JPS63151807A - Angle detector - Google Patents

Angle detector

Info

Publication number
JPS63151807A
JPS63151807A JP30040586A JP30040586A JPS63151807A JP S63151807 A JPS63151807 A JP S63151807A JP 30040586 A JP30040586 A JP 30040586A JP 30040586 A JP30040586 A JP 30040586A JP S63151807 A JPS63151807 A JP S63151807A
Authority
JP
Japan
Prior art keywords
light
light receiving
holes
receiving element
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30040586A
Other languages
Japanese (ja)
Inventor
Keiji Fujimura
藤村 契二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP30040586A priority Critical patent/JPS63151807A/en
Publication of JPS63151807A publication Critical patent/JPS63151807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To detect an angle with high accuracy without necessity for forming a large number of light pervious parts, by providing a light receiving element equipped with a light receiving surface having a length almost equal to the interval between the light pervious parts in the peripheral direction thereof and leading out the electric signal corresponding to a light receiving position. CONSTITUTION:A light source 8 is fixed on one side of a rotary member 7 and a light receiving element 9 is fixed on the other side thereof. The member 7 is formed into a disc shape and a large number of through-holes 12 are formed on the imaginary circle 11 thereof at an equal interval. The element 9 is arranged directly under the imaginary circle 11 and the length L thereof along the imaginary circle 11 is made almost equal to the mutual interval between the adjacent through-holes 12. The element 9 receives the light from a light source 8 through the through-holes 12 to lead out the electric signal corresponding to a light receiving position and, therefore, the angular position between the through-holes 12 can be detected. When the light receiving position moves on the light receiving surface of the element 9 with the angular displacement of the member 7, the output of the element 9 gradually increases and decreases and, by counting the number of rotations of the cyclical change of said output, the number of the through-holes 12 passing the light receiving surface 9 can be detected. By this method, without unnecessarily increasing the number of the through-holes 12, the angular position of the member 7 within a 360 deg.-range can be detected with high accuracy.

Description

【発明の詳細な説明】 技術分野 本発明は、たとえば自動車の操舵角を検出するためなど
に有利に実施することができる角度検出装置に関する。
TECHNICAL FIELD The present invention relates to an angle detection device that can be advantageously implemented, for example, for detecting the steering angle of a motor vehicle.

背景技術 典型的な先行技術は、第11図に示されている。Background technology A typical prior art is shown in FIG.

自動車の操舵輪によって回転駆動される操舵輪1には、
遮光性材料から成る円板状の回転部材2が固定される。
The steering wheel 1 rotatably driven by the steering wheel of the automobile includes:
A disc-shaped rotating member 2 made of a light-shielding material is fixed.

この回転部材2には、周方向に等間隔をあけて透孔3が
形成されている0回転部材2の一方側には光H4が設け
られ、他方側には受光素子5が設けられる。光源4から
の光は、透孔3を経て、受光素子5によって検出される
。受光素子5によって検出される光の受光回数を計数す
ることによって、回転部材2、したがって操舵輪1の角
度を検出することができる。
The zero rotation member 2 has through holes 3 formed at equal intervals in the circumferential direction, and a light H4 is provided on one side of the rotation member 2, and a light receiving element 5 is provided on the other side. Light from the light source 4 passes through the through hole 3 and is detected by the light receiving element 5. By counting the number of times the light is received by the light receiving element 5, the angle of the rotating member 2, and thus the steering wheel 1, can be detected.

発明が解決すべき問題点 このような第11図に示された先行技術においで、操舵
輪1の角度を高精度で検出するには、透孔3の相互の間
隔を密にする必要があるけれども、加工上の制約があり
、透孔3の相互の間隔を過度に小さくすることはできな
い。
Problems to be Solved by the Invention In the prior art shown in FIG. 11, in order to detect the angle of the steering wheel 1 with high precision, it is necessary to make the mutual spacing of the through holes 3 close. However, due to processing restrictions, the mutual spacing between the through holes 3 cannot be made too small.

本発明の目的は、高精度で角度を検出することができる
ようにした角度検出装♂を提供す゛ることである。
An object of the present invention is to provide an angle detection device that can detect angles with high precision.

