JPS63150693A - Fuel exchanging mechanism of nuclear reactor - Google Patents

Fuel exchanging mechanism of nuclear reactor

Info

Publication number
JPS63150693A
JPS63150693A JP61297893A JP29789386A JPS63150693A JP S63150693 A JPS63150693 A JP S63150693A JP 61297893 A JP61297893 A JP 61297893A JP 29789386 A JP29789386 A JP 29789386A JP S63150693 A JPS63150693 A JP S63150693A
Authority
JP
Japan
Prior art keywords
fuel
core
plug
rotation
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61297893A
Other languages
Japanese (ja)
Inventor
茂樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61297893A priority Critical patent/JPS63150693A/en
Publication of JPS63150693A publication Critical patent/JPS63150693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Carriers, Traveling Bodies, And Overhead Traveling Cranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、高速増殖炉を対象とした原子炉の燃料交換
機構に関する。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Application Field This invention relates to a nuclear reactor fuel exchange mechanism intended for fast breeder reactors.

〔従来の技術〕[Conventional technology]

周知のように頭記原子炉では、原子炉容器の上面に配し
た回転プラグに燃料交換機、および制御棒駆動装置等を
含む炉心上部機構が配備されており、回転プラグの操作
により炉心の全ボジソヨンにアクセスして燃料交換、制
御棒の駆動操作等を行うように構成されている。
As is well known, in the above mentioned nuclear reactor, the upper core mechanism including the fuel exchanger and control rod drive device is installed in a rotating plug placed on the top of the reactor vessel. The system is configured to access the system to perform fuel exchange, control rod drive operations, etc.

この場合のアクセス方式として、従来では第3図(al
〜(d+に示す各種方式が公知である。図において、1
は図示されてない炉容器内の中心位置に収容された炉心
、2,3.4は回転プラグ、5は炉心上部機構、6は燃
料交換機、6aは燃料交換機のオフセットアーム、6b
はオフセノトア−1,6aの先端に支持したグリップを
装備のホールドダウン機構を示す。ここで、 fa1図は単回転プラグとオフセットアーム式燃料交換
機とを組合せた方式。
Conventionally, the access method in this case is as shown in Fig. 3 (al.
~(d+ Various methods are known. In the figure, 1
2, 3.4 are rotary plugs, 5 is a core upper mechanism, 6 is a fuel exchanger, 6a is an offset arm of the fuel exchanger, 6b
1 shows a hold-down mechanism equipped with a grip supported at the tip of the offset tore 1, 6a. Here, the FA1 diagram shows a system that combines a single-rotation plug and an offset arm type fuel exchanger.

Cb1図は2重回転プラグとオフセットアーム式12!
料交換機とを組合せた方式。
Cb1 diagram shows double rotation plug and offset arm type 12!
A method that combines a toll exchange machine.

fc1図は2重回転プラグと直動式燃料交換機とを組合
せた方式。
The fc1 diagram shows a system that combines a double rotating plug and a direct acting fuel exchanger.

(di U!Jは3重回転プラグと直動式燃料交換機と
を組合せた方式。
(di U!J is a system that combines a triple rotating plug and a direct-acting fuel exchanger.

