JPS63150317A - Production of resol phenolic resin - Google Patents

Production of resol phenolic resin

Info

Publication number
JPS63150317A
JPS63150317A JP29711586A JP29711586A JPS63150317A JP S63150317 A JPS63150317 A JP S63150317A JP 29711586 A JP29711586 A JP 29711586A JP 29711586 A JP29711586 A JP 29711586A JP S63150317 A JPS63150317 A JP S63150317A
Authority
JP
Japan
Prior art keywords
epoxy resin
parts
bisphenols
epoxy
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29711586A
Other languages
Japanese (ja)
Inventor
Yasushi Nakao
泰志 中尾
Kaoru Morita
薫 森田
Tetsuo Ezawa
江沢 哲夫
Tomoo Konakawa
共生 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP29711586A priority Critical patent/JPS63150317A/en
Publication of JPS63150317A publication Critical patent/JPS63150317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain a resin remarkably low in a low-molecular phenol component content and useful for, especially, a can interior paint, by reacting a specified capped epoxy resin with formaldehyde in the presence of a basic catalyst. CONSTITUTION:An epoxy resin of a mol.wt. of 350-6,000 and an epoxy equivalent of 150-4,000, preferably, of a mol.wt. of 350-1,000 and an epoxy equivalent of 150-700 is reacted with a bisphenol to prepare an epoxy resin of an epoxy equivalent >=500, preferably, >=10,000, wherein at least one of its terminals is chemically bound to the bisphenol. The obtained capped epoxy resin is dissolved in an organic solvent and subjected to resol formation reaction in the presence of formaldehyde to obtain the purpose resin.

Description

【発明の詳細な説明】 本発明は新規な樹脂構造をもつレゾール型フェノール樹
脂の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a resol type phenolic resin having a novel resin structure.

周知のようにレゾール型フェノール樹脂は石炭酸、ビス
フェノールA等を原料とし、塩基性触媒の存在下でホル
ムアルデヒド類を反応させることによりメチロール化、
高分子量化させて合成される。このようなフェノール樹
脂は熱硬化性を有し、硬化剤として広く用いられており
、近年エポキシと組み合わせることにより、缶内面用塗
料等としてもその有用性が知られている。
As is well known, resol type phenolic resins are made from carbonic acid, bisphenol A, etc., and are converted into methylol by reacting formaldehyde in the presence of a basic catalyst.
It is synthesized by increasing the molecular weight. Such phenolic resins have thermosetting properties and are widely used as curing agents, and in recent years have been known to be useful as paints for the inside of cans when combined with epoxy.

しかしながら従来のフェノール樹脂には低分子量成分が
多く含まれており、それに起因すると考えられる問題点
、例えば缶内面用塗料におけるKMnO4消費量、フレ
ーバー性、ヤニ等の問題が指摘されているのが現状であ
る。
However, conventional phenolic resins contain many low-molecular-weight components, and problems that are thought to be caused by this, such as KMnO4 consumption, flavor, and tar in paint for the inside of cans, have been pointed out. It is.

そこで本発明者らはそれらの問題点を解決すべく鋭意検
討を重ねた結果、ビスフェノール類と工・ ピクロルヒ
ドリンとの結合によって得られるエポキシ樹脂と、ビス
フェノール類とを反応させて得られる片末端ないしは両
末端がビスフェノール類であるエポキシ樹脂(以後これ
を「キャップ化エポキシ樹脂」と呼ぶ)に塩基性触媒の
存在下、ホルムアルデヒド類を反応させることによって
得られるレゾール型フェノール樹脂が、従来の欠点を大
巾に改良しうるということを見出した。つまり、この発
明は、キャップ化エポキシ樹脂をレゾール化するという
ものであり、レゾール化原料自体が従来の方法に比較し
て高分子?であるため、必然的に低分子量フェノール成
分が極めて少なく、特に缶用塗料などで問題になる抽出
性の改善には非常に有効なものである。
Therefore, the present inventors have conducted intensive studies to solve these problems, and have found that an epoxy resin obtained by combining bisphenols with polychlorohydrin and bisphenols can be used at one or both ends. Resol-type phenolic resins, which are obtained by reacting formaldehydes with epoxy resins whose terminal ends are bisphenols (hereinafter referred to as "capped epoxy resins"), in the presence of a basic catalyst, have overcome the drawbacks of conventional resins. We found that it can be improved. In other words, this invention converts a capped epoxy resin into a resol, and the resol-forming raw material itself is polymeric compared to conventional methods. Therefore, it necessarily contains very little low-molecular weight phenol components, and is particularly effective in improving extractability, which is a problem in paints for cans and the like.