問題点を解決するための手段 本発明は、回転軸線まわりに透光部が周方向に等間隔を
あけて形成され、遮光性材料から成る回転部材と、 回転部材の一方側から光を照射する光源と、回転部材の
他方側に配置され、透光部の周方向間隔にほぼ等しい長
さを有する受光面を備え、受光位置に対応した電気信号
を導出する受光素子と、受光素子からの出力に応答し、
その出力の漸増または漸減の周期的変化の回数を計数し
、がっ、透光部゛相互間の角度位置を検出する手段とを
含むことを特徴とする角度検出装置である。
Means for Solving the Problems The present invention comprises a rotating member in which transparent parts are formed at equal intervals in the circumferential direction around the axis of rotation and made of a light-shielding material, and light is irradiated from one side of the rotating member. A light source, a light receiving element disposed on the other side of the rotating member, having a light receiving surface having a length approximately equal to the circumferential interval of the light transmitting portion, and deriving an electrical signal corresponding to the light receiving position, and an output from the light receiving element. in response to
The angle detecting device is characterized in that it includes means for counting the number of periodic changes of gradual increase or decrease in the output and detecting the angular position between the transparent parts.

作  用 本発明に従えば、光源からの光は回転部材に形成されて
いる透光部を介して、受光素子に上って検出される。こ
の受光素子は、透光部の周方向間隔にほぼ等しい長さを
有する受光面を備えており、透光部を有する光源からの
光の受光位置に対応した電気信号を導出する。受光位置
が回転部材の角変位に伴なって受光面上を移動し、これ
によって受光素子の出力が漸増または漸減し、この周期
的変化の回数を計数することによって受光面を通過した
透光部の数を検出することができる。しがもこの受光素
子の出力は、透光部を介する光源からの光の受光位置を
表わす電気信号を導出するので、透光部相互間の角度位
置を検出することが可能となる。このようにして透光部
の数をむやみに多数個形成する必要なしに、高精度で角
度を検出することが可能になる。
According to the present invention, light from the light source passes through the light-transmitting portion formed in the rotating member and is detected by the light-receiving element. This light-receiving element includes a light-receiving surface having a length approximately equal to the circumferential interval of the light-transmitting portions, and derives an electrical signal corresponding to a position at which light is received from a light source having the light-transmitting portions. The light-receiving position moves on the light-receiving surface with the angular displacement of the rotating member, and the output of the light-receiving element gradually increases or decreases. The number of can be detected. However, since the output of this light receiving element derives an electrical signal representing the receiving position of the light from the light source via the light transmitting portion, it becomes possible to detect the angular position between the light transmitting portions. In this way, it is possible to detect the angle with high precision without the need to form an unnecessarily large number of transparent parts.

実施例 第1図は、本発明の一実施例の全体の斜視図である。操
舵軸6には、回転部材7が固定される。
Embodiment FIG. 1 is an overall perspective view of an embodiment of the present invention. A rotating member 7 is fixed to the steering shaft 6.

回転部材7の一方側には、固定位置に光源8が配W1さ
れる。この光源8は、たとえば発光ダイオードなどによ
って実現される0回転部材7の他方側には、固定位置に
受光素子9.10が設けられる。
On one side of the rotating member 7, a light source 8 is disposed at a fixed position W1. In this light source 8, a light receiving element 9.10 is provided at a fixed position on the other side of the zero-rotation member 7, which is realized by, for example, a light emitting diode.

回転部材7は、遮光性材料から成り、円板状に形成され
ており、操舵軸6の軸線を中心とする仮想円11上に、
等間隔をあけて複数の透光部である透孔12が形成され
る。仮想円11より半径方向内方の位置には、仮想円1
3上に、周方向に単゛−の透孔14が形成される。受光
素子9は、光源8からの光を透孔12を介して受光し、
また受光素子10は光源8からの光を透孔14を介して
受光する。受光素子9の出力に基づいて、回転部材7の
360度以内の角度位置を検出することができ、またも
う1つの受光素子10によって、回転部材7の360度
を超える回転数を検出することが可能となる。
The rotating member 7 is made of a light-shielding material and has a disc shape, and is arranged on a virtual circle 11 centered on the axis of the steering shaft 6.
A plurality of transparent holes 12 are formed at equal intervals. At a position radially inward from the virtual circle 11, there is a virtual circle 1
3, a single through hole 14 is formed in the circumferential direction. The light receiving element 9 receives the light from the light source 8 through the through hole 12,
Further, the light receiving element 10 receives light from the light source 8 through the through hole 14 . Based on the output of the light receiving element 9, the angular position of the rotating member 7 within 360 degrees can be detected, and the rotation speed of the rotating member 7 exceeding 360 degrees can be detected using another light receiving element 10. It becomes possible.

