JPS63149583A - Doppler type speed sensor - Google Patents

Doppler type speed sensor

Info

Publication number
JPS63149583A
JPS63149583A JP61294847A JP29484786A JPS63149583A JP S63149583 A JPS63149583 A JP S63149583A JP 61294847 A JP61294847 A JP 61294847A JP 29484786 A JP29484786 A JP 29484786A JP S63149583 A JPS63149583 A JP S63149583A
Authority
JP
Japan
Prior art keywords
pulse
correlation
pulse width
pulses
doppler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61294847A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kii
記井 智之
Susumu Ito
伊東 将
Haruo Naito
内藤 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61294847A priority Critical patent/JPS63149583A/en
Publication of JPS63149583A publication Critical patent/JPS63149583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To enhance speed measuring accuracy, by determining the pulse width distribution of a shaped pulse and replenishing the pulse width based on the correlation of said pulse width and frequency distribution to an omitted part. CONSTITUTION:A two-beam system having two sensor part circuits 20, 22 and two pulse omission replenishing circuit 21, 23 is employed and a Doppler signal is amplified by an amplifier 4 to be passed through a filter 9 and a signal exceeding a definite threshold level is converted to a pulse width due regard to an S/N ratio by a comparator 5. Subsequently, the pulse widths of (n) pulses are counted by a counter 12 and, at the point of time when (n) pulses are counted, the correlation between the pulse widths is taken according to a peak plotting system. Then, a pulse omission part is calculated to be replenished by a pulse width correlation replenishing device 15. The number of pulses replenished at every beam are counted by a counter 16 and added between two beams of the circuits 21, 23 by an adder 17 and, thereafter, a display device 18 and a timing circuit 19 are used to output necessary display and a necessary signal. Therefore, the enhancement of accuracy can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は移動物体の速度を検出するドツプラ式速度セン
サに係り、特に、高精度検出に好適な速度演算方式のド
ツプラ式速度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Doppler speed sensor for detecting the speed of a moving object, and particularly to a Doppler speed sensor using a speed calculation method suitable for highly accurate detection.

[従来の技術〕 1978−血14 (S53−3)自動車技術会論文集
スキッドコントロール装置用マイクロ波車速センサ19
81−Na803  (S 64−4)電子通信学会全
国大会論文1981−9日立評論V o L 63− 
Ha 9マイクロ波応用高精度スピードセンサでは、ス
レッショルドレベルに満たないパルス欠落部分を、検出
したパルスの平均値を使用し補填する方式で。
[Prior art] 1978-Blood 14 (S53-3) Society of Automotive Engineers of Japan Transactions Microwave vehicle speed sensor for skid control device 19
81-Na803 (S 64-4) IEICE National Conference Paper 1981-9 Hitachi Review V o L 63-
The Ha 9 microwave-applied high-precision speed sensor uses the average value of detected pulses to compensate for missing pulses that do not meet the threshold level.

これによる欠落パルスの発生頻度を考慮しておらず、従
って、誤差も1%程度までしか得られていない。
The frequency of occurrence of missing pulses due to this is not taken into account, and therefore the error is only about 1%.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

より高精度検出及び制御が望まれてきているが、従来技
術は検出パルスの分布相関が考慮されておらず、単なる
検出パルスでの平均化補填によっていたため、精度を大
幅に向上することができなかつた。
Although higher precision detection and control are desired, the conventional technology does not take into account the distribution correlation of detected pulses and simply averages compensation using detected pulses, so it is not possible to significantly improve accuracy. Nakatsuta.

本発明の目的は、検出ハードを変えてなくても制御技法
により、ソフト的に十分高精度が得られるドツプラ式速
度センサを提供することにある。
An object of the present invention is to provide a Doppler speed sensor that can obtain sufficiently high precision in terms of software using a control technique without changing the detection hardware.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、従来技術での測定結果を分析し。 The above purpose is to analyze the measurement results with the conventional technology.