該レゾール型フェノール樹脂の製造方法!I+:、2・
の工程から成り立つ。@1の工程はビスフェノール類が
片末端ないしは両末端反応したエポキシ、いわゆるキャ
ップ化エポキシ樹脂の合成である、つまりビスフェノー
ル類とエピクロルヒドリンとの結合によって得られる分
子!350〜6.000エポキシ当t150〜4,00
0好ましくは分子量350〜1,000エポキシ尚1i
150〜700のエポキシ樹脂に、ビスフェノール類を
反応、させること・によってエポキシ当量500以上、
好ましくはエポキシ当11(1,000以上であるよう
な、実質的にはビスフェノール類が片末端ないしは両末
端に反応したエポキシ樹脂を合成する。第2の工程4レ
ゾール化工程である。第1の工程で得られたキャップ化
エポキシ樹脂を有機溶剤に溶解し、次いで塩基性触媒の
存在下、ホルムアルデヒド類を加えてレゾール化反応を
行なう。有機溶剤としてはn−ブチルアルコール等のア
ルコール系、ブチルセロソルブ等のセロソルブ系等、キ
ャップ化エポキシ樹脂を溶解させるものを用いることが
できる。塩基性触媒は、一般のレゾール化触媒として周
知である水酸化ナトリウム、水酸化カルシウム・等の金
属アルカリ類、リン酸・ナトリウム等の塩基性塩類、ト
リエチルアミン等のアミン類等を1用いることができ、
キャップ化エポキシ樹脂、1モ、ルに対して0.005
〜0.2モルの範囲が望ましい。
Method for producing the resol type phenolic resin! I+:, 2・
It consists of the following steps. Step @1 is the synthesis of an epoxy resin in which bisphenols are reacted at one or both ends, a so-called capped epoxy resin, which is a molecule obtained by combining bisphenols and epichlorohydrin! 350-6,000 t150-4,00 per epoxy
0 Preferably molecular weight 350 to 1,000 epoxy and 1i
Epoxy equivalent of 500 or more by reacting bisphenols with epoxy resin of 150 to 700,
Preferably, an epoxy resin having an epoxy molecular weight of 11 (1,000 or more), in which bisphenols are substantially reacted at one or both ends, is synthesized. Second step 4 is a resolization step. The capped epoxy resin obtained in the process is dissolved in an organic solvent, and then formaldehyde is added in the presence of a basic catalyst to perform a resolization reaction.As the organic solvent, alcohols such as n-butyl alcohol, butyl cellosolve, etc. A catalyst that dissolves the capped epoxy resin can be used, such as cellosolve type.Basic catalysts include metal alkalis such as sodium hydroxide and calcium hydroxide, which are well known as general resolization catalysts, phosphoric acid, etc. Basic salts such as sodium, amines such as triethylamine, etc. can be used.
Capped epoxy resin, 0.005 per mole
A range of 0.2 mol to 0.2 mol is desirable.

0.005モル以下ではレゾール化反応が極めて遅(,
0,2モル以上では生成樹脂中の残存触媒が問題となる
。アルデヒド類としてはホルマリン水、有機溶剤に溶解
せしめたホルムアルデヒド、パラホルムアルデヒドから
選ばれ、キャップ化エポキシ樹脂の未明ビスフェノール
類のモル数に対するホルムアルデヒド類のモル数が2〜
6、好ましくは4〜6である。6以上では生成樹脂中の
遊離ホルマリン量が多くなシ、刺激臭等の問題が大きい
If it is less than 0.005 mol, the resolization reaction is extremely slow (,
If the amount exceeds 0.2 mol, residual catalyst in the resulting resin becomes a problem. The aldehyde is selected from formalin water, formaldehyde dissolved in an organic solvent, and paraformaldehyde, and the number of moles of formaldehyde relative to the number of moles of unknown bisphenols in the capped epoxy resin is 2 to
6, preferably 4-6. If it is 6 or more, the amount of free formalin in the produced resin is large, and there are serious problems such as irritating odor.

また2以下の場合、レゾール化が充分に進まず所。Also, if it is 2 or less, resolization is not progressing sufficiently.

