JPS6315076B2 - - Google Patents
Info
- Publication number
- JPS6315076B2 JPS6315076B2 JP57088685A JP8868582A JPS6315076B2 JP S6315076 B2 JPS6315076 B2 JP S6315076B2 JP 57088685 A JP57088685 A JP 57088685A JP 8868582 A JP8868582 A JP 8868582A JP S6315076 B2 JPS6315076 B2 JP S6315076B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- flux
- coating
- electrostatic
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000004907 flux Effects 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 13
- 238000003466 welding Methods 0.000 claims description 13
- 239000000853 adhesive Substances 0.000 claims description 12
- 230000001070 adhesive effect Effects 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 238000011049 filling Methods 0.000 description 13
- 238000009503 electrostatic coating Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 238000007590 electrostatic spraying Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- KOAWAWHSMVKCON-UHFFFAOYSA-N 6-[difluoro-(6-pyridin-4-yl-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl]quinoline Chemical compound C=1C=C2N=CC=CC2=CC=1C(F)(F)C(N1N=2)=NN=C1C=CC=2C1=CC=NC=C1 KOAWAWHSMVKCON-UHFFFAOYSA-N 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/40—Making wire or rods for soldering or welding
- B23K35/406—Filled tubular wire or rods
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
- Electrostatic Spraying Apparatus (AREA)
Description
【発明の詳細な説明】
本発明は溶接用フラツクス入りワイヤの製造法
に関し、詳細には管状パイプ内へフラツクスを均
一に充填し、均質で高性能のフラツクス入りワイ
ヤを生産性良く製造する方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a flux-cored wire for welding, and more particularly to a method for uniformly filling a tubular pipe with flux and manufacturing a homogeneous, high-performance flux-cored wire with high productivity. It is something.
金属製外皮に溶接用のフラツクスを充填してな
るワイヤは、フラツクス入りワイヤあるいは複合
ワイヤと称され、たとえばフラツクスを外部か
ら供給する必要がないので溶接準備が簡単であ
る、耐気孔性が良好で現場溶接に適している、
被覆アーク溶接棒を使用する場合に比べて2倍
以上の能率が期待できる、溶込みがやゝ浅く耐
割れ性が良好である、等種々の特徴があるので、
自動もしくは半自動溶接の分野を主体にして普及
しつつある。しかし消費量の伸び率は停滞気味で
あり、ソリツドワイヤ消費量の10%程度にしか達
していない。この様な伸び悩みの原因としては、
ヒユーム量が多い、ワイヤ送給性がやゝ不安
定である、充填フラツクスが吸湿し易い、生
産性が低く高価である、等が挙げられる。こうし
た問題を生じるのは、金属外皮によるフラツクス
の密封性能の低さに負うところが大きい。即ち一
般のフラツクス入りワイヤは帯鋼を幅方向に湾曲
して管状に成形しながらフラツクスを充填し、次
いで所定の断面寸法まで伸線加工することによつ
て製造しており、湾曲後突合わされた帯鋼両端縁
は単に圧接されているだけであつて、封鎖性に欠
けるので、この部分から湿気が浸入してフラツク
スを湿らせ、あるいは前記圧接部における送給抵
抗が不均一になつて送給速度の不安定や通電チツ
プとの接触不良を招き、それらの結果前述の様な
問題が発生するものと考えられる。 Wires made of a metal sheath filled with welding flux are called flux-cored wires or composite wires.For example, there is no need to supply flux from the outside, so welding preparation is easy, and the wires have good porosity resistance. Suitable for on-site welding
Compared to using coated arc welding rods, it can be expected to be more than twice as efficient, has shallower penetration, and has better cracking resistance.
It is becoming popular mainly in the field of automatic or semi-automatic welding. However, the growth rate of consumption is stagnant, reaching only about 10% of solid wire consumption. The reason for this sluggish growth is
The problems include a large amount of fume, somewhat unstable wire feedability, easy absorption of moisture by the filling flux, low productivity and high cost. These problems are largely due to the poor flux sealing performance of the metal jacket. In other words, general flux-cored wire is manufactured by bending a steel band in the width direction, forming it into a tubular shape, filling it with flux, and then drawing it to a predetermined cross-sectional dimension. Since both ends of the steel strip are simply pressure-welded and lack sealing properties, moisture may infiltrate from these parts and moisten the flux, or the feeding resistance at the pressure-welded portion may become uneven and the flux may not be fed properly. It is believed that this leads to unstable speed and poor contact with the current-carrying chip, resulting in the problems described above.