第2図は、plSi図に示された本発明に従う角度検出
装置15が取付けられた状態を示す自動車の操舵装置の
簡略化した斜視図である。運転者が操作する操舵輪16
は、操舵軸6に固定されでおり、この操舵軸6の途中に
、第1図に示された角度検出装置15が設けられる。操
舵軸dの角変位によって、自動車の前輪または後輪であ
る車輪17が角変位されて操舵される。
FIG. 2 is a simplified perspective view of a steering system of a motor vehicle in which an angle detection device 15 according to the invention shown in the plSi diagram is installed. Steering wheel 16 operated by the driver
is fixed to the steering shaft 6, and an angle detecting device 15 shown in FIG. 1 is provided in the middle of the steering shaft 6. By the angular displacement of the steering shaft d, the wheels 17, which are the front wheels or rear wheels of the automobile, are angularly displaced and steered.

第3図(1)は回転部材7と受光素子9との配置を示す
平面図であり、第3図(2)は回転部材7と受光素子9
との配置を示す断面図である。受光素子9は、仮想円1
1の直下に配置されており、この仮想円11に沿う長さ
Lは、隣接する透孔12相互の間隔にほぼ等しく選ばれ
る。この受光素子9は、必ずしも仮想円11に沿ってそ
の受光面が湾曲して形成されていなくてもよいけれども
、図示の実施例のように、受光面を仮想円11に沿って
湾曲して形成することによって、角度の検知出力をリニ
アに導出することが可能である。
FIG. 3(1) is a plan view showing the arrangement of the rotating member 7 and the light receiving element 9, and FIG. 3(2) is a plan view showing the arrangement of the rotating member 7 and the light receiving element 9.
FIG. The light receiving element 9 is a virtual circle 1
1, and the length L along this virtual circle 11 is selected to be approximately equal to the distance between adjacent through holes 12. Although the light receiving element 9 does not necessarily have to be formed with its light receiving surface curved along the virtual circle 11, as in the illustrated embodiment, the light receiving surface is formed with the light receiving surface curved along the virtual circle 11. By doing so, it is possible to linearly derive the angle detection output.

第4図は、受光素子9の断面図である。この受光素子9
は、光源8がら透孔12を介する光18を受光する受光
面19を備える半導体20と、この半導体20の受光面
19とは反対側の表面に設けられた共通電極21と、受
光面19側で前述の仮想円11に沿う両端部に配置され
た個別電極22.23とを有する。
FIG. 4 is a sectional view of the light receiving element 9. This light receiving element 9
A semiconductor 20 includes a light receiving surface 19 that receives light 18 from the light source 8 through the through hole 12, a common electrode 21 provided on the surface of the semiconductor 20 opposite to the light receiving surface 19, and a semiconductor 20 on the side of the light receiving surface 19. It has individual electrodes 22 and 23 arranged at both ends along the virtual circle 11 described above.

個別電極22’、23の長さをLとし、光18を受光し
た位置における電極22との間の距離をXとし、電極2
1.22間に流れる電流を■、とじ、電極21.23間
に流れる電流をrllとするとき、m1式および第2式
が成立する。
The length of the individual electrodes 22' and 23 is L, the distance between the electrode 22 at the position where the light 18 is received is X, and the length of the individual electrodes 22' and 23 is
When the current flowing between electrodes 21 and 22 is denoted by {circle around (2)}, and the current flowing between electrodes 21 and 23 is rll, the formula m1 and the second formula hold.

I 、= K ・−Φ              ・
・・(2)L ここでKは比例定数であり、Φは光18の入射光強度を
示す。
I, = K ・−Φ ・
...(2)L Here, K is a proportionality constant, and Φ indicates the incident light intensity of the light 18.

これらの電流rA、I8の差Cは第3式に示されるとお
りであり、その和りはf:tS4式に示されるとおりで
ある。
The difference C between these currents rA and I8 is as shown in the third equation, and the sum thereof is as shown in the f:tS4 equation.