期の目的を達することが困難である。It is difficult to achieve the objectives of the period.

以上の方法によって合成されたレゾール型フェノール樹
脂は従来のビスフェノール類から合成されるレゾール型
フェノール樹脂に比較して低分子tg分がかなり少ない
という特徴を有し、特に缶内面用塗料の硬化、剤として
用いfc場合にKMnO4消費量、フレーバー性等が非
常に優れるということを見出した。
The resol type phenolic resin synthesized by the above method has a feature that it has a considerably lower low molecular weight TG content than the resol type phenol resin synthesized from conventional bisphenols. It has been found that when used as fc, KMnO4 consumption, flavor properties, etc. are very excellent.

次に実施例を示し、より詳細に説明する。また実施例、
比較例に2載される「部」及び「%」はそnぞれ「重量
部」及びr uI′i%」を示す。
Next, examples will be shown and explained in more detail. Also examples,
"Parts" and "%" listed in Comparative Examples indicate "parts by weight" and "ruI'i%", respectively.

実施例1 ビスフェノールA228部、エピコート828(シェル
製エポキシ樹脂エポキシ当f188)188部、トリー
n−ブチルアミン0.1%を攪拌器と還流冷却器を備え
た反応釜に仕込み、160℃に昇温し4時間反応させエ
ポキシ当−310500のビスフェノールA末端エポキ
シ樹脂を合成する。
Example 1 228 parts of bisphenol A, 188 parts of Epikote 828 (epoxy resin epoxy resin manufactured by Shell F188), and 0.1% of tri-n-butylamine were charged into a reaction vessel equipped with a stirrer and a reflux condenser, and the temperature was raised to 160°C. The reaction was carried out for 4 hours to synthesize a bisphenol A-terminated epoxy resin having an epoxy weight of -310,500.

次いで糸を冷却後n−ブタノール229部を加え、キャ
ップ化エポキシ樹脂を溶解し、さらにIN−NaoH2
2部を加える。そして37%ホルマリン水324部を加
え、90℃に昇温し4時間レゾール化反応をさせる。次
いで、水により洗浄し分離する溶剤、水を排出した後、
減圧度650mmHfにて加熱し、脱水脱溶剤及び脱遊
離ホルマリンを行なっ念。濃g70%に到茅した時膚で
n−ブタノールにより55%に希釈し、重量平均分子量
3200のレゾール(iフェノール樹脂を得f/、、。
Next, after cooling the yarn, 229 parts of n-butanol was added to dissolve the capping epoxy resin, and further IN-NaoH2
Add 2 parts. Then, 324 parts of 37% formalin water was added, the temperature was raised to 90°C, and a resolization reaction was carried out for 4 hours. Then the solvent is washed and separated by water, after draining the water;
Be sure to heat at a reduced pressure of 650 mmHf to remove water, solvent, and formalin. When the concentration reached 70%, it was diluted to 55% with n-butanol to obtain a resol (phenolic resin) with a weight average molecular weight of 3200.

実施例2 ビスフェノールA163m、エピコート828188部
、ト17− fi−ブチルアミン0.1%、ブチルセロ
ソルブ38部を攪拌器と還流冷却器を備えた反応釜に仕
込み160℃にで4時間反応させエポキシ当f114.
OOOのビスフェノールA末端エポキシ樹脂を合成する
。次いで系を冷却後、n−ブタノール160部を加えキ
ャップ化エポキシ樹脂を溶解し、さらにlN−NaOH
46部を加える。そして:)7%ホルマリン水348部
を加え、90℃に昇温し6時間レゾール化反応をさせる
Example 2 163 parts of bisphenol A, 828,188 parts of Epicoat, 0.1% of 17-fi-butylamine, and 38 parts of butyl cellosolve were placed in a reaction vessel equipped with a stirrer and a reflux condenser, and reacted at 160°C for 4 hours to form a mixture of epoxy and F114.
Synthesize OOO bisphenol A-terminated epoxy resin. After cooling the system, 160 parts of n-butanol was added to dissolve the capped epoxy resin, and then 1N-NaOH was added.
Add 46 parts. Then:) 348 parts of 7% formalin water was added, the temperature was raised to 90°C, and the resolization reaction was carried out for 6 hours.