この様な問題に対処する為の方策として、例え
ば特開昭56−148494号公報に見られる様に、帯鋼
を幅方向に湾曲成形して得られる両側縁突合せ部
をシーム溶接によつて封鎖する方法が知られてお
り、この様な方法であれば前述の如き不都合のな
いフラツクス入りワイヤを得ることが可能であ
る。ところがこの方法ではシーム溶接時の入熱
でフラツクスが変質したり焼損するので、充填フ
ラツクスの種類や性質が制限される、シーム溶
接をTIG溶接やレーザ溶接で行なおうとすると数
m/分乃至10m/分程度の溶接速度しか得られ
ず、生産性が極めて低い、高周波誘導溶接法で
は細径の湾曲ワイヤ内へインピーダを挿入しなけ
ればならず、これによつてフラツクスの充填性が
阻害されるので、ワイヤ長手方向のフラツクス充
填率が不均一になり易い、等の問題がある。 As a measure to deal with such problems, for example, as seen in Japanese Patent Application Laid-Open No. 56-148494, the butt portions of both side edges obtained by bending a steel band in the width direction are sealed by seam welding. A method is known, and by using such a method, it is possible to obtain a flux-cored wire without the above-mentioned disadvantages. However, with this method, the heat input during seam welding causes the flux to deteriorate or burn out, so the type and properties of the filling flux are limited. In the high-frequency induction welding method, which can only achieve a welding speed of about 1/2 min and has extremely low productivity, an impeder must be inserted into a small diameter curved wire, which inhibits flux filling. Therefore, there are problems such as the fact that the flux filling rate in the longitudinal direction of the wire tends to be non-uniform.
一方、例えば特公昭45−30937号公報や特開昭
56−148494号公報等に見られる様に、継目なしの
管状ワイヤの一方端からフラツクスを充填した後
伸線加工を行ない、しかもその表面に銅等の電導
性材料をめつきして通電性を高めたものも提案さ
れている。この様なフラツクス入りワイヤであれ
ば鋼製外皮に継目がないので充填フラツクスの吸
湿や溶接熱による劣化・変質等は全く起こらな
い。しかしながら、細径の管状ワイヤ内へ粉粒状
フラツクスを充填する作業はそれ自身極めて煩雑
であると共に、全長に亘つて充填率を均一にする
ことは極めて困難である。しかも管状ワイヤの振
動とフラツクスの自然流下を利用する従来の充填
法では充填速度が極めて遅く非能率的であると共
に、管状ワイヤの途中でフラツクスが詰つて未充
填部ができることもしばしば経験されている。 On the other hand, for example, Japanese Patent Publication No. 45-30937 and
As seen in Publication No. 56-148494, one end of a seamless tubular wire is filled with flux and then drawn, and its surface is plated with a conductive material such as copper to make it conductive. Higher versions have also been proposed. With such a flux-cored wire, there is no seam in the steel outer shell, so there will be no deterioration or deterioration due to moisture absorption of the filling flux or welding heat. However, filling a small-diameter tubular wire with powder flux is itself extremely complicated, and it is extremely difficult to make the filling rate uniform over the entire length. Moreover, the conventional filling method, which utilizes the vibration of the tubular wire and the gravity flow of the flux, has an extremely slow filling speed and is inefficient, and it is often experienced that the tubular wire becomes clogged with flux, resulting in unfilled areas. .
