JPS6315129A - Torque detector - Google Patents

Torque detector

Info

Publication number
JPS6315129A
JPS6315129A JP15936786A JP15936786A JPS6315129A JP S6315129 A JPS6315129 A JP S6315129A JP 15936786 A JP15936786 A JP 15936786A JP 15936786 A JP15936786 A JP 15936786A JP S6315129 A JPS6315129 A JP S6315129A
Authority
JP
Japan
Prior art keywords
excitation
measured
shaft
bias
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15936786A
Other languages
Japanese (ja)
Other versions
JPH0678952B2 (en
Inventor
Masaaki Katsumata
勝亦 正晃
Munekatsu Shimada
宗勝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15936786A priority Critical patent/JPH0678952B2/en
Publication of JPS6315129A publication Critical patent/JPS6315129A/en
Publication of JPH0678952B2 publication Critical patent/JPH0678952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To allow distortion torque to be proportional to a detection signal by converting the detection signal to a sinusoidal wave free from strain, by superposing a bias AC to the usual AC supplied to the coil wound around an exciting core arranged along the axial direction of a shaft to be measured. CONSTITUTION:The exciting core 3 opposed to the peripheral surface of a shaft 19 to be measured is arranged along the axial direction of the shaft 19 and a C-shaped detection core 5 is provided so as to cross the core 3 at a right angle. An exciting AC is supplied to the exciting coil 7 wound around the core 3 by an exciting oscillator 11 and a bias exciting AC is superposed to the exciting AC to be supplied by a bias exciting oscillator 13. The detection signal of the detection coil 9 wound around the core 5 is inputted to an amplifier 17 through a bias signal filter 15 and voltage proportional to torque value is calculated from the output of the amplifier 17.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はいわゆる逆Wiedma曲効果を利用して被測
定軸の捩じりトルクを検出するトルク検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a torque detector that detects torsional torque of a shaft to be measured by utilizing the so-called inverse Wiedma curve effect.

(従来技術とその問題点) 特開昭53−77572号公報等に示されたこの種のト
ルク検出器では、励磁コイルによって被測定軸が磁化さ
れた場合、その磁化波形に歪が生ずる。このため検出コ
イルから取り出された検出信号はその歪を含んでおり、
フィルタによりその歪を除去する必要が生ずる。
(Prior art and its problems) In this type of torque detector disclosed in Japanese Patent Application Laid-Open No. 53-77572, etc., when a shaft to be measured is magnetized by an excitation coil, distortion occurs in the magnetization waveform. Therefore, the detection signal taken out from the detection coil contains that distortion,
It becomes necessary to remove the distortion using a filter.

しかしながら、励磁コイルに通電された交番電流の周波
数以外の周波数を有する検出信号をフィルタで除去する
と被測定軸に加えられた捩じりトルクと検出コイルでの
検出信号との関係が直線的でなくなる。
However, if a detection signal with a frequency other than the frequency of the alternating current applied to the excitation coil is removed by a filter, the relationship between the torsional torque applied to the measured shaft and the detection signal at the detection coil will not be linear. .

従って、その直線化を図るため、直線化回路が必要とな
り、検出器が複雑化するという問題があった。
Therefore, in order to achieve linearization, a linearization circuit is required, resulting in a problem that the detector becomes complicated.

(発明の目的) 本発明は上記従来の問題点に鑑みてなされたもので、そ
の目的は、直線化回路を不要にしたこの種のトルク検出
器を提供することにある。
(Objective of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and its object is to provide a torque detector of this type that does not require a linearization circuit.

(発明の構成) 上記目的を達成するために本発明は、 磁極面が被測定軸の軸方向に沿って当該被測定軸周面に
対向された励磁コアに巻回された被測定軸励磁用の励磁
コイルと、 前記励磁コアと交鎖されるとともに磁極面が前記被測定
軸周面に対向された検出コアに巻回されて当該被測定軸
の捩じりトルクに応じた起電力が発生する検出コイルと
、 前記励磁コイルへ通電を行なう交番電流電源と、前記交
番電流に重畳されるバイアス交番電流を発生するバイア
ス交番電流電源と、 を有することを特徴とする。
(Structure of the Invention) In order to achieve the above object, the present invention provides a device for excitation of a shaft to be measured whose magnetic pole surface is wound around an excitation core facing the peripheral surface of the shaft to be measured along the axial direction of the shaft to be measured. The excitation coil is wound around a detection core which is interlinked with the excitation core and whose magnetic pole surface faces the circumferential surface of the shaft to be measured, thereby generating an electromotive force according to the torsional torque of the shaft to be measured. An alternating current power supply that energizes the excitation coil; and a bias alternating current power supply that generates a bias alternating current that is superimposed on the alternating current.