次いで、水により洗浄し分離する溶剤、水を排出した後
、減圧度650mmHfにて加熱し、脱水、脱溶剤及び
脱遊離ホルマリンを行なったっ濃度65%に到達した時
点でn−ブタノールにより55%に希釈し、重量平均分
子[4500のレゾール化フェノール樹脂を得た。
Next, the solvent to be separated was washed with water, and after the water was discharged, it was heated at a reduced pressure of 650 mmHf to perform dehydration, solvent removal, and free formalin. When the concentration reached 65%, it was reduced to 55% with n-butanol. It was diluted to obtain a resolized phenolic resin with a weight average molecular weight of 4500.

比較例1 ビスフェノールA 228 m、”−ブタノール228
部、トリエチルアミン9.33部−37%ホルマリン水
324部を陛拌器と還流冷却器を備えた反応釜に仕込み
、90〜95℃に昇温し、6時tm遠流さぜながら反応
させる。ついで、減圧度650mmHfにて加熱し、脱
水、脱釜剤および脱遊離ホルマリンを行−た。諮度70
%に到達した時点で、n−ブタノールにより55%にま
で希釈した。
Comparative Example 1 Bisphenol A 228 m, "-butanol 228
9.33 parts of triethylamine and 324 parts of 37% formalin water were placed in a reaction vessel equipped with a stirrer and a reflux condenser, heated to 90 to 95°C, and reacted with distant current stirring at 6:00 tm. Then, the mixture was heated at a reduced pressure of 650 mmHf to perform dehydration, deboiling agent, and removal of formalin. Consultation level 70
%, diluted to 55% with n-butanol.

比較例2 ビスフェノールA228部、n−ブタノール228部、
7ンモニア5−0’SB、37%ホルマリン水324部
を攪拌器と還流冷却器を備えた反応釜に仕込み、90〜
95℃に昇温し6時間還流させながら反応し、ついでリ
ン酸7部仕込み80℃にて1時間反応きせる。ついで、
分離される水を排出したのち、減圧度650 rnmH
fにて加熱し、脱水、脱溶剤および脱遊離ホルマリンを
行った。濃度70%に到達した時点で、n−ブタノール
によシ希釈し、55%にした。
Comparative Example 2 228 parts of bisphenol A, 228 parts of n-butanol,
7 Ammonia 5-0'SB and 324 parts of 37% formalin water were charged into a reaction vessel equipped with a stirrer and a reflux condenser.
The temperature was raised to 95°C and the reaction was carried out under reflux for 6 hours, and then 7 parts of phosphoric acid was added and the reaction was allowed to proceed at 80°C for 1 hour. Then,
After discharging the water to be separated, the degree of vacuum is 650 rnmH.
Dehydration, solvent removal, and removal of formalin were performed by heating at f. When a concentration of 70% was reached, it was diluted with n-butanol to 55%.

〈塗膜性能試験〉 上記実施例1〜2および比較例1〜2で得られたフェノ
ール樹脂を用いて下記のように水性塗料を餉製し100
μアルミ箔の片面に、該水性塗料を8〜10μになるよ
うに塗布し、次いで雰囲気温度200℃で約30秒乾燥
させた。文にその裏面にも上記水性塗料を8〜10μに
なるよう塗布し、次いで雰囲気温度200℃で約80秒
乾燥させ、水抽出液フレーバーテスト用試瞼)くネルを
作成した。
<Coating film performance test> Using the phenolic resins obtained in Examples 1 and 2 and Comparative Examples 1 and 2 above, water-based paints were prepared as follows.
The water-based paint was applied to one side of μ aluminum foil to a thickness of 8 to 10 μ, and then dried at an ambient temperature of 200° C. for about 30 seconds. The above water-based paint was also applied to the back side of the lid to a thickness of 8 to 10 μm, and then dried at an ambient temperature of 200° C. for about 80 seconds to prepare a test eyelid for a water extract flavor test.

丈に上記水性塗料を4#25ブリキ板上に8〜10μに
なるよう塗布し、次いで雰囲気温度200℃で約2分間
転・操させ、試験パネルを作成した。
The above water-based paint was coated on a 4#25 tin plate to a thickness of 8 to 10 μm, and then rotated for about 2 minutes at an ambient temperature of 200° C. to prepare a test panel.

各種試験法を下記に示し、その試験結果を下記第1表に
示す。
Various test methods are shown below, and the test results are shown in Table 1 below.