本発明者等は上記の様な事情に着目し、特に管
状ワイヤ内へフラツクスを充填してフラツクス入
りワイヤを製造する方法において、フラツクスを
均一に充填することのできる様な方法を確立すべ
く研究を進めてきた。本発明はかかる研究の結果
完成されたものであつて、金属ワイヤを塗装ブー
ス内で長手方向へ走行させると共に、該ワイヤの
外面に粉粒状接着剤を含む粉粒状フラツクス組成
物を静電塗装し、次いで該フラツクスを加熱焼成
した後、鋼製パイプ内へ挿入して伸縮加工すると
ころに要旨が存在する。 The inventors of the present invention have focused on the above-mentioned circumstances, and have conducted research to establish a method that can uniformly fill flux into a tubular wire, particularly in the method of manufacturing flux-cored wire by filling flux into a tubular wire. We have been progressing. The present invention was completed as a result of such research, and involves running a metal wire in the longitudinal direction within a coating booth, and electrostatically coating the outer surface of the wire with a powdery flux composition containing a powdery adhesive. The gist is that the flux is then heated and fired, then inserted into a steel pipe and subjected to expansion and contraction processing.
以下実施例を示す図面に基づいて本発明の構成
及び作用効果を説明するが、下記は代表例であつ
て本発明を限定する性質のものではなく、前・後
記の趣旨に適合し得る範囲で静電塗装法や加熱焼
鈍条件等を適当に変更することはすべて本発明の
技術的範囲に含まれる。第1図は本発明の実施例
を示す概略工程説明図で、スプール1に巻回され
た軟鋼製等(一般的には後述する管状ワイヤと同
一素材)のワイヤW-1を繰りり出し、脱錆・脱脂
装置2へ送つて表面を清浄にした後、乾燥装置3
で乾燥し、静電塗装々置4へ送る。ここでは後に
詳述する静電浸漬法や静電吹付法によつてフラツ
クスFの付着が行なわれる。フラツクスFの塗装
されたワイヤW-2は加熱焼成装置5へ送られ、こ
の部分では単に静電気的に付着したフラツクスF
の固定が行なわれる。加熱焼成装置5の後位には
長尺の管状ワイヤW-3が準備されており、焼成を
終えあるいは必要により冷却されたフラツクス塗
装ワイヤW-2の先端に突出したワイヤW-1にピア
ノ線6等を係合して引張ることによつて、塗装ワ
イヤW-2を管状ワイヤW-3内へ挿入する。管状ワ
イヤW-3の長さは、塗装ワイヤW-2をその挿入抵
抗に抗して挿入し得る限り長い方が有効であり、
また該挿入抵抗を少なくする為には、塗装ワイヤ
W-2の外径を管状ワイヤW-3の外径よりも若干大
きくしておくのがよい。またワイヤW-2とピアノ
線6の接合は溶接によつて行なうこともできる。
得られたフラツクス充填ワイヤW-4は、その後伸
線ダイス7a,7bを順次通して所定の寸法に伸
線加工し、必要によつては銅めつき等に付して製
品とされる。 The structure and effects of the present invention will be explained below based on the drawings showing the embodiments. However, the following are representative examples and do not limit the present invention, and only within the scope that can comply with the spirit of the above and below. Appropriate changes in the electrostatic coating method, heating annealing conditions, etc. are all within the technical scope of the present invention. FIG. 1 is a schematic process explanatory diagram showing an embodiment of the present invention, in which a wire W -1 made of mild steel or the like (generally the same material as the tubular wire described later) is wound around a spool 1, and After sending it to the derusting/degreasing device 2 to clean the surface, it is sent to the drying device 3.
, and send it to electrostatic coating station 4. Here, the flux F is attached by an electrostatic dipping method or an electrostatic spraying method which will be described in detail later. The wire W -2 coated with the flux F is sent to the heating and firing device 5, where the flux F that has simply adhered electrostatically is removed.
is fixed. A long tubular wire W -3 is prepared at the rear of the heating and firing device 5, and a piano wire is attached to the wire W -1 protruding from the tip of the flux-coated wire W -2 that has been fired or cooled as necessary. 6 etc. and by pulling it, the painted wire W -2 is inserted into the tubular wire W -3 . It is effective that the length of the tubular wire W -3 is as long as possible to insert the coated wire W -2 against its insertion resistance.
In addition, in order to reduce the insertion resistance, painted wire
It is better to make the outer diameter of W -2 slightly larger than the outer diameter of tubular wire W -3 . Further, the wire W -2 and the piano wire 6 can also be joined by welding.