(実施例の説明) 以下、本発明に係るトルク検出器の好適な実施例を図面
に基づいて説明する。
(Description of Embodiments) Hereinafter, preferred embodiments of the torque detector according to the present invention will be described based on the drawings.

第1図においてトルク検出器1はほぼ口字状の励磁コア
3と、この励磁コア3に直交されたほぼ口字状の検出コ
ア5とを有しており、両コア3゜5には各々励磁コイル
7および検出コイル9が巻回されている。
In FIG. 1, the torque detector 1 has a substantially square-shaped excitation core 3 and a substantially square-shaped detection core 5 that is orthogonal to the excitation core 3. An excitation coil 7 and a detection coil 9 are wound.

そして励磁コイル7には励磁発振器11により励磁コア
3を励磁する励磁交番電流(周波数f+)が通電されて
いるとともに、その励磁交番電流に重畳させてバイアス
励磁交番電流(周波数fz)がバイアス励磁発振器13
により通電されている。
The excitation coil 7 is supplied with an excitation alternating current (frequency f+) that excites the excitation core 3 by an excitation oscillator 11, and a bias excitation alternating current (frequency fz) is superimposed on the excitation alternating current to be applied to the bias excitation oscillator 11. 13
is energized by.

また検出コイル9の検出信号はバイアス信号フィルタ1
5を介して増幅器17に入力されてあり、この増幅器1
7の出力はトルク値に比例した電圧として図示しないト
ルク値演算回路に入力される。
Also, the detection signal of the detection coil 9 is transmitted to the bias signal filter 1.
5 to the amplifier 17, and this amplifier 1
The output of 7 is input to a torque value calculation circuit (not shown) as a voltage proportional to the torque value.

なお、バイアス信号フィルタ15は前記バイアス励磁交
番電流が重畳された場合に、第2図から理解されるよう
に被測定軸19の励磁特性がa”のように非直線的にな
るため、検出コイル9の検出信号からバイアス励磁交番
電流の歪波を除去する目的で設けられている。
Note that when the bias excitation alternating current is superimposed on the bias signal filter 15, the excitation characteristic of the measured shaft 19 becomes non-linear as indicated by a'' as shown in FIG. This is provided for the purpose of removing distorted waves of the bias excitation alternating current from the detection signal of No. 9.

従って、バイアス励磁交番電流の歪波がトルク検出精度
上無視し得る場合、あるいは被測定軸19の磁化特性が
第2図のaで示される特性を有する場合にはバイアス信
号フィルタ15を不要にしてトルク検出器1の簡素化を
図ることができる。
Therefore, if the distorted wave of the bias excitation alternating current can be ignored in terms of torque detection accuracy, or if the magnetization characteristic of the shaft 19 to be measured has the characteristic shown by a in FIG. 2, the bias signal filter 15 is unnecessary. The torque detector 1 can be simplified.

そして、励磁コア3は被測定軸19の軸方向に沿うとと
もにその磁極面が被測定軸19の周面と対向されてあり
、−力検出コア5は被測定軸19の周方向に沿うととも
に被測定軸19の周面と対向されている。
The excitation core 3 is along the axial direction of the shaft to be measured 19 and its magnetic pole face is opposed to the circumferential surface of the shaft to be measured 19, and the force detection core 5 is along the circumferential direction of the shaft to be measured 19 and is It faces the circumferential surface of the measurement shaft 19.

なあ、被測定軸19は少なくともその周面が強磁性体で
形成されており、励磁コア3が励磁されているときには
励磁コア3と被測定軸19とにより磁気回路が形成され
る。
Incidentally, at least the peripheral surface of the shaft to be measured 19 is formed of a ferromagnetic material, and when the excitation core 3 is excited, a magnetic circuit is formed by the excitation core 3 and the shaft to be measured 19.