整形パルスのパルス幅がどういう分布をしているかを把
握し、そのパルス幅と度数分布の相関関係を求め、その
相関に基づいたパルス幅を欠落部に補填することにより
、目的の高精度が達成される。
The desired high accuracy is achieved by understanding the distribution of the pulse width of the shaped pulse, finding the correlation between the pulse width and the frequency distribution, and filling in the missing parts with the pulse width based on that correlation. be done.

〔作用〕[Effect]

ドツプラ信号波形の信号レベルは、アナログ的に連続し
た変化をしている。従って、これの整形パルスも隣接パ
ルスと相関を持って、連続変化に近い変化をしている。
The signal level of the Doppler signal waveform changes continuously in an analog manner. Therefore, this shaped pulse also has a correlation with adjacent pulses and changes almost continuously.

従って、この相関関係を考慮することにより、より真実
に近い値にすることができる。本発明によるパルス分布
相関からのピークプロットパルス相関欠落部補填方式に
よれば、より高精度な検出ができる。
Therefore, by considering this correlation, it is possible to obtain a value closer to the truth. According to the peak plot pulse correlation missing portion compensation method based on pulse distribution correlation according to the present invention, more accurate detection can be performed.

〔実施例〕〔Example〕

まず、マイクロ波ドツプラレーダ式速度センサの基本構
成は第1図のようになる。
First, the basic configuration of a microwave Doppler radar type speed sensor is shown in FIG.

マイクロ波をアンテナ1から路面に対して一定の角度で
照射すると、路面で散乱した反射波は。
When microwaves are irradiated from antenna 1 to the road surface at a certain angle, the reflected waves scattered by the road surface are:

相対運動によるドツプラ周波数シフトを受け、再び、ア
ンテナ1で受信される。このドツプラ周波数f4は、車
速Vと方向余弦C03Aに比例しており、送信周波数f
oとの関係が次式で与えられる。
The signal undergoes a Doppler frequency shift due to relative motion and is received again by the antenna 1. This Doppler frequency f4 is proportional to the vehicle speed V and the direction cosine C03A, and the transmission frequency f
The relationship with o is given by the following equation.

fov f a = −cosθ    −−−(1)に こにC:光速3 X 10” (m/ s)ミクサダイ
オード3には送信波の一部と受信波が同時に加えられ1
両者の信号の周波数差によって生じるビートがドツプラ
信号となる。実際の場合。
fov f a = -cosθ ---(1) Smiling C: Speed of light 3 x 10" (m/s) Part of the transmitted wave and the received wave are applied to the mixer diode 3 at the same time 1
The beat caused by the frequency difference between the two signals becomes a Doppler signal. In actual case.