The obtained flux-filled wire W -4 is then sequentially passed through wire-drawing dies 7a and 7b to be wire-drawn to a predetermined size, and if necessary, subjected to copper plating or the like to form a product.
静電塗装の原理は、静電発生機によつて得られ
る直流高電圧を利用して粉体を帯電させ、アース
された被塗物に対し静電引力によつて付着させる
ものである。そして本発明における静電塗装の実
施に際しては、静電浸漬法と静電吹付法が採用さ
れ得るが、これらの方法自体は粉末塗料の静電塗
装分野において既に実施されている方法に従つて
行なえば良く、例えば静電浸漬法の場合、浸漬槽
の容量、底板の素材や形状、空気の送り込み機
構、アースの方法、電圧、ワイヤの供給機構、ア
ース内におけるワイヤの把持機構等については格
別の制限が無い。尚フラツクス粉体の帯電につい
ては、正負のいずれでも良いが、操作の便宜や後
工程における残留静電圧の問題を考えればワイヤ
をアースしてフラツクスを負に帯電するのが好ま
しい。又フラツクスの静電塗装については、各静
電塗装手段毎に特有の問題があつたので以下これ
をまとめて説明する。 The principle of electrostatic coating is to charge powder using a DC high voltage obtained by an electrostatic generator, and make it adhere to a grounded object by electrostatic attraction. When carrying out the electrostatic coating in the present invention, an electrostatic dipping method and an electrostatic spraying method can be adopted, but these methods themselves can be carried out in accordance with methods already practiced in the field of electrostatic coating of powder coatings. For example, in the case of the electrostatic immersion method, there are special considerations regarding the capacity of the immersion tank, the material and shape of the bottom plate, the air feeding mechanism, the grounding method, the voltage, the wire supply mechanism, the wire gripping mechanism in the ground, etc. There are no restrictions. The flux powder may be charged either positively or negatively, but in view of convenience of operation and the problem of residual electrostatic voltage in subsequent steps, it is preferable to ground the wire and charge the flux negatively. Regarding the electrostatic coating of flux, each electrostatic coating means has its own problems, which will be explained below.
まず静電吹付法の実施に当つては、フラツクス
組成分の比重差による影響が少なく、多少の比重
差があつても均一に塗装できるという特長を有す
る反面、ワイヤの全周に亘つて均一な塗装厚を得
る上で若干の問題があり、特に塗装膜を厚く形成
する場合には吹付方向が被塗装物の表面に対して
接線方向となる部分での塗膜が薄くなり塗装むら
や偏心等の欠陥を発生し易いので金属ワイヤの回
転装置を必要としたり、金属ワイヤの向きを変え
て重複塗装する必要があつたが、いずれにしても
塗装厚の増大につれてフラツクスによる静電反発
が高まつてくるので、帯電々圧の向上を図つた
り、被塗装物温度を上げることが推奨される。 First, when implementing the electrostatic spraying method, it has the advantage that it is less affected by differences in the specific gravity of the flux composition and can be coated uniformly even if there is a slight difference in specific gravity. There are some problems in obtaining the coating thickness, especially when forming a thick coating film, the coating film becomes thinner in areas where the spray direction is tangential to the surface of the object to be coated, resulting in uneven coating, eccentricity, etc. Because defects tend to occur, it was necessary to use a device to rotate the metal wire, or to change the direction of the metal wire and apply multiple coats, but in any case, as the coating thickness increases, electrostatic repulsion due to flux increases. Therefore, it is recommended to improve the charging voltage or raise the temperature of the object to be coated.