以上の構成により、励磁コア3が励磁された状態で被測
定軸19に捩じりトルクが加わると、いわゆる逆W i
 edma曲効果により、被測定軸19の周方向に沿っ
て磁束変化が生じ、その磁束変化が検出コイル9に誘導
起電力を生じさせる。
With the above configuration, when torsional torque is applied to the shaft 19 to be measured while the excitation core 3 is excited, the so-called reverse W i
Due to the edma bending effect, a change in magnetic flux occurs along the circumferential direction of the shaft 19 to be measured, and the change in magnetic flux causes an induced electromotive force in the detection coil 9.

そしてその誘導起電力が被測定軸19に加えられた捩じ
りトルクに比例しており、このためその誘導起電力を検
出することにより捩じりトルクを測定することができる
The induced electromotive force is proportional to the torsional torque applied to the shaft 19 to be measured, and therefore the torsional torque can be measured by detecting the induced electromotive force.

ここで、第2図には被測定軸19の磁化特性が示されて
おり、同図から理解されるように、励磁コイル7には励
磁交番電流とともにバイアス励磁交番電流が重畳されて
通電されているので、被測定軸19のヒステリシス特性
は水平部(第2図中a−b部)において補正がなされ、
図中一点鎖線で示す特性で磁化される。
Here, FIG. 2 shows the magnetization characteristics of the shaft 19 to be measured, and as can be understood from the figure, the excitation coil 7 is energized with a bias excitation alternating current superimposed on the excitation alternating current. Therefore, the hysteresis characteristic of the measured axis 19 is corrected in the horizontal section (section a-b in Fig. 2).
It is magnetized with the characteristics shown by the dashed line in the figure.

その結果被測定軸19の磁化の強さを示す波形は歪の少
ない正弦波に近い波形となる。
As a result, the waveform representing the strength of magnetization of the shaft 19 to be measured becomes a waveform close to a sine wave with little distortion.

なお検出コイル9に発生する検出信号は被測定軸1つの
磁化の強さの変化(磁束密度変化;dΦ/’d t )
および捩じりトルク(T>に比例しており、またその位
相は励磁発振器11から通電される励磁交番電流に対し
て90度ずれている(第2図参照)。
Note that the detection signal generated in the detection coil 9 is a change in the magnetization strength of one axis to be measured (magnetic flux density change; dΦ/'d t ).
and the torsional torque (T>), and its phase is shifted by 90 degrees with respect to the excitation alternating current supplied from the excitation oscillator 11 (see FIG. 2).

以上のように本実施例では励磁コイル7に励磁発振器1
1から励磁交番電流を通電するとともに、その励磁交番
電流に重畳させてバイアス励磁交番電流をバイアス励磁
発振器13から通電するので、被測定軸19の磁化特性
が重畳されたバイアス励磁交番電流により補正され、検
出コイル9にはほぼ正弦波に近い波形の検出信号が生ず
る。
As described above, in this embodiment, the excitation coil 7 is connected to the excitation oscillator 1.
1, and a bias excitation alternating current is applied from the bias excitation oscillator 13 superimposed on the excitation alternating current, so that the magnetization characteristics of the shaft 19 to be measured are corrected by the superimposed bias excitation alternating current. , a detection signal having a waveform substantially close to a sine wave is generated in the detection coil 9.

従って被測定軸19に加えられた捩じりトルクと検出コ
イル9で得られた検出信号とは比例関係にあり、このた
め従来のように検出信号を直線化する回路が不要となり
、検出器1の簡素化が可能となる。
Therefore, there is a proportional relationship between the torsional torque applied to the shaft 19 to be measured and the detection signal obtained by the detection coil 9. Therefore, there is no need for a conventional circuit to linearize the detection signal, and the detector 1 simplification is possible.

第3図には本発明に係るトルク検出器の第2実施例が示
されている。
FIG. 3 shows a second embodiment of the torque detector according to the present invention.

なお、第1図と同一部分には同一符号を付しその説明は
省略する。
Note that the same parts as in FIG. 1 are given the same reference numerals, and their explanations will be omitted.