を示すものであり、また図中のel+ e2. e3は
それぞれ炉心1回転プラグ、燃料交換機相互間の偏心量
、L旧ま燃料交換機のオフセット量、dは最外周回転プ
ラグの外径、Dは炉心を収容した原子炉容器(図示せず
)の最小必要半径を表している。
el+ e2. in the figure. e3 is the eccentricity between the core one-turn plug and the refueling machine, L is the offset amount of the old refueling machine, d is the outer diameter of the outermost rotating plug, and D is the reactor vessel (not shown) that houses the core. Represents the minimum required radius.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記した各種方式では、設計に際し燃料交換機
6 (オフセットアーム式燃料交換機ではオフセットア
ーム先端のホールドダウン機構)が炉心1の全ポジショ
ンにアクセスでき、かつ炉心上部機構5.燃料交換機6
.および各回転プラグ2〜4の軸受スタンドの相互間が
互いに干渉し合わないように各機器の寸法、およびその
レイアウト条件を設定する必要がある。例えば(5)図
の単回転プラグとオフセットアーム式燃料交換機とを組
合せた方式では、まず回転プラグ2に並置して据付けた
炉心上部機構5と燃料交換機6とは、燃料交換機のオフ
セットアーム6aの移動軌跡と炉心上部機構5とが互い
に干渉し合わないようにあらかじめ両者間の間隔を充分
に引き離して据付ける必要があり、このために回転プラ
グ2の必要な外径寸法dは大となり、かつ燃料交換機を
炉心1の中心部域までアクセス可能とするためには炉心
lの中心に対する回転プラグ2の回転中心との間の偏心
量も必然的に大きくなる。
By the way, in the above-mentioned various systems, when designing, the fuel exchanger 6 (the hold-down mechanism at the tip of the offset arm in an offset arm type fuel exchanger) can access all positions of the reactor core 1, and the upper core mechanism 5. fuel exchange machine 6
.. It is also necessary to set the dimensions of each device and its layout conditions so that the bearing stands of the rotating plugs 2 to 4 do not interfere with each other. For example, in the system (5) in which a single rotation plug and an offset arm type fuel exchanger are combined, first, the upper core mechanism 5 and the fuel exchanger 6, which are installed side by side on the rotating plug 2, are connected to the offset arm 6a of the fuel exchanger. In order to prevent the movement locus and the upper core mechanism 5 from interfering with each other, it is necessary to install the two with a sufficient distance between them, and for this reason, the required outer diameter dimension d of the rotating plug 2 becomes large, and In order to allow the refueling machine to access the central region of the core 1, the amount of eccentricity between the center of rotation of the rotary plug 2 and the center of the core 1 inevitably becomes large.

つまり上記従来の方式では、炉心lの外径=j法が決定
されると、必然的に最外周回転プラグの外径、8よび炉
心中心からの偏心量等が一義的に決り、しかもこれら寸
法は前記した炉心上部機構5と燃料交換機6との干渉回
避条件に制約されることから、この結果として炉心1を
収容する炉容器の径寸法は炉心外径に比べて大幅に増大
化し、このことが原子炉全体の小形、コンパクト化を図
る上での大きな障害となっている。
In other words, in the conventional method described above, when the outer diameter of core l = j method is determined, the outer diameter of the outermost rotating plug, the amount of eccentricity from the core center, etc. are necessarily uniquely determined, and these dimensions is limited by the interference avoidance conditions between the upper core mechanism 5 and the fuel exchanger 6, as described above, and as a result, the diameter of the reactor vessel housing the reactor core 1 becomes significantly larger than the outer diameter of the core. This is a major obstacle in making the entire nuclear reactor smaller and more compact.

この発明の目的は、上記した燃料交換機と炉心上部機構
との間の干渉回避条件を満足しつつ炉容器の外径を縮小
して原子炉全体の小形、コンパクト化が図れるように巧
みに構成した原子炉の燃料交換機構を堤供することにあ
る。
The purpose of this invention is to provide a cleverly constructed reactor that can reduce the outer diameter of the reactor vessel and make the entire reactor smaller and more compact while satisfying the conditions for avoiding interference between the fuel exchanger and the upper core mechanism. The purpose is to provide a fuel exchange mechanism for nuclear reactors.