次に静電浸漬法は、多孔質板上に乗せたフラツ
クス粉体を下からの圧入空気によつて吹き上げ、
粉体の一次流動層を形成すると共に、多孔質板上
とブース天井面に設けた電極とアース線に接続し
たワイヤとの間に高電圧を印加して行なうもので
あるから、帯電浮遊粉体内にワイヤを配置してお
けば上下左右から比較的均一に且つ厚く塗装する
ことができる。しかし種々の成分粉体を一度に吹
き上げた場合は各粉体の比重差によつて流動層自
体にばらつきが生じ、ワイヤの上下においてフラ
ツクス組成にばらつきを起こすという問題があ
る。即ちワイヤを水平に配置した場合は周方向の
ばらつきが生じ、ワイヤを縦に配置した場合は上
下方向のばらつきが生じる。そこで比重差の大き
いものを別々の群に区分けし、夫々を別の塗装ブ
ース内で向きを変えて重複塗装することが推奨さ
れる。尚本発明に用いるフラツクス中には後述す
る様な粉未状接着剤が配合されるが、これは加熱
焼成時に溶融されてバインダーとしての機能を果
すものであるから、上記の様な重複塗装に行なう
場合には、各組成中の夫々存在することが必要で
ある。従つて粉末状接着剤は原料粉体の夫々にま
んべんなく混合しておくことが推奨される。 Next, in the electrostatic dipping method, the flux powder placed on a porous plate is blown up by compressed air from below.
This is done by forming a primary fluidized bed of powder and applying a high voltage between the electrodes installed on the porous plate and the booth ceiling, and the wire connected to the ground wire. By arranging the wires, it is possible to paint relatively uniformly and thickly from the top, bottom, left and right. However, when various component powders are blown up at once, there is a problem in that the fluidized bed itself varies due to the difference in specific gravity of each powder, causing variations in the flux composition above and below the wire. That is, when the wires are arranged horizontally, variations occur in the circumferential direction, and when the wires are arranged vertically, variations occur in the vertical direction. Therefore, it is recommended to divide the materials with large differences in specific gravity into separate groups, change the orientation of each group in separate painting booths, and apply redundant coating. The flux used in the present invention contains a non-powdered adhesive as described below, but since this is melted during heating and baking and functions as a binder, it is not suitable for repeated coatings as described above. If so, their respective presence in each composition is required. Therefore, it is recommended that the powdered adhesive be mixed evenly with each of the raw material powders.
粉末状接着剤としては、低融点ガラス系接着
剤、無機高分子系接着剤、有機高分子系接着剤等
があるが、カーボンボンド系接着剤であるフエノ
ール樹脂が、接着強度や焼成条件等の面で最適で
あつた。 Powdered adhesives include low melting point glass adhesives, inorganic polymer adhesives, organic polymer adhesives, etc., but phenolic resin, which is a carbon bond adhesive, has a high adhesive strength and baking conditions. It was perfect in terms of
尚フラツクス中には炭酸塩、珪酸塩、弗化物等
の非導電性物質の他、フエロアロイ等の導電性物
質を含んでいることも多いが、導電性物質は静電
付着しないので、これらは配合前の予備処理で表
面を絶縁物でコーテイングしておく必要がある。
この場合、表面コーテイング用絶縁材としてフラ
ツクス固着用の接着剤を使用すれば一石二鳥の効
果が得られる。 Flux often contains non-conductive substances such as carbonates, silicates, and fluorides, as well as conductive substances such as ferroalloys, but conductive substances do not adhere electrostatically, so these should not be mixed. It is necessary to coat the surface with an insulating material in the previous preliminary treatment.
In this case, if an adhesive for fixing the flux is used as the insulating material for surface coating, the effect of killing two birds with one stone can be obtained.