〔水性塗料の調製〕[Preparation of water-based paint]

配合 (1)  カルボキシル基含有アクリル系樹脂溶液*l
           150部(2)  エポキシ樹
脂溶液*2     283  部(3)n−ブタノー
ル         86 部(4)2−ブトキシェタ
ノール     47 部(5)枦イオン水     
       3.2部(6)  ジメチルアミノエタ
ノール     5.3部(71ジメチルアミノエタノ
ール     9.5部(秒 実施例および比較例で得
た フェノール樹脂溶液       10 部分   計
        1240部*1  メタクリル酸17
4部、スチレン87部及びエチルアクリレート29部を
共重合した酸価390、固形分30%のアクリル樹脂 *2  エピコー)828(シェル社製エポキシ樹脂)
500部、ビスフェノールA286部、トリーn−ブチ
ルアミン0.5部及びメチルイソブチルケトン86部を
反応せしめた90%エポキシ樹脂溶液 反応容器に前記(1)〜(4)を入れ、窒素気流下で1
15℃に加熱し、樹脂成分を溶解せしめた。溶解後10
5℃まで冷却し、(5)〜(6)の順に加え、105℃
で3時間保持した。反応生成物はアクリル系樹脂/エポ
キシ樹脂の固形分重量比が15/85である。反応は、
酸価を測定して追跡し、反応終点では酸価51であう次
。次いで3時間後に(ηを添加し、5分後に(8)を墨
加し、105℃で30分間ホヅトプレンドした。その後
、(9)を30分間にわたって添加して、固形分25%
の安定な水性塗料を得た。
Formulation (1) Carboxyl group-containing acrylic resin solution *l
150 parts (2) Epoxy resin solution *2 283 parts (3) n-butanol 86 parts (4) 2-butoxycetanol 47 parts (5) Ashi ionized water
3.2 parts (6) Dimethylaminoethanol 5.3 parts (71) Dimethylaminoethanol 9.5 parts (seconds) Phenol resin solution obtained in Examples and Comparative Examples 10 parts Total 1240 parts*1 Methacrylic acid 17
4 parts, 87 parts of styrene, and 29 parts of ethyl acrylate, an acrylic resin with an acid value of 390 and a solid content of 30%*2 (Epicor) 828 (epoxy resin manufactured by Shell)
500 parts of bisphenol A, 286 parts of tri-n-butylamine, and 86 parts of methyl isobutyl ketone were placed in a 90% epoxy resin solution reactor.
It was heated to 15°C to dissolve the resin component. After dissolving 10
Cool to 5℃, add (5) to (6) in order, and heat to 105℃
It was held for 3 hours. The reaction product has a solid content weight ratio of acrylic resin/epoxy resin of 15/85. The reaction is
The acid value was measured and followed, and the acid value was 51 at the end of the reaction. Then, after 3 hours, (η) was added, and after 5 minutes, (8) was added and powder blended at 105°C for 30 minutes. Thereafter, (9) was added over 30 minutes to give a solid content of 25%.
A stable water-based paint was obtained.

(1)密着性 ブリキに塗装した試験パネルの塗膜面にナイフを使用し
て約1.5 tmの巾で縦、横それぞれ11本の切り目
をゴバン目に入れる。24+w巾のセロノ1ン粘でテー
プを密着させ、譬くφ1離した時のゴパン目部の密着性
を観察する。
(1) Adhesion Use a knife to make 11 vertical and horizontal cuts, each about 1.5 tm wide, on the coated surface of the test panel painted on tinplate. Adhere the tape with 24+w width of Seronon adhesive and observe the adhesion of the goblin part when it is separated by φ1.

○:全く剥離なし、△:若干剥離あり、×:著しい剥離
あり。
○: No peeling at all, △: Slight peeling, ×: Significant peeling.

(2)耐沸騰水性 ブリキに塗装した試験パネルを100℃−30分で水中
処理後、鼓膜を視覚及び七ロノ・ン粘看テープ剥離で(
りの密着性と同一の評価で判定する。
(2) Test panels painted on boiling water-resistant tinplate were treated underwater at 100℃ for 30 minutes, and the eardrums were removed visually and with adhesive tape (
Judgment is made using the same evaluation as for adhesion.