C問題点をM失するための手段〕 上記問題点を解決するために、この発明によれば、原子
炉容器の上面に配備した単回転プラグに互いに接近して
炉心上部機構、および伸4iMアームを装備のオフセッ
トアーム式燃料交換機を並置搭載するとともに、炉心上
部機構の炉内側胴部には燃料交換機と対向する部位に周
面から川内中央部にまで達する切欠き空所を形成し、単
回転プラグの回転操作、および燃料交換機の回転、アー
ム伸縮操作の組合せにより燃料交換機を炉心側の指定ポ
ジションにアクセスして燃料交換を行うよう構成するも
のとする。
Means for Eliminating Problem C] In order to solve the above problem, according to the present invention, the core upper mechanism and the extended The offset arm type refueling machine equipped with is mounted side by side, and a notch space is formed in the inner body of the core upper mechanism in the part facing the fuel exchanger, reaching from the circumferential surface to the central part of the river. The fuel exchanger is configured to access a designated position on the core side and perform fuel exchange by a combination of the rotation operation of the plug, the rotation of the fuel exchanger, and the extension and contraction operation of the arm.

〔作用] 上記の構成により、通常の炉運転時には炉心上部機構に
より炉心に対する制御棒駆動等の必要な操作を行う。一
方、燃料交換時には単回転プラグの回転、および燃料交
換機の回転5アームの伸縮操作を組合せて炉心側の指定
されたポジションへの位置決めを行い、かつ炉心中心部
へのアクセスに対しては伸縮アームを伸ばしてホールド
ダウン機構を炉心上部機構の炉内側胴部に形成された切
欠き空所内へ進入させることにより、炉心側の全ポジシ
ョンへアクセスして燃料交換を行うことができるように
なる。
[Operation] With the above configuration, during normal reactor operation, the upper core mechanism performs necessary operations such as driving control rods to the reactor core. On the other hand, during refueling, the rotation of the single-rotation plug and the extension/retraction operation of the five rotating arms of the refueling machine are used to position the reactor at a designated position on the core side, and the telescopic arm is used to access the core center. By extending the hold-down mechanism and entering the notch space formed in the inner body of the core upper mechanism, it becomes possible to access all positions on the core side and perform fuel exchange.

〔実施例〕 第1図、第2図はこの発明の実施例による原子炉の燃料
交換機構を示すものであり、第3図に対応する同一部材
には同し符号が付しである。すなわち炉心1を収容した
炉容器7の上面には固定プラグ8、および単回転プラグ
2を備えており、この回転プラグ2には炉心上部機構5
.および咳炉心上部機構5に接近して伸縮アーム方式の
オフセットアーム式燃料交換機6が搭載されている。
[Embodiment] FIGS. 1 and 2 show a fuel exchange mechanism for a nuclear reactor according to an embodiment of the present invention, and the same members corresponding to FIG. 3 are given the same reference numerals. That is, the upper surface of the reactor vessel 7 housing the reactor core 1 is provided with a fixed plug 8 and a single-rotation plug 2, and the rotating plug 2 is equipped with a core upper mechanism 5.
.. A retractable arm type offset arm type refueling machine 6 is mounted close to the cough core upper mechanism 5.

ここで燃料交換機6の構造を述べると、燃料交換機は回
転プラグ2に搭載支持された本体軸部6cと、該本体軸
部6Cより側方に突き出すオフセットアームとしての伸
縮アーム6aと、該アームの先端に取付けたグリッパ6
dを装備のホールドダウン機構6bと、および本体軸の
炉外側に装備した駆動部6eとから成り、駆動部6eの
操作により本体軸部6Cの回転(矢印イ方向)、伸縮ア
ーム6aの伸縮操作(矢印口方向)、ホールドダウン機
構6bの昇降。
Describing the structure of the fuel exchanger 6 here, the fuel exchanger includes a main body shaft portion 6c mounted and supported on the rotary plug 2, a telescopic arm 6a as an offset arm that projects laterally from the main body shaft portion 6C, and a retractable arm 6a as an offset arm. Gripper 6 attached to the tip
It consists of a hold-down mechanism 6b equipped with d, and a drive part 6e equipped on the outside of the furnace shaft of the main body.By operating the drive part 6e, the main shaft part 6C rotates (in the direction of arrow A) and the telescopic arm 6a extends and contracts. (in the direction of the arrow), lifting and lowering of the hold-down mechanism 6b.

