上に2つの像を形成し、その
相対位置ずれからAF光学系の合焦状態を判定するよう
にしたため従来方式に比べ小型軽量に自動合焦装置が構
成できた。
Example fl dl 1st lens 38mm 23i* 2nd lens 15 m 2 , 5 m 3rd lens 5 na 3 m Lens total length
23+2.5+5=30.5m As described in detail, according to the present invention, the space between the interlocking lens of the slave lens system and the imaging plane is effectively utilized to divide the pupil before forming an image, so that the image can be displayed on a one-dimensional image sensor. Since two images are formed and the in-focus state of the AF optical system is determined from the relative positional deviation between the two images, an automatic focusing device can be constructed that is smaller and lighter than conventional systems.

なお、ここで説明したAF第1、第2、第3レンズとし
ては通常の屈折光学系だけでなくレンズ作用を有する反
射系或いはプラスチックレンズ、屈折率分布レンズなど
が使用可能であり、収差補正のため非球面レンズや複数
枚のレンズで構成しても良いことは言うまでもない。又
、1対の第3レンズについては1対のプラスチックレン
ズや屈折率分布レンズとして構成すれば組み立ても容易
となる。
Note that as the AF first, second, and third lenses described here, not only a normal refractive optical system but also a reflective system with a lens function, a plastic lens, a gradient index lens, etc. can be used, and they can be used to correct aberrations. Therefore, it goes without saying that it may be composed of an aspherical lens or a plurality of lenses. Further, the pair of third lenses can be easily assembled if configured as a pair of plastic lenses or gradient index lenses.

7、簡単な図面の説明 第1図はこの発明の1実施例を示す構成図、第2図、第
3図はその作用説明図、第4図、第5図はそれぞれ従来
例の構成図を示す。図中に記入された番号は次のものを
示す。
7. Brief explanation of the drawings Fig. 1 is a block diagram showing one embodiment of the present invention, Figs. 2 and 3 are diagrams explaining its operation, and Figs. 4 and 5 are block diagrams of conventional examples, respectively. show. The numbers written in the figure indicate the following.

1:撮像光学系のフォーカス調整レンズ部2:撮像光学
系のズームレンズ部 3:ローバスフィルタ部 4:撮像素子部5:フォーカ
ス調整レンズに連動するAF第ルンズ系 6:AF第2レンズ系 7:一対のAF第3レンズ系 8ニ一次元イメージセンサ 9:@分割検出素子 10:瞳分割再結像光学系 11:検出素子特許出願人
 小西六写真工業株式会社 出願人代理人 弁理士 佐原 車力 (他2名) 軍   3   図 第   4   図
1: Focus adjustment lens section of the imaging optical system 2: Zoom lens section of the imaging optical system 3: Low-pass filter section 4: Image sensor section 5: AF lens system linked to the focus adjustment lens 6: AF second lens system 7 : Pair of AF third lens system 8 and one-dimensional image sensor 9: @ Split detection element 10: Pupil division re-imaging optical system 11: Detection element Patent applicant Konishi Roku Photo Industry Co., Ltd. Applicant's agent Patent attorney Kuruma Sahara Power (2 others) Army Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)フォーカス調整動作に伴って移動するレンズ系を透
過した収斂光束をこれに続く光学系によりほぼアフオー
カルな光束とした後、光軸対称に設けられている一対の
光学系を介して焦点位置検出手段上に導き、該焦点位置
検出手段上にほぼ等価な一対の被写体像を形成させ、該
像の間隔と、撮影光学系のピントが最良となった際に前
記焦点位置検出手段上に形成される一対の像間隔とのズ
レ量に基づいて、フォーカス調整レンズの駆動を制御す
るように構成したことを特徴とする自動合焦装置。 2)前記レンズ系は、撮影光学系のフォーカス調整レン
ズ近傍に設けられたスレーブレンズ系である特許請求の
範囲第1項記載の自動合焦装置。
[Claims] 1) A pair of optical systems installed symmetrically on the optical axis after the convergent light beam transmitted through the lens system that moves with the focus adjustment operation is made into an almost afocal light beam by the following optical system. A pair of substantially equivalent subject images are formed on the focal position detecting means, and when the distance between the images and the focus of the photographing optical system are at their optimum, the focal position is determined. An automatic focusing device characterized in that it is configured to control driving of a focus adjustment lens based on the amount of deviation between a pair of images formed on a detection means. 2) The automatic focusing device according to claim 1, wherein the lens system is a slave lens system provided near a focus adjustment lens of a photographing optical system.
JP15883486A 1986-07-08 1986-07-08 Automatic focusing device Pending JPS6315208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15883486A JPS6315208A (en) 1986-07-08 1986-07-08 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15883486A JPS6315208A (en) 1986-07-08 1986-07-08 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS6315208A true JPS6315208A (en) 1988-01-22

Family

ID=15680411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15883486A Pending JPS6315208A (en) 1986-07-08 1986-07-08 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS6315208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001328A (en) * 2005-06-21 2007-01-11 Valeo Thermal Systems Japan Corp Fixing device for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001328A (en) * 2005-06-21 2007-01-11 Valeo Thermal Systems Japan Corp Fixing device for heat exchanger

Similar Documents

Publication Publication Date Title
US8823838B2 (en) Image pickup system with auto focus mode
JP5031475B2 (en) Zoom lens and photographing system having the same
JP5191168B2 (en) Focus detection apparatus and imaging apparatus
JP5157128B2 (en) Focus detection apparatus and imaging apparatus
US8160437B2 (en) Focus detection apparatus
US4855777A (en) Apparatus for detecting the focus adjusted state of an objective lens
US6112029A (en) Camera, exchangeable lens, and camera system
JP5380857B2 (en) Focus detection apparatus and imaging apparatus
US4370551A (en) Focus detecting device
JP2010128205A (en) Imaging apparatus
US5315341A (en) Method and apparatus for through-the-lens distance determination
US4572476A (en) Method for detecting a focus condition of an imaging optical system employing interpolated signal values
US7582854B2 (en) Focus detection apparatus for detecting a relative positional relationship between a pair of object images
JPS5849844B2 (en) Focus detection device
US6188845B1 (en) Multipoint focus detecting apparatus
JPS6315208A (en) Automatic focusing device
US7689111B2 (en) Optical apparatus
JPS6242250B2 (en)
US5420438A (en) Focus detecting apparatus including movement of detecting zones
JPH086087A (en) Controller for preventing image shake
JP2699360B2 (en) Focus detection device
JPH04165318A (en) Focusing position detecting device
US6532343B1 (en) Camera finder device
JP2001083423A (en) Optical system and optical device using the same
JP4323592B2 (en) Focus detection device