また励磁コア3には1組の励磁コイル7a(自己インダ
クタンスL+)および7b(自己インダクタンスL2)
が巻回されており、それら励磁コイル7aおよび7bは
直列に接続されている。
In addition, the excitation core 3 includes a set of excitation coils 7a (self-inductance L+) and 7b (self-inductance L2).
The excitation coils 7a and 7b are connected in series.

そして、それら励磁コイル7aおよび7bと並列にコン
デンサ21(キャパシタンスC)が接続されている。
A capacitor 21 (capacitance C) is connected in parallel with the excitation coils 7a and 7b.

従って、励磁コイル7a、7bおよびコンデンサ21と
によりバイアス励磁交番電流(周波数f2)の共振回路
が形成されており、このため励磁交番電流(周波数f+
)と同じ駆動電力であってもバイアス励磁交番電流によ
るバイアス励磁は相対的に強くなる。
Therefore, the excitation coils 7a, 7b and the capacitor 21 form a resonant circuit of the bias excitation alternating current (frequency f2), and therefore the excitation alternating current (frequency f+
), the bias excitation by the bias excitation alternating current becomes relatively strong.

すなわち、被測定軸1つの磁化特性(ヒステリシス特性
)に起因する歪を低減させるためには、バイアス励磁交
番電流の強度および周波数を励磁交番電流よりも相対的
に大きくする必要がある。
That is, in order to reduce the distortion caused by the magnetization characteristic (hysteresis characteristic) of one axis to be measured, it is necessary to make the intensity and frequency of the bias excitation alternating current relatively larger than the excitation alternating current.

そこで本実施例では上記のように励磁コイル7a、7b
およびコンデンサ21とにより並列共振回路を形成する
ことにより、バイアス励磁交番電流の強度および周波数
を励磁交番電流に対して相対的に大きくしている。
Therefore, in this embodiment, as described above, the excitation coils 7a and 7b are
By forming a parallel resonant circuit with the bias excitation alternating current and the capacitor 21, the intensity and frequency of the bias excitation alternating current are made relatively large with respect to the excitation alternating current.

以上のように本実施例では励磁コイル7a、7bおよび
コンデンサ21とにより並列共振回路を形成し、これに
よりバイアス励磁交番電流の強度および周波数を励磁交
番電流よりも相対的に大きくするので、励磁交番電流と
同じ駆動量力であってもバイアス励磁交番電流による励
磁が相対的に強くなるという格別の効果を有する。
As described above, in this embodiment, a parallel resonant circuit is formed by the excitation coils 7a, 7b and the capacitor 21, thereby making the intensity and frequency of the bias excitation alternating current relatively larger than the excitation alternating current. Even if the drive amount force is the same as the current, the excitation by the bias excitation alternating current becomes relatively strong, which is a special effect.

(発明の効果) 以上の説明で明らかなように本発明に係るトルク検出器
は、被測定軸を励磁する励磁コイルへ通電される通常の
交番電流にバイアス交番電流を重畳させるので、検出コ
イルから検出された検出信号が歪の少ないほぼ正弦波に
近い波形となる。
(Effects of the Invention) As is clear from the above explanation, the torque detector according to the present invention superimposes the bias alternating current on the normal alternating current that is supplied to the excitation coil that excites the shaft to be measured, so that The detected signal has a waveform almost like a sine wave with little distortion.

このため被測定軸に加えられた捩じりトルクと検出信号
とが比例関係にあり、従って従来の直線化回路が不要と
なる。
Therefore, the torsional torque applied to the shaft to be measured and the detection signal are in a proportional relationship, and therefore a conventional linearization circuit is not required.