第1図に示した静電塗装々置4は静電浸漬法を
採用したものを示しており、塗装ブース8の下方
には多孔質セラミツク板9が配置され、その上に
略一定間隔で電極10に配置されると共に、ブー
ス8の天井面にも同様に電極10が配置されてい
る。これらの電極10は図示しない高電圧発生機
に結線され負の印加電圧を受けている。他方11
は、該ブース内を走行するワイヤW-1に接触させ
たアース線であり、電極10とアース線11の間
に強い電解が生じている。従つて空気吹込用フア
ン12から空気を吹込み、セラミツクス板9上に
乗せておいたフラツクス成分を吹き上げて流動層
を形成すると、粉体はイオン化された空気中にお
いて負に帯電し、アースされたワイヤW-1の外周
に付着する。尚フラツクスFの付着量を増加した
い時は重複塗装を行なえばよく、この場合は例え
ば最初は−60KV、最終部は−130KVというふう
に帯電電圧を順次高めていくのがよい。 The electrostatic coating booth 4 shown in FIG. 1 employs the electrostatic dipping method, and a porous ceramic plate 9 is arranged below the coating booth 8, on which electrodes are placed at approximately regular intervals. Electrodes 10 are arranged on the ceiling surface of the booth 8 as well as on the ceiling surface of the booth 8. These electrodes 10 are connected to a high voltage generator (not shown) and receive a negative applied voltage. On the other hand 11
is a ground wire that is in contact with the wire W -1 running inside the booth, and strong electrolysis occurs between the electrode 10 and the ground wire 11. Therefore, when air is blown from the air blowing fan 12 and the flux component placed on the ceramic plate 9 is blown up to form a fluidized bed, the powder becomes negatively charged in the ionized air and becomes grounded. It adheres to the outer periphery of wire W -1 . If it is desired to increase the amount of Flux F deposited, it is sufficient to perform repeated coatings. In this case, it is preferable to increase the charging voltage sequentially, for example -60 KV at the beginning and -130 KV at the final stage.
第2図は静電吹付法による塗装例を示す説明図
であり、ワイヤW-1は紙面貫通方向へ走行しなが
ら塗装ブース8内で静電吹付塗装を受けている。
ホツパー13にはフラツクスFが貯留されてお
り、定量供給用インジエクター14によつてスプ
レーガン15経由でブース8内へ吹込まれる。1
6は高電圧発生装置、10は電極、11はアース
線で、ワイヤW-1に向けて吹付けられるフラツク
スFを帯電させているが、このままの状態ではワ
イヤW-1のスプレーガン15側へ集中的に塗装さ
れるので、ワイヤW-1にねじり方向の回転を与え
るか、あるいはワイヤW-1のまわりに複数のスプ
レーガンを配置して外周へ均一に吹付ける様にす
ることが推奨される。17はフラツクス返還用流
路を示す。 FIG. 2 is an explanatory diagram showing an example of coating by electrostatic spraying, in which the wire W -1 is being electrostatically sprayed in the coating booth 8 while traveling in the direction penetrating the page.
Flux F is stored in the hopper 13 and is blown into the booth 8 via the spray gun 15 by the constant supply injector 14. 1
Reference numeral 6 is a high voltage generator, 10 is an electrode, and 11 is a ground wire, which charges the flux F that is sprayed toward the wire W -1.In this state, the flux F that is sprayed toward the wire W -1 will be charged to the spray gun 15 side of the wire W -1 . Since the coating will be applied intensively, it is recommended to twist the wire W -1 or arrange multiple spray guns around the wire W -1 to spray uniformly around the periphery. Ru. Reference numeral 17 indicates a flow path for returning flux.
この様にして静電塗装を行なつた後は、前述の
如く加熱焼成装置へ送つてフラツクスFを固定し
た後管状ワイヤ内へ挿入し、次いで所定寸法まで
伸線加工を行なえばよい。この様に本発明であれ
ばフラツクスを一旦ワイヤに付着させた後管状ワ
イヤ内へ挿入する方法を採用しているから、フラ
ツクスの充填率が長手方向で不均一になつたり局
部的な未充填部ができる様な恐れは皆無であり、
極めて安定した品質のフラツクス入りワイヤを得
ることができる。しかしフラツクスの塗装には静
電塗装を採用しており、水ガラス等の液状バイン
ダーを一切使用しておらず、且つ加熱焼成後直ち
に管状ワイヤ内へ充填する方式であるからフラツ
クスを絶乾状態で充填することができ、鋼製外皮
に継目が存在しないこととも相俟つてその性能は
極めて高いものとなる。 After electrostatic coating has been carried out in this manner, the wire may be sent to a heating and baking device to fix the flux F as described above, then inserted into a tubular wire, and then wire-drawn to a predetermined size. As described above, since the present invention adopts a method in which the flux is once attached to the wire and then inserted into the tubular wire, the filling rate of the flux may be uneven in the longitudinal direction or there may be local unfilled areas. There is no fear that this could happen,
A flux-cored wire of extremely stable quality can be obtained. However, electrostatic coating is used to apply the flux, and no liquid binder such as water glass is used at all, and since the flux is filled into the tubular wire immediately after heating and baking, the flux can be applied in an absolutely dry state. This, together with the fact that there are no seams in the steel shell, provides extremely high performance.