グリッパ6dの昇降(矢印凸方向)、並びにグリ・ツバ
爪の開閉操作を行う。
The gripper 6d is raised and lowered (in the convex direction of the arrow), and the grip and collar claws are opened and closed.

一方、前記炉心上部機構5に付いては、その炉内側胴部
5aにおける燃料交換機6と対向する部位に、胴部5a
の周面から胴内中央に達するように半径方向の切欠き空
所5bが切り欠き形成されている。
On the other hand, in the core upper mechanism 5, a body 5a is provided at a portion of the core inner body 5a facing the fuel exchanger 6.
A radial cutout space 5b is formed so as to reach the center of the cylinder from the circumferential surface of the shell.

この切欠き空所5bは後述のように燃料交換に際して燃
料交換機6を炉心1の中心領域にアクセスする場合に燃
料交換機6のホールドダウン機構6bの進入を許容する
ためのものである。
This cutout space 5b is for allowing the hold-down mechanism 6b of the fuel exchanger 6 to enter when the fuel exchanger 6 accesses the central region of the core 1 during fuel exchange as will be described later.

さらに回転プラグ2は軸受スタンド2aに支持されてお
り、図示されてない駆動装置により矢印二方向(第2図
)へ回転操作される。また9は燃料出入中継点となる炉
内の燃料中継機構、10は固定プラグ8を貫通した燃料
出入通路を示す。なお図示は燃料交換機6のホールドダ
ウン機構を炉心上部機構5の切欠き空所5b内へ進入操
作して炉心1の中央領域にアクカスしている状態を示す
Further, the rotating plug 2 is supported by a bearing stand 2a, and is rotated in two directions shown by arrows (FIG. 2) by a drive device (not shown). Further, numeral 9 indicates a fuel relay mechanism in the furnace which serves as a fuel inlet/outlet relay point, and 10 indicates a fuel inlet/outlet passage passing through the fixed plug 8. The illustration shows a state in which the hold-down mechanism of the fuel exchanger 6 is operated to enter into the notch space 5b of the upper core mechanism 5 to access the central region of the core 1.

次に上記構成による原子炉の燃料交換機構の動作に付い
て説明する。まず、原子炉の運転時には回転プラグ2の
回転操作で炉心上部機構5を炉心1に対応して位置決め
し、この状態で炉上部側から制御棒駆動装置により制御
棒の駆動操作等を行う。
Next, the operation of the nuclear reactor fuel exchange mechanism having the above configuration will be explained. First, during operation of the nuclear reactor, the core upper mechanism 5 is positioned relative to the reactor core 1 by rotating the rotary plug 2, and in this state, the control rod driving device is operated to drive the control rods from the reactor upper side.