アンテナ1の放射ビームには幅があり、路面からの反射
も不規則であるため、ドツプラ波形は複数の周波数が混
合した形となり(1)式で表わされる中心周波数を持ち
、その包絡線振幅が頻繁に零となる第2図に示す様な波
形となる。従来の速度センサで標準形は、この信号波を
必要な周波数だけ増幅した後、信号対雑音比を考慮した
一定のスレッショルドレベルを超える信号をパルスに変
換し、このパル数から速度を求めており、このパルスの
脱落時間T1〜T2の間により大きな誤差を生じていた
。又、従来の高精度速度センサではマイクロ波を二のビ
ーム方式とすると共に、このパルス欠落部を、検出パル
スの平均幅を算出し、そのパルス幅で補填していた。そ
の結果はパルスが補填されたために精度は1%程度へ大
幅に向上したが、最近の検出及び制御精度の向上(約0
.5 %以上)要求に耐えられなくなってきている。そ
こで1本発明によると従来方式でのパルス発生頻度が必
らず第3図に示すように、ドツプラ周波数f−の逆数で
表わされるパルス幅τdoを中心としてほぼ対称に分布
していることを利用し、本発明では第4図のように、セ
ンサ部回路20.21及びパルス脱落補填回路21.2
3を各二個持ったいわゆるニビーム方式を採用し、且つ
、ドツプラ信号をアンプ4で増幅し、フィルタ9を通し
コンパレータ9で信号対雑音比を考慮した一定のスレッ
ショルドレベルを超える信号をパルスに変換し、パルス
脱落補填回路21及び22でカウンタ12で計数される
n発のパルス幅を順次I 10RAMに書き込む方式で
、パルスをn発数えた時点で、真値のパルス幅τdoを
対称に分布のピークプロット方式でパルス幅間の相関を
とり、パルス欠落部を、パルス幅相関補填器15で算出
して補填する。この結果の各ビーム毎のパルス数をカウ
ンタ16で計数し、ニビーム間を加算器17で加算し、
高精度速度演算した後、表示器18、タイミング19を
使用し必要な表示及び信号を出す。
Since the radiation beam of antenna 1 has a width and the reflection from the road surface is irregular, the Doppler waveform is a mixture of multiple frequencies and has a center frequency expressed by equation (1), and its envelope amplitude is A waveform like the one shown in FIG. 2 is formed, which frequently becomes zero. The standard type of conventional speed sensor amplifies this signal wave by the required frequency, then converts the signal that exceeds a certain threshold level considering the signal-to-noise ratio into pulses, and calculates the speed from the number of pulses. , a larger error occurred between the dropout times T1 and T2 of this pulse. Furthermore, in the conventional high-precision speed sensor, the microwave is of a second beam type, and the average width of the detected pulses is calculated and the pulse width is used to compensate for the missing pulse portion. As a result, the accuracy improved significantly to about 1% due to pulse compensation, but recent improvements in detection and control accuracy (about 0%)
.. 5% or more) is becoming unable to meet the demands. Therefore, according to the present invention, the pulse generation frequency in the conventional method is always distributed almost symmetrically around the pulse width τdo, which is expressed as the reciprocal of the Doppler frequency f-, as shown in FIG. 3. However, in the present invention, as shown in FIG.
A so-called two-beam system having two of each 3 is adopted, and the Doppler signal is amplified by an amplifier 4, passed through a filter 9, and a comparator 9 converts the signal exceeding a certain threshold level considering the signal-to-noise ratio into a pulse. Then, the pulse dropout compensation circuits 21 and 22 sequentially write the n pulse widths counted by the counter 12 into the I10RAM, and when the n pulses have been counted, the true value pulse width τdo is symmetrically distributed. Correlation between pulse widths is calculated using a peak plot method, and a pulse width correlation compensator 15 calculates and compensates for pulse missing portions. The resulting number of pulses for each beam is counted by a counter 16, and the number of pulses for each beam is added by an adder 17,
After performing high-precision speed calculations, the display 18 and timing 19 are used to issue necessary displays and signals.