その結果トルク検出器の構成が簡素化でき、そのコスト
を低減化することが可能となる。
As a result, the configuration of the torque detector can be simplified and its cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るトルク検出器の全体概略図、第2
図は被測定軸の磁化特性、検出コイルの検出信号の波形
等を示す特性図、第3図は本発明に係るトルク検出器の
他の実施例を示す全体概略図である。 1・・・トルク検出器 3・・・励磁コア 5・・・検出コア 7.7a、7b・・・励磁コイル 9・・・検出コイル 11・・・励磁発掘器 13・・・バイアス励磁発振器 15・・・バイアス信号フィルタ 17・・・増幅器 19・・・被測定軸 21・・・コンデンサ
FIG. 1 is an overall schematic diagram of a torque detector according to the present invention, and FIG.
The figure is a characteristic diagram showing the magnetization characteristics of the shaft to be measured, the waveform of the detection signal of the detection coil, etc., and FIG. 3 is an overall schematic diagram showing another embodiment of the torque detector according to the present invention. 1... Torque detector 3... Excitation core 5... Detection cores 7.7a, 7b... Excitation coil 9... Detection coil 11... Excitation excavator 13... Bias excitation oscillator 15 ... Bias signal filter 17 ... Amplifier 19 ... Axis to be measured 21 ... Capacitor

Claims (1)

【特許請求の範囲】[Claims] (1)磁極面が被測定軸の軸方向に沿って当該被測定軸
周面に対向された励磁コアに巻回された被測定軸励磁用
の励磁コイルと、 前記励磁コアと交鎖されるとともに磁極面が前記被測定
軸周面に対向された検出コアに巻回されて当該被測定軸
の捩じりトルクに応じた起電力が発生する検出コイルと
、 前記励磁コイルへ通電を行なう交番電流電源と、前記交
番電流に重畳されるバイアス交番電流を発生するバイア
ス交番電流電源と、 を有することを特徴とするトルク検出器。
(1) An excitation coil for excitation of the measured shaft, the magnetic pole surface of which is wound around an excitation core facing the circumferential surface of the measured shaft along the axial direction of the measured shaft, intersects with the excitation core. a detection coil whose magnetic pole surface is wound around a detection core facing the circumferential surface of the shaft to be measured and generates an electromotive force according to the torsional torque of the shaft to be measured; and an alternating box that energizes the excitation coil. A torque detector comprising: a current power source; and a bias alternating current power source that generates a bias alternating current to be superimposed on the alternating current.
JP15936786A 1986-07-07 1986-07-07 Torque detector Expired - Lifetime JPH0678952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15936786A JPH0678952B2 (en) 1986-07-07 1986-07-07 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15936786A JPH0678952B2 (en) 1986-07-07 1986-07-07 Torque detector

Publications (2)

Publication Number Publication Date
JPS6315129A true JPS6315129A (en) 1988-01-22
JPH0678952B2 JPH0678952B2 (en) 1994-10-05

Family

ID=15692287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15936786A Expired - Lifetime JPH0678952B2 (en) 1986-07-07 1986-07-07 Torque detector

Country Status (1)

Country Link
JP (1) JPH0678952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103968A (en) * 2015-12-04 2017-06-08 富士電機株式会社 Power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103968A (en) * 2015-12-04 2017-06-08 富士電機株式会社 Power generation device

Also Published As

Publication number Publication date
JPH0678952B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US4503714A (en) Arrangement for non-contacting measurement of static and dynamic torques
US6698299B2 (en) Magnetoelastic torque sensor
US4716773A (en) Stress detector
US4712433A (en) Torque sensor for automotive power steering systems
JPH03218475A (en) Method and device for measuring current
CN116338536A (en) Magnetic field measurement sensor, system and method
Enokizono et al. Measurement of arbitrary dynamic magnetostriction under alternating and rotating field
JP2816175B2 (en) DC current measuring device
JPS6315129A (en) Torque detector
JP2001289719A (en) Ring-type magnetostrictive toque sensor
JP3161133B2 (en) Force detection device
JP3868495B2 (en) Torque transducer
JP2000009557A (en) Torque sensor
JPH1194658A (en) Torque sensor
US6094995A (en) Torque sensor using power measurement
JP2004191069A (en) Torque sensor
JP4450417B2 (en) Magnetostrictive modulation type current sensor and current measurement method using this sensor
JPH0432787A (en) Magnetic field sensor
JPH0754274B2 (en) Torque detection method
JPH0392782A (en) Magnetic field sensor
JPS6255533A (en) Torque-measuring apparatus
JP2905561B2 (en) Non-contact torque sensor
JP2816528B2 (en) Torque detector
JP2759303B2 (en) Stress detector
JPH0333216B2 (en)