一方、燃料交換時には回転プラグ2の回転、および燃料
交換機6の本体軸部6d、伸縮アーム6aの移動組合せ
による位置決め操作で炉心側で指定された燃料交換ボジ
シッンにアクセスし、この位置でホールドダウン機構6
b、グリッパ6Cを操作して燃料交換を行う。ここで特
に燃料交換機のホールドダウン機構6bを炉心上部機構
5の下面に位置している炉心1の中央領域ポジシリンへ
アクセスさせる場合には、一旦伸縮アーム6aを縮める
ように本体軸部側に折り畳み、かつホールドダウン機構
6bが炉心上部機構5の胴部5aの周面に開口する前記
の切欠き空所5bへ向くように本体軸6dを回転し、こ
こから伸縮アーム6aを必要なオフセント量だけ伸ばし
て図示のようにホールドダウン機構6bを切欠き空所5
Cの中に進入させる。また燃料交換機6と炉内側の燃料
中継機構9との間で燃料の受は渡しを行うには、図示位
置から伸縮アーム6aを一旦縮めてホールドダウン機構
6bを炉心上部機構5の胴部外に引出し、さらに本体軸
6dを180度回転させてから伸縮アーム6aを炉内中
継機構9の位置まで伸ばして燃料の受は渡しを行う。こ
のようにして燃料交換[6を炉心1側の全ポジション、
および炉内中継機構9に対して任意な位置へのアクセス
が可能となる。なお燃料交換機6のアクセス可能範囲を
第2図に斜線領域Aで示す。
On the other hand, during fuel exchange, the designated fuel exchange position on the core side is accessed by a positioning operation by rotating the rotary plug 2 and moving the main body shaft 6d of the fuel exchanger 6 and the telescopic arm 6a, and at this position, the hold-down mechanism is activated. 6
b. Operate the gripper 6C to exchange fuel. Here, in particular, when the hold-down mechanism 6b of the fuel exchanger is to access the central region of the core 1 located on the lower surface of the core upper mechanism 5, the telescopic arm 6a is once folded toward the main body shaft side so as to retract. Then, the main body shaft 6d is rotated so that the hold-down mechanism 6b faces the notch space 5b opened in the circumferential surface of the body 5a of the upper core mechanism 5, and the telescopic arm 6a is extended from there by the required offset amount. As shown in the figure, cut out the hold-down mechanism 6b and insert it into the space 5.
Enter into C. In addition, in order to receive and transfer fuel between the fuel exchanger 6 and the fuel relay mechanism 9 inside the reactor, the telescopic arm 6a is once retracted from the illustrated position and the hold-down mechanism 6b is moved outside the body of the upper core mechanism 5. After pulling out the main body shaft 6d and rotating the main body shaft 6d by 180 degrees, the telescopic arm 6a is extended to the position of the in-furnace relay mechanism 9 to receive and transfer the fuel. In this way, fuel exchange [6 is all positions on the core 1 side,
The in-furnace relay mechanism 9 can be accessed at any position. The accessible range of the fuel exchanger 6 is shown in FIG. 2 by a shaded area A.

また上記の構成によれば、炉心上部機構5と燃料交tA
m6との干渉を回避しつつ炉心上部機構5と燃料交換機
6とを単回転プラグ2上で接近して並置搭載することが
可能であり、したがって設計上での回転プラグ2の外径
寸法dを互いに近接し合う炉心上部機構5と燃料交換機
6の本体を含む外接円にまで縮小でき、かつ燃料交換4
i!6を炉心1の中心領域へのアクセスするために必要
な炉心の中心と単回転プラグ2の回転中心との間の偏心
量も少なくて対応でき、これにより炉心1に対する炉容
器7の必要な外径寸法D(第1図)を第3図で述べた従
来の各種方式と比べて大幅に縮小することができるよう
になる。
Further, according to the above configuration, the upper core mechanism 5 and the fuel exchange tA
It is possible to mount the upper core mechanism 5 and the fuel exchanger 6 close to each other on the single rotating plug 2 while avoiding interference with the rotating plug 2. Therefore, the outer diameter dimension d of the rotating plug 2 can be It can be reduced to a circumscribed circle including the main bodies of the upper core mechanism 5 and the fuel exchanger 6 that are close to each other, and the fuel exchanger 4
i! The amount of eccentricity between the center of the core and the center of rotation of the single-rotation plug 2, which is required to access the central region of the reactor core 1, can be accommodated with a small amount of eccentricity. The diameter dimension D (FIG. 1) can be significantly reduced compared to the various conventional methods described in FIG.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、原子炉容器の上面
に配備した単回転プラグに互いに接近して炉心上部機構
、および伸縮アームを装備のオフセットアーム式燃料交
換機を並置搭載するとともに、炉心上部機構の炉内側胴
部には燃料交換機と対向する部位に周面から胴内中央部
にまで達する切欠き空所を形成し、単回転プラグの回転
操作。
As described above, according to the present invention, an upper core mechanism and an offset arm type refueling machine equipped with a telescoping arm are mounted in parallel to each other in close proximity to the single-rotation plug provided on the upper surface of the reactor vessel. A notch space is formed in the inner shell of the mechanism in the part facing the fuel exchanger that reaches from the circumferential surface to the center of the shell, and is used to rotate the single-rotation plug.