D=IA十I。=にΦ          ・・・(4
)第3式および第4式に基づいて比Eを求めると、第5
式となる。
D = IA ten I. = toΦ...(4
) Calculating the ratio E based on the third and fourth equations, the fifth
The formula becomes

この比Eは、光18の強度Φに依存すず、かつ、光18
の受光位置Xに対応した値となる。したがって受光素子
9の電極22.23からの電流工^。
This ratio E depends on the intensity Φ of the light 18 and the light 18
The value corresponds to the light receiving position X. Therefore, current flows from the electrodes 22 and 23 of the light receiving element 9.

I8を第5式のとおりに演算することによって、受光値
W1xを検出できることが理解される。
It is understood that the received light value W1x can be detected by calculating I8 according to the fifth equation.

第5図と第6図を参照して、受光素子9の動作を説明す
る。第5図(1)で示されるように、回転部材7の透孔
12相互間に受光素子9が位置している状態では、前述
の第3式で示される電極22゜23の電流rA、r8の
差Cは、PI36図に示されるように最大値v1となっ
ている。
The operation of the light receiving element 9 will be explained with reference to FIGS. 5 and 6. As shown in FIG. 5(1), when the light receiving element 9 is located between the through holes 12 of the rotating member 7, the currents rA and r8 of the electrodes 22 and 23 shown by the third equation above are The difference C has a maximum value v1 as shown in the PI36 diagram.

回転部材7が矢符25で示されるように角変位して、第
5図(2)で示されるように、透孔12の1つが受光素
子9の受光面19上、にある状態は、参照符26で示さ
れるとおりであって、この受光値1fi26が矢925
の方向に移動するにつれて、差Cはリニアに漸減してゆ
く。
The state in which the rotating member 7 is angularly displaced as shown by the arrow 25 and one of the through holes 12 is on the light receiving surface 19 of the light receiving element 9 as shown in FIG. 5(2) is shown in FIG. This light reception value 1fi26 is as shown by arrow 925.
The difference C gradually decreases linearly as it moves in the direction of .

受光値ra26が第5図(3)で示されるように受光素
子9の受光面19の最端位置付近に到達すると、受光素
子9の出力の差Cは最小値v2に近い値となる。このよ
うにして受光値fi2(3の位置θ1に対応する差Cの
電流値!iが得られる。透孔12の総数をnoとすると
き、角度θ1は電流値Iiによって第6式のとおりに求
めることができる。
When the light receiving value ra26 reaches near the end position of the light receiving surface 19 of the light receiving element 9 as shown in FIG. 5(3), the difference C in the output of the light receiving element 9 becomes a value close to the minimum value v2. In this way, the current value !i of the difference C corresponding to the position θ1 of the received light value fi2(3) is obtained. When the total number of through holes 12 is set to no, the angle θ1 is determined by the current value Ii as shown in the sixth equation. You can ask for it.

!#7図は、受光素子9.10に関連する電気的NIJ
f&を示すブロック図である。受光素子10がらの出力
は、増幅回路28によって増幅され、比較回路29によ
って波形整形され、ライン30からマイクロコンビエー
タなどによって実現される処理回路31に与えられる。
! Figure #7 shows electrical NIJ related to light receiving element 9.10.
It is a block diagram showing f&. The output from the light receiving element 10 is amplified by an amplifier circuit 28, waveform-shaped by a comparator circuit 29, and sent from a line 30 to a processing circuit 31 realized by a micro combinator or the like.

ライン30から処理回路31に与えられる電気信号の波
形は、第8図(1)に示されているとおりであって、回
転部材7の1回軒毎に1個のパルスが得られる。
The waveform of the electrical signal applied from the line 30 to the processing circuit 31 is as shown in FIG. 8(1), and one pulse is obtained for each rotation of the rotating member 7.

受光素子9の電極22.23からの出力は、ライン32
.33を介して導出され、比較回路34に与えられる。
The output from the electrodes 22 and 23 of the light receiving element 9 is on the line 32.
.. 33 and applied to the comparison circuit 34.

この比較回路34では、前述の第3式に示される差Cを
求め、その差Cはアナログデノタルコンバータ35によ
ってデジタル値に変換されて処理回路31に入力される
The comparator circuit 34 calculates the difference C shown in the third equation described above, and the difference C is converted into a digital value by the analog/digital converter 35 and input to the processing circuit 31.