次に本発明の実施例を示す。 Next, examples of the present invention will be shown.
実施例 1
第1図に示す方法に準じ下記の条件でフラツク
ス入りワイヤを製造した。尚フラツクスを充填し
所定寸法(1.2mmφ)まで伸線加工した後のワイ
ヤは、引続いて脱脂・洗浄後銅めつき処理に付
し、通電性を高めたうえで製品とした。Example 1 A flux-cored wire was manufactured according to the method shown in FIG. 1 under the following conditions. After being filled with flux and drawn to a specified size (1.2 mmφ), the wire was subsequently degreased, washed, and copper-plated to improve electrical conductivity before being made into a product.
ワイヤ(W-1):低炭素鋼、1.0mmφ
管状ワイヤ(W-3):低炭素鋼、内径6.0mmφ外径
10.0mmφ
フラツクス:塩基性フラツクス(鉄粉、Fe−
Mn、Fe−Si、Fe−Ti、CaF2、TiO2、SiO2、
ZrO2:但しこれらは予めフエノール樹脂で表
面を絶縁処理して配合する)
粉末状接着剤:フエノール樹脂
静電塗装条件:電圧60KVワイヤ走行速度1m/
分
焼成条件:200℃×30分
フラツクス塗装厚:3mm
得られたフラツクス入りワイヤは外皮に継目が
なく、潤滑剤等も完全に除去されていると共に銅
めつき処理されているので、送給性及び通電性共
に極めて良好であり、またフラツクスの充填密度
が均一であると共に乾燥度も高いので、極めて良
好な溶接性を発揮することが確認された。
Wire (W -1 ): Low carbon steel, 1.0mmφ Tubular wire (W -3 ): Low carbon steel, inner diameter 6.0mmφ outer diameter
10.0mmφ Flux: Basic flux (iron powder, Fe-
Mn, Fe-Si, Fe-Ti, CaF2 , TiO2 , SiO2 ,
ZrO 2 : However, these are mixed by insulating the surface with phenolic resin in advance) Powder adhesive: Phenol resin Electrostatic coating Conditions: Voltage 60KV Wire running speed 1m/
Firing conditions: 200°C x 30 minutes Flux coating thickness: 3 mm The obtained flux-cored wire has no seams on the outer skin, lubricants, etc. are completely removed, and is copper-plated, making it easy to feed. It was confirmed that both the flux and the conductivity were extremely good, and since the flux packing density was uniform and the degree of dryness was high, it exhibited extremely good weldability.
第1図は本発明の実施例を示す概略工程説明
図、第2図は静電吹付塗装法を例示する説明図で
ある。
1……スプール、2……脱錆・脱脂装置、3…
…乾燥装置、4……静電塗装々置、5……加熱焼
成装置、6……ピアノ線、7a,7b……伸縮ダ
イス、W-1……ワイヤ、W-2……フラツクス塗装
ワイヤ、W-3……管状ワイヤ、W-4……フラツク
ス充填ワイヤ。
FIG. 1 is a schematic process explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram illustrating an electrostatic spray coating method. 1...Spool, 2...Rust removal/degreasing device, 3...
... Drying device, 4 ... Electrostatic coating equipment, 5 ... Heating and baking device, 6 ... Piano wire, 7a, 7b ... Telescopic die, W -1 ... Wire, W -2 ... Flux coating wire, W -3 ...Tubular wire, W -4 ...Flux-filled wire.