および燃料交換機の回転、アーム伸縮操作の組合せによ
り燃料交換機を炉心側の指定ポジションにアクセスして
燃料交換を行うよう構成したことにより、単純な構成の
単回転プラグ方式で炉心上部機構と燃料交換機構の干渉
を回避しつつ、従来の各種方式と比べて回転プラグの外
径寸法のに6ftm、化とともに、炉容器の必要外径寸
法を大幅に縮小して原子炉全体構成の小形、コンパクト
化を図ることができる。
By combining the rotation of the fuel exchanger and the extension/retraction operation of the arm, the fuel exchanger is configured to access a designated position on the core side to perform fuel exchange, allowing the simple single-rotation plug system to connect the upper core mechanism and fuel exchange mechanism. In addition to reducing the outer diameter of the rotating plug to 6 ftm compared to conventional methods, the required outer diameter of the reactor vessel is significantly reduced, making the overall reactor configuration smaller and more compact. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第ttaは本発明実施例による原子炉の燃料交換機構を
示す縦断面図、第2図は第1図の平面配置図、第3図は
従来の各種方式による燃料交換機構を示す略示平面配置
図で、falは単回転プラグとオフセットアーム式燃料
交換機とを組合せた方式を示す図、(hlは2重回転プ
ラグとオフセットアーム式燃料交換機とを組合せた方式
を示す図、telは2重回転プラグと直動式燃料交換機
とを組合せた方式を示す図、(diは3重回転プラグと
直動式燃料交換機とを組合せた方式を示す図である。各
図において、 1:炉心、2:単回転プラグ、5:炉心上部機構、5a
:炉内側胴部、5b=切欠き空所、6:燃料交換機、6
a:伸縮アーム、6b:ホールドダウン機構、6cニゲ
リツパ、6d:本体軸部、7:炉容器。 、・で−1、 へマ人存Jマ士 山 口  a \・、   、I第1
図 第2図
Fig. tta is a vertical sectional view showing a fuel exchange mechanism for a nuclear reactor according to an embodiment of the present invention, Fig. 2 is a plan layout diagram of Fig. 1, and Fig. 3 is a schematic plan layout showing fuel exchange mechanisms according to various conventional methods. In the figure, fal is a diagram showing a combination of a single-rotation plug and an offset arm type fuel exchanger, (hl is a diagram showing a combination of a double-rotation plug and an offset-arm type fuel exchanger, and tel is a diagram showing a combination of a double-rotation plug and an offset-arm type fuel exchanger. A diagram showing a system in which a plug and a direct-acting refueling machine are combined, (di is a diagram showing a system in which a triple rotating plug and a direct-acting refueling machine are combined. In each diagram, 1: core, 2: Single rotation plug, 5: Core upper mechanism, 5a
: Furnace inner body, 5b=notch space, 6: Fuel exchanger, 6
a: telescopic arm, 6b: hold-down mechanism, 6c nigerippa, 6d: main body shaft, 7: furnace vessel. ,・de-1, Hema J-Masshi Yamaguchi a \・, ,I 1st
Figure 2

Claims (1)