比較回路34の出力は、第8図(2)に示されるとおり
である。この出力波形は、第5図に示されるように、回
転部材7が矢符25の方向に回転駆動されたときに得ら
れる波形であって、矢符25の逆方向に回転部材7が回
転されたときには、引算回路34からは第9図に示され
るように、角変位に伴なって漸増する波形が得られる。
The output of the comparison circuit 34 is as shown in FIG. 8(2). This output waveform is a waveform obtained when the rotating member 7 is rotated in the direction of the arrow 25, as shown in FIG. 9, the subtraction circuit 34 obtains a waveform that gradually increases with the angular displacement, as shown in FIG.

引算回路34の出力はまた、微分回路36に与えられて
微分され、その微分出力は第8図(3)で示されるとお
りとなる。この微分回路36の出力は、比較回路37に
与えられて波形成形される。比較回路37の出力は、第
8図(4)に示されるとおりである。
The output of the subtraction circuit 34 is also applied to a differentiation circuit 36 for differentiation, and the differentiation output is as shown in FIG. 8(3). The output of this differentiating circuit 36 is given to a comparator circuit 37 where it is shaped into a waveform. The output of the comparison circuit 37 is as shown in FIG. 8(4).

比較回路37の出力は、処理回路31に与えられる。The output of the comparison circuit 37 is given to the processing circuit 31.

受光素子9からライン32.33を介する出力はまた、
加算回路38に与えられて前述の14式が演算される。
The output from the photodetector 9 via line 32.33 is also
The signal is applied to the adder circuit 38, and the above-mentioned equation 14 is calculated.

その加算回路38の出力は、アナログデジタルフンバー
夕39に与えられてデジタル値に変換され、そのデジタ
ル値は処理回路31に出力される。処理回路31は、ラ
イン40から回転部材7の回転方向を表わす電気信号を
導出し、またライン41から回転部材7の角度を表わす
電気信号を導出する。処理回路31では、受光素子10
の出力に対応する比較回路29から、ライン30を介す
る信号を受信して、透孔14の検出回数すなわち回転部
材7の回転数を計数することができる。
The output of the adder circuit 38 is applied to an analog/digital converter 39 and converted into a digital value, and the digital value is output to the processing circuit 31. The processing circuit 31 derives from a line 40 an electrical signal representing the direction of rotation of the rotating member 7, and from a line 41 an electrical signal representing the angle of the rotating member 7. In the processing circuit 31, the light receiving element 10
The number of times the through hole 14 has been detected, that is, the number of rotations of the rotating member 7 can be counted by receiving a signal via the line 30 from the comparing circuit 29 corresponding to the output of the rotary member 7 .

第10図を参照して、動作を説明する。ステップ11か
らステップn2に移り、受光素子9の電極22.23か
らの電流値の差Cを演算して求める。
The operation will be explained with reference to FIG. Moving from step 11 to step n2, the difference C between the current values from the electrodes 22 and 23 of the light receiving element 9 is calculated and determined.

さらにまた和りを求めて、前述の#&5式で示されるよ
うに規格化してもよい、この差Cである電流値を前述の
ようにIi とするとき、前回のサンプリング時の電流
値I i−1と引算し、漸増しているかどうかをステッ
プn3で判断する。ステップn3において、漸増してい
ることが判断されると、ステップn4 に移り、正回松
であるものとして7ラグRを「+1」とし、これとは逆
に漸減しているものと判断したときには、ステップn5
  において逆回転しているものと判断して7ラグRを
「−1」とする。
Furthermore, the sum may be calculated and normalized as shown in the formula #&5 above.If the current value which is this difference C is Ii as mentioned above, then the current value at the previous sampling time Ii -1 is subtracted, and it is determined in step n3 whether or not there is a gradual increase. In step n3, if it is determined that it is gradually increasing, the process moves to step n4, and 7 lag R is set as "+1", assuming that it is a regular pine tree.On the contrary, if it is determined that it is gradually decreasing, , step n5
It is determined that the wheel is rotating in the opposite direction, and 7 lag R is set to "-1".

ステップn6  では、受光素子10の出力に対応した
パルスの立上りが波形が得られ−たとうかが判断され、
そうであればステップn7  に移り、カウンタACの
内容を零にリセットする。
In step n6, it is determined whether the waveform of the rising edge of the pulse corresponding to the output of the light receiving element 10 has been obtained.
If so, the process moves to step n7 and the contents of the counter AC are reset to zero.