(3)  KM、104消費量 各種水溶性塗料を塗装した100μアルミ箔を、塗布面
積:活性炭りIn!理水道水が1−:1−となるように
、耐熱ガラス製ボトルに入れ、清をし、12・5℃−3
0分の処理を行い、食品衛生法記載の試験法(厚生省4
34%)に準じて測定1−た。
(3) KM, 104 consumption 100μ aluminum foil coated with various water-soluble paints, coating area: activated carbon coating In! Pour the water into a heat-resistant glass bottle at a ratio of 1-:1-, rinse it, and boil it at 12.5℃-3.
The test method described in the Food Sanitation Act (Ministry of Health and Welfare 4)
34%).

消費量をPPMで表わすう (4)水抽出液フレーバー性 各種水性塗料を塗装した100μγ化ミ箔を、塗布面積
:活性炭で処理した水道水が44: 1mとなるように
耐熱ガラス製ボトルに入れ、蓋をし、100℃−30分
の殺菌処理後、内容液のフレーバーテストを実施する2
゜ ○:全く変化なし、△:若干変化あり、×:著しく変化
あり。
Consumption amount is expressed in PPM (4) Water extract flavor 100μ gamma foil coated with various water-based paints is placed in a heat-resistant glass bottle so that the coating area: tap water treated with activated carbon is 44:1 m. , Close the lid, and after sterilizing at 100℃ for 30 minutes, perform a flavor test on the liquid inside.2
゜○: No change at all, △: Slight change, ×: Significant change.

(5)加工性 特殊ハゼ折り型デュポン衝撃試験器を用い、下部に2つ
折りにしたブリキに塗装した試料を置き、接触面が平ら
な重さI Kgの鉄の錘りを高さ50σから落下させ九
時に生じる折り曲げ部分の塗膜の亀裂の長さを測定する
、 O:0〜10■、△:10〜20冒、×:20部以上 (0ゲル分率 各種水性塗料を塗装した#−25プリΦ板を、撒面:ク
ロロホルムが、1d:1−となるように還流冷却器を備
えた容器に入れ、加熱し、還流開始から1時間後の残渣
量を百分率表示する。
(5) Workability Using a special fold-type DuPont impact tester, a coated tin sample folded in half is placed at the bottom, and an iron weight with a flat contact surface weighing I kg is dropped from a height of 50σ. Measure the length of the crack in the paint film at the bent part at 9 o'clock. O: 0 to 10 parts, △: 10 to 20 parts, A 25mm plate was placed in a container equipped with a reflux condenser so that the ratio of chloroform to chloroform was 1d:1-, and heated, and the amount of residue after 1 hour from the start of reflux was expressed as a percentage.

Claims (1)