Claims (1)
させると共に、該ワイヤの外面に粉粒状接着剤を
含む粉粒状フラツクス組成物を静電塗装し、次い
で該フラツクスを加熱焼成した後、鋼製パイプ内
へ挿入して伸線加工することを特徴とする溶接用
フラツクス入りワイヤの製造方法。 2 特許請求の範囲第1項において、粉粒状フラ
ツクス組成物中に含まれる導電性物質の表面に絶
縁処理を施し、全体を絶縁性物質とした粉粒状フ
ラツクス組成物を使用するフラツクス入りワイヤ
の製造方法。[Claims] 1. A metal wire is run in the longitudinal direction in a coating booth, and a powder flux composition containing a powder adhesive is electrostatically applied to the outer surface of the wire, and then the flux is heated and baked. A method for manufacturing a flux-cored wire for welding, which comprises the step of inserting the wire into a steel pipe and drawing the wire. 2. In claim 1, manufacturing a flux-cored wire using a powdery flux composition in which the surface of the conductive material contained in the powdery flux composition is insulated and the entire surface is made of an insulating material. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8868582A JPS58205697A (en) | 1982-05-24 | 1982-05-24 | Production of flux cored wire for welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8868582A JPS58205697A (en) | 1982-05-24 | 1982-05-24 | Production of flux cored wire for welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58205697A JPS58205697A (en) | 1983-11-30 |
JPS6315076B2 true JPS6315076B2 (en) | 1988-04-02 |
Family
ID=13949686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8868582A Granted JPS58205697A (en) | 1982-05-24 | 1982-05-24 | Production of flux cored wire for welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58205697A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103358055A (en) * | 2013-06-22 | 2013-10-23 | 宁波市鄞州品达电器焊料有限公司 | Novel preparation method of active solder wire |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100668170B1 (en) | 2005-12-29 | 2007-01-11 | 고려용접봉 주식회사 | Baked flux cored wire for gas shield arc welding having excellent rust resistance and feedability and a method for preparing thereof |
PL2666580T3 (en) * | 2012-05-23 | 2021-03-08 | Lincoln Electric Italia S.R.L. | Solid-core welding wire and method for manufacturing same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144394A (en) * | 1979-03-13 | 1980-11-11 | Bekaert Sa Nv | Welded electrode |
-
1982
- 1982-05-24 JP JP8868582A patent/JPS58205697A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144394A (en) * | 1979-03-13 | 1980-11-11 | Bekaert Sa Nv | Welded electrode |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103358055A (en) * | 2013-06-22 | 2013-10-23 | 宁波市鄞州品达电器焊料有限公司 | Novel preparation method of active solder wire |
Also Published As
Publication number | Publication date |
---|---|
JPS58205697A (en) | 1983-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6180920B1 (en) | Electrode and method of making same | |
US4273798A (en) | Process for coating metal tubes with plastic materials | |
US3020182A (en) | Ceramic-to-metal seal and method of making the same | |
CN104203448B (en) | The manufacture method of composite component | |
JPS6315076B2 (en) | ||
US3768145A (en) | Method of in line coating of galvanized tubing | |
EP0233398A1 (en) | Graphite electrode with protective coating and method for its production | |
US2670424A (en) | Method of electric arc welding of metal or alloy studs and the like to metal or alloy plates and the like | |
US2560411A (en) | Method for making wire connecting devices | |
JPH06315793A (en) | Brazing suspension for forming thin brazing layer on substrate | |
EP0426258A1 (en) | Method and apparatus for manufacturing metal can bodies having an internal coating | |
US9597747B2 (en) | Methods for applying aluminum coating layer to a core of copper wire | |
WO2000038876A1 (en) | Method for producing open cored wire for electric arc welding, and plant for implementing the method | |
JPS6323270B2 (en) | ||
US1312254A (en) | Ernest henry jones | |
CN1100344A (en) | Surface treatment method providing metal cooker surface with high hardness and non-stickness | |
JPS583678A (en) | Preparation of plastiic coated metal material | |
GB632657A (en) | Improvements in or relating to flexible sheathed electric cables and their manufacture | |
JPS5890396A (en) | Manufacture of covered electrode | |
JPS604750B2 (en) | Coating method for welded joints of metal containers | |
US3187717A (en) | Method of coating aluminum | |
JPH09285078A (en) | Method of coating motor core with powder, and motor having motor core coated with powder by that method | |
JPS6032560B2 (en) | Manufacturing method of welding wire | |
JPS60255964A (en) | Thermal spraying material for thermal spraying machine | |
SU1676769A1 (en) | Method of electric contact facing with powdered materials |