ステップn8  において、微分回路36から比較回路
37を介する微分波形の立上りが得られたかどうかを判
断し、微分波形の立上りが得られたとさくこはステップ
n9  において、カウンタACに7ラグRのストア内
容である+1または−1を足し合わせる。こうしてカウ
ンタACには、透孔14の位置を基準として透孔12の
計数値がストアされろ。
In step n8, it is determined whether a rising edge of the differential waveform passed from the differentiating circuit 36 to the comparing circuit 37 has been obtained, and if the rising edge of the differential waveform has been obtained, in step n9, the stored contents of 7 lag R are stored in the counter AC. Add up +1 or -1. In this way, the count value of the through hole 12 is stored in the counter AC with the position of the through hole 14 as a reference.

ステップnlo  では、カウンタACの内容に基づい
て第7式の演算を行ない、また前述の第6式の演算結果
と併せて第8式の演算を行なう。
In step nlo, the seventh formula is calculated based on the contents of the counter AC, and the eighth formula is calculated in conjunction with the result of the sixth formula.

θ2 = −X A C・・・(7) ・・・(8) ステラ2nll  では、ライン40から回転方向を表
わす信号、すなわち前述のステップn4.n5による7
ラグRの極性に対応した信号を導出し、またライン41
からは第8式で得られた角度θを表わす信号を導出する
θ2 = −X AC...(7)...(8) Stella 2nll Then, a signal representing the rotation direction is sent from line 40, that is, step n4. 7 by n5
A signal corresponding to the polarity of the lag R is derived, and the line 41
A signal representing the angle θ obtained by the eighth equation is derived from .

回転部材7に形成さ九る透孔12.14に代えて、たと
えば透明な合成樹脂材料から成る板状体の表面に遮光性
塗料を選択的に形成し、透孔12゜14に対応した位置
だけその遮光性塗料を塗布しないでおくことによって回
転部材を構成してもよく、その他の構成によって遮光部
材をll11成してもよい。
In place of the through-holes 12.14 formed in the rotating member 7, a light-shielding paint is selectively formed on the surface of a plate-shaped body made of a transparent synthetic resin material, for example, and holes 12.14 are formed at positions corresponding to the through-holes 12.14. The rotating member may be constructed by not applying the light-shielding paint, or the light-shielding member may be constructed using other configurations.

効  果 以上のように本発明によれば、透光部の数を増やすこと
なしに、受光素子の出力に基づいて高精度で角度を検出
することが可能になる。
Effects As described above, according to the present invention, it is possible to detect the angle with high precision based on the output of the light receiving element without increasing the number of light transmitting parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の角度検出装置15の斜視図
、@2図は角度検出装置16を備えた自動車の操舵装置
の簡略化した錯視図、第3図は回転部材7と受光素子9
との配置を示す平面図、第4図は受光素子9の断面図、
第5図は回転部材7の回転に伴なう受光素子9の受光動
作状態を示す平面図、第6図は第5図の動作に対応する
受光素子9の出力波形を示す図、第7図は受光素子9゜
10に関連する電気的構成を示すブロック図、第8図は
第7図に示された電気的構成の動作を説明するための波
形図、第9図は回転部材7が第8図に示された場合とは
逆方向に回転したときにおける引算回路34からの出力
波形を示す図、第10図は動作を説明するための70−
チャート、第11図は先行技術の斜視図である。 6・・・操舵軸、7・・・回転部材、8・・・光源、9
,10・・・受光素子、12.14・・・透孔、19・
・・受光面、20・・・半導体、21・・・共通電極、
22.23・・・個別電極
Fig. 1 is a perspective view of an angle detection device 15 according to an embodiment of the present invention, Fig. 2 is a simplified optical illusion diagram of a steering system of an automobile equipped with an angle detection device 16, and Fig. 3 is a rotating member 7 and a light receiving device. Element 9
FIG. 4 is a cross-sectional view of the light receiving element 9,
FIG. 5 is a plan view showing the light receiving operation state of the light receiving element 9 as the rotating member 7 rotates, FIG. 6 is a diagram showing the output waveform of the light receiving element 9 corresponding to the operation shown in FIG. 5, and FIG. is a block diagram showing the electrical configuration related to the light receiving element 9-10, FIG. 8 is a waveform diagram for explaining the operation of the electrical configuration shown in FIG. 7, and FIG. 8 is a diagram showing the output waveform from the subtraction circuit 34 when the rotation is in the opposite direction to that shown in FIG. 8, and FIG.
The chart, FIG. 11, is a perspective view of the prior art. 6... Steering shaft, 7... Rotating member, 8... Light source, 9
, 10... Light receiving element, 12.14... Through hole, 19.
... Light receiving surface, 20 ... Semiconductor, 21 ... Common electrode,
22.23...Individual electrode