この方式によると、ドツプラ信号波形の信号レベルがア
ナログ的に連続した変化をしていることからこの整形パ
ルスも隣接パルスと相関をもって連続変化に近い変化を
していると考え、且つ、実測結果の真値対称分布を考慮
したパルス幅相関補填をしているため、更に、真値に近
くなり、高精度が得られる。精度検証結果では、現在の
要求精度0.5%を更に上回る0、2%という高精度が
得られている。その結果を第5図に示す1図中2はカプ
ラ、5はコンパレータ、6は発振器、7は定電圧電源、
8はガンダイオード、10は加算器、11はI/DRA
M、13はタイミング回路、14はパルス巾メモ、24
は演算部である。
According to this method, since the signal level of the Doppler signal waveform changes continuously in an analog manner, it is assumed that this shaped pulse also changes in a close to continuous manner with a correlation with adjacent pulses, and also based on the actual measurement results. Since pulse width correlation compensation is performed in consideration of the symmetrical distribution of true values, the value becomes even closer to the true value and high accuracy can be obtained. Accuracy verification results show a high accuracy of 0.2%, which is even higher than the current required accuracy of 0.5%. The results are shown in Figure 5. In Figure 5, 2 is a coupler, 5 is a comparator, 6 is an oscillator, 7 is a constant voltage power supply,
8 is Gunn diode, 10 is adder, 11 is I/DRA
M, 13 is a timing circuit, 14 is a pulse width memo, 24
is the calculation section.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来二ビーム方式と同一ハード構成で
あっても、ソフト的に1発生パルス幅を分析し、ピーク
プロット方式による真値対称分布から欠落パルス部を欠
落パルス幅に近いパルス幅で補填する、いわゆる、パル
ス幅相関補填によるため、従来より更に大幅に精度向上
が図れる。
According to the present invention, even if the hardware configuration is the same as that of the conventional two-beam method, the width of one generated pulse is analyzed using software, and the missing pulse portion is determined based on the true value symmetric distribution using the peak plot method. Since the compensation is based on so-called pulse width correlation compensation, the accuracy can be improved significantly compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マイクロ波ドツプラレーダ式速度センサの基
本構成ブロック図、第2図は、ドツプラ信号波形の処理
説明図、第3図は、パルス幅発生頻度分布実測図、第4
図は、本発明のニビームマイクロ波ドツプラレーダ式速
度センサの構成ブロック図、第5図は、精度検証結果の
比較図である。 13.19・・・タイミング回路、14・・・パルス幅
メモリ、15・・・パルス幅相関補填器、16・・・カ
ウンタ回路、17・・・加算器、18・・・表示部、2
0.22・・・センサ部回路、21.23・・・パルス
第2口 第4図 名5 (2)
Fig. 1 is a basic configuration block diagram of a microwave Doppler radar speed sensor, Fig. 2 is an explanatory diagram of processing of Doppler signal waveform, Fig. 3 is an actual measurement diagram of pulse width occurrence frequency distribution, and Fig.
The figure is a block diagram of the configuration of the two-beam microwave Doppler radar speed sensor of the present invention, and FIG. 5 is a comparison diagram of accuracy verification results. 13.19... Timing circuit, 14... Pulse width memory, 15... Pulse width correlation compensator, 16... Counter circuit, 17... Adder, 18... Display section, 2
0.22...Sensor circuit, 21.23...Pulse 2nd port Figure 4 name 5 (2)

Claims (1)

【特許請求の範囲】 1、マイクロ波をアンテナから移動物体に対して、一定
の角度で照射し、前記移動物体で反射された相対運動に
よるドップラ周波数シフトを受けた反射波を再び前記ア
ンテナで受信し、前記ドップラ周波数から速度を検出す
るドップラ式速度センサに於いて。 信号波が信号対雑音比を考慮した一定のスレッショルド
レベルに満たない場合に、脱落したパルス欠落部分をド
ップラ信号の整形パルスのパルス幅を多数記憶し、且つ
、前記パルス幅の自己相関及び分布相関から、ピークプ
ロットパルス相関欠落部補填方式により、パルスを仮想
カウントし、真に近いパルス幅、パルス数を使用演算す
ることを特徴とするドップラ式速度センサ。
[Claims] 1. Microwaves are irradiated from an antenna to a moving object at a fixed angle, and the reflected waves reflected by the moving object and subjected to a Doppler frequency shift due to relative motion are received again by the antenna. In a Doppler speed sensor that detects speed from the Doppler frequency. When the signal wave does not reach a certain threshold level considering the signal-to-noise ratio, a large number of pulse widths of the shaped pulses of the Doppler signal are stored for the dropped pulse missing portion, and the autocorrelation and distribution correlation of the pulse widths are calculated. A Doppler speed sensor is characterized in that a peak plot pulse correlation missing part compensation method is used to virtually count pulses, and calculations are performed using pulse widths and pulse numbers that are close to the true value.
JP61294847A 1986-12-12 1986-12-12 Doppler type speed sensor Pending JPS63149583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294847A JPS63149583A (en) 1986-12-12 1986-12-12 Doppler type speed sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294847A JPS63149583A (en) 1986-12-12 1986-12-12 Doppler type speed sensor

Publications (1)