【特許請求の範囲】 1)原子炉容器の上面に配備した単回転プラグに互いに
接近して炉心上部機構、および伸縮アームを装備のオフ
セットアーム式燃料交換機を並置搭載するとともに、炉
心上部機構の炉内側胴部には燃料交換機と対向する部位
に周面から胴内中央部にまで達する切欠き空所を形成し
、単回転プラグの回転操作、および燃料交換機の回転、
アーム伸縮操作の組合せにより燃料交換機を炉心側の指
定ポジションにアクセスして燃料交換を行うよう構成し
たことを特徴とする原子炉の燃料交換機構 2)特許請求の範囲第1項記載の原子炉の上部構造にお
いて、燃料交換機が回転プラグに搭載支持された本体軸
部と、該本体軸部より側方に突き出す伸縮アームと、該
アームの先端に取付けたグリッパを装備のホールドダウ
ン機構とから成ることを特徴とする原子炉の燃料交換機
[Scope of Claims] 1) A core upper mechanism and an offset arm type refueling machine equipped with a telescoping arm are mounted in close proximity to each other on a single-rotation plug provided on the upper surface of the reactor vessel, and the reactor core upper mechanism is The inner body has a cutout space extending from the circumferential surface to the center of the body at the part facing the fuel exchanger, which allows the rotation of the single-rotation plug and the rotation of the fuel exchanger.
2) A nuclear reactor fuel exchange mechanism characterized in that the fuel exchange machine is configured to access a designated position on the core side and perform fuel exchange by a combination of arm extension and contraction operations.2) A nuclear reactor fuel exchange mechanism according to claim 1. The upper structure consists of a main body shaft in which the fuel exchanger is mounted and supported by a rotating plug, a telescoping arm projecting laterally from the main body shaft, and a hold-down mechanism equipped with a gripper attached to the tip of the arm. A nuclear reactor fuel exchange mechanism characterized by
JP61297893A 1986-12-15 1986-12-15 Fuel exchanging mechanism of nuclear reactor Pending JPS63150693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297893A JPS63150693A (en) 1986-12-15 1986-12-15 Fuel exchanging mechanism of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297893A JPS63150693A (en) 1986-12-15 1986-12-15 Fuel exchanging mechanism of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS63150693A true JPS63150693A (en) 1988-06-23

Family

ID=17852473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297893A Pending JPS63150693A (en) 1986-12-15 1986-12-15 Fuel exchanging mechanism of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS63150693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267995A (en) * 1988-09-02 1990-03-07 Hitachi Ltd Fuelling equipment of fast breeder reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162995A (en) * 1984-02-06 1985-08-24 三菱重工業株式会社 Nuclear reactor
JPS60244896A (en) * 1984-05-21 1985-12-04 株式会社東芝 Fast breeder type reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162995A (en) * 1984-02-06 1985-08-24 三菱重工業株式会社 Nuclear reactor
JPS60244896A (en) * 1984-05-21 1985-12-04 株式会社東芝 Fast breeder type reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267995A (en) * 1988-09-02 1990-03-07 Hitachi Ltd Fuelling equipment of fast breeder reactor

Similar Documents

Publication Publication Date Title
JPS63150693A (en) Fuel exchanging mechanism of nuclear reactor
JPS63150690A (en) Upper structure of nuclear reactor
JPS63148197A (en) Upper structure of nuclear reactor
JPH0782111B2 (en) Refueling method in reactor
JPH0823597B2 (en) Fast breeder reactor fuel handling equipment
JPS60244896A (en) Fast breeder type reactor
JPH0782110B2 (en) Refueling method in reactor
JP3085788B2 (en) Fuel element exchange device
JPS60187896A (en) Charger for fuel
KR100253891B1 (en) Dismountable fuel exchange apparatus for nuclear reactors
US4142935A (en) Nuclear reactor
JP2856864B2 (en) Fast breeder reactor
CN220556121U (en) Monitoring device
JPS635297A (en) Upper structure of fast breeder reactor
JP3104471B2 (en) Refueling machine gripper for fast breeder reactor
JPS5818196A (en) Hold down device of reactor fuel exchanging machine
JPS59147299A (en) Nuclear fuel assembly handling device
EP0240602A2 (en) Fuel transfer means
JP3028678B2 (en) Reactor upper mechanism of fast breeder reactor
JPH0210480Y2 (en)
JPH0329893A (en) Refuelling device
JPS6089794A (en) Nuclear reactor
JPH04223298A (en) Fuel exchanger
JPH05273383A (en) Refueling machine for fast breeder reactor
JPH03255991A (en) Fuel replacing method for fast reactor