Claims (1)

【特許請求の範囲】[Claims] 回転軸線まわりに透光部が周方向に等間隔をあけて形成
され、遮光性材料から成る回転部材と、回転部材の一方
側から光を照射する光源と、回転部材の他方側に配置さ
れ、透光部の周方向間隔にほぼ等しい長さを有する受光
面を備え、受光位置に対応した電気信号を導出する受光
素子と、受光素子からの出力に応答し、その出力の漸増
または漸減の周期的変化の回数を計数し、かつ、透光部
相互間の角度位置を検出する手段とを含むことを特徴と
する角度検出装置。
A rotating member in which transparent parts are formed at equal intervals in the circumferential direction around the axis of rotation, and is made of a light-shielding material, a light source that irradiates light from one side of the rotating member, and arranged on the other side of the rotating member, A light-receiving element that is provided with a light-receiving surface having a length approximately equal to the circumferential interval of the light-transmitting part and that derives an electrical signal corresponding to the light-receiving position, and a period of gradual increase or decrease in the output in response to the output from the light-receiving element. 1. An angle detection device comprising means for counting the number of times the target changes and detecting the angular position between the transparent parts.
JP30040586A 1986-12-16 1986-12-16 Angle detector Pending JPS63151807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30040586A JPS63151807A (en) 1986-12-16 1986-12-16 Angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30040586A JPS63151807A (en) 1986-12-16 1986-12-16 Angle detector

Publications (1)

Publication Number Publication Date
JPS63151807A true JPS63151807A (en) 1988-06-24

Family

ID=17884394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30040586A Pending JPS63151807A (en) 1986-12-16 1986-12-16 Angle detector

Country Status (1)

Country Link
JP (1) JPS63151807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026117A1 (en) * 1997-11-19 1999-05-27 Seiko Epson Corporation Information processor
GB2430251A (en) * 2005-09-14 2007-03-21 Avago Tech Ecbu Ip Optical encoder and method of use
US7469839B2 (en) 2005-09-14 2008-12-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Reflective optical encoder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026117A1 (en) * 1997-11-19 1999-05-27 Seiko Epson Corporation Information processor
US6575618B1 (en) 1997-11-19 2003-06-10 Seiko Epson Corporation Information processing device
GB2430251A (en) * 2005-09-14 2007-03-21 Avago Tech Ecbu Ip Optical encoder and method of use
US7469839B2 (en) 2005-09-14 2008-12-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Reflective optical encoder
US7552873B2 (en) 2005-09-14 2009-06-30 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Transmissive optical encoder

Similar Documents

Publication Publication Date Title
US4693123A (en) Electro-optical torque sensing device for an actuating mechanism
JP2549280B2 (en) Rotary Encoder
JP3366347B2 (en) Optical encoder with improved index pulse
US6750445B1 (en) Encoder
JPS63151807A (en) Angle detector
JPH08254439A (en) Optical rotary encoder
US4334166A (en) Rotary magnetic sensor
JPS60168020A (en) Pulse generating device
JPS6013449A (en) Servo motor
JPH0498109A (en) Rotation angle measuring device
JPH0555069U (en) Rotational speed detection device
JP2527728B2 (en) Optical encoder
JPH09113317A (en) Hybrid rotation detector and detecting method
JPS62232516A (en) Optical rotary encoder
JPS57203961A (en) Sensor for rotation velocity
JPH0432562Y2 (en)
JPS63250522A (en) Optical rotary encoder
JPS6336111A (en) Optical encoder
JPS6285760A (en) Steering angle detector
JPH01121722A (en) Rotary encoder
JPH023133Y2 (en)
JPS6128013U (en) optical encoder
JPS5965716A (en) Displacement converter
JP2004251772A (en) Optical encoder
JPS60171462A (en) Optical speed detector