【特許請求の範囲】 1、ビスフェノール類とエピクロルヒドリンとの縮合に
よって得られるエポキシ樹脂と、ビスフェノール類とを
反応させて得られる片末端ないしは両末端がビスフェノ
ール類であるキャップ化エポキシ樹脂を原料とし、塩基
性触媒の存在下、ホルムアルデヒド類を反応させること
によって得られるレゾール型フェノール樹脂の製造方法
。 2、エポキシ樹脂は分子量350〜6,000、エポキ
シ当量150〜4,000好ましくは分子量350〜1
,000、エポキシ当量150〜700から選ばれる特
許請求の範囲第1項記載のレゾール型フェノール樹脂の
製造方法。 3、キャップ化エポキシ樹脂はエポキシ当量500以上
、好ましくは、エポキシ当量10,000以上である特
許請求の範囲第1項記載のレゾール型フェノール樹脂の
製造方法。 4、塩基性触媒は、水酸化ナトリウム、水酸化カルシウ
ム等の金属アルカリ類、リン酸ナトリウム等の塩基性塩
類、トリエチルアミン等のアミン類等から選ばれる特許
請求の範囲第1項記載のレゾール型フェノール樹脂の製
造方法。 5、ビスフェノール類は、ビスフェノールA、ビスフェ
ノールF、及びビスフェノールSから選ばれる特許請求
の範囲第1項記載のレゾール型フェノール樹脂の製造方
法。 6、ホルムアルデヒド類は、ホルマリン水、有機溶剤に
溶解せしめたホルムアルデヒド、パラホルムアルデヒド
から選ばれる特許請求の範囲第1項記載のレゾール型フ
ェノール樹脂の製造方法。 7、キャップ化エポキシ樹脂の末端ビスフェノール類の
モル数に対するホルムアルデヒド類のモル数が、2〜6
、好ましくは4〜6である特許請求の範囲第1項記載の
レゾール型フェノール樹脂の製造方法。
[Claims] 1. A capped epoxy resin obtained by reacting an epoxy resin obtained by condensation of bisphenols and epichlorohydrin with bisphenols, in which one or both ends are bisphenols, is used as a raw material, and a base A method for producing a resol type phenolic resin obtained by reacting formaldehydes in the presence of a chemical catalyst. 2. The epoxy resin has a molecular weight of 350 to 6,000 and an epoxy equivalent of 150 to 4,000, preferably a molecular weight of 350 to 1.
, 000 and an epoxy equivalent of 150 to 700. 3. The method for producing a resol type phenolic resin according to claim 1, wherein the capped epoxy resin has an epoxy equivalent of 500 or more, preferably 10,000 or more. 4. The basic catalyst is selected from metal alkalis such as sodium hydroxide and calcium hydroxide, basic salts such as sodium phosphate, amines such as triethylamine, etc. The resol type phenol according to claim 1 Method of manufacturing resin. 5. The method for producing a resol type phenolic resin according to claim 1, wherein the bisphenols are selected from bisphenol A, bisphenol F, and bisphenol S. 6. The method for producing a resol type phenolic resin according to claim 1, wherein the formaldehyde is selected from formalin water, formaldehyde dissolved in an organic solvent, and paraformaldehyde. 7. The number of moles of formaldehyde relative to the number of moles of terminal bisphenols in the capped epoxy resin is 2 to 6.
, preferably 4 to 6. The method for producing a resol type phenolic resin according to claim 1.
JP29711586A 1986-12-12 1986-12-12 Production of resol phenolic resin Pending JPS63150317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29711586A JPS63150317A (en) 1986-12-12 1986-12-12 Production of resol phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29711586A JPS63150317A (en) 1986-12-12 1986-12-12 Production of resol phenolic resin

Publications (1)

Publication Number Publication Date
JPS63150317A true JPS63150317A (en) 1988-06-23

Family

ID=17842402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29711586A Pending JPS63150317A (en) 1986-12-12 1986-12-12 Production of resol phenolic resin

Country Status (1)

Country Link
JP (1) JPS63150317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418191A1 (en) * 2002-11-11 2004-05-12 Surface Specialties Germany GmbH &amp; Co. KG Binder and its use as a coating material for coating metallic containers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418191A1 (en) * 2002-11-11 2004-05-12 Surface Specialties Germany GmbH &amp; Co. KG Binder and its use as a coating material for coating metallic containers
US7262261B2 (en) * 2002-11-11 2007-08-28 Surface Specialities Germany Gmbh & Co. Kg Binders and a method of use thereof as coating material for metal containers

Similar Documents

Publication Publication Date Title
JPS58113259A (en) Polyhydroxy oligomer and coating composition
KR20160147251A (en) Alkoxylated resol-type phenol resin manufacturing method, alkoxylated resol-type phenol resin, resin composition, and coating
JPH0119695B2 (en)
JPS6137289B2 (en)
JPS63150317A (en) Production of resol phenolic resin
JP2779504B2 (en) Coating composition for inner surface of can
JPS6377916A (en) Production of resol phenolic resin
JP4362891B2 (en) Metacresol resin composition for paint
US1922690A (en) Resinous complex or composite of the urea aldehyde condensation type and their solutions
JPH0125488B2 (en)
JPH0120193B2 (en)
JPH0195164A (en) Phenolic resin composition for paint
JPS5942705B2 (en) Paint composition for cans
JP4245301B2 (en) Water-based paint composition and food can
JPH0749552B2 (en) Water-based paint for inner surface of can
US4987205A (en) Polyphenol-alkanolamine modified epoxy resin composition, process for preparation thereof and paint composition comprising this modified epoxy resin composition
JPH10120760A (en) Resol type phenol resin and composition of the same for coating material
JPH07207222A (en) Coating composition
JPS6197371A (en) Paint composition for inner surface of can
JPS6375069A (en) Coating material for inner surface of can
JPH07145342A (en) Water-based coating composition
JP2002275229A (en) Phenolic resin for coating
JPH083257A (en) Novolak phenolic resin and its preparation
JPH07310047A (en) Epoxy resin composition for coating
JPH02281024A (en) Binder, its preparation, and its use in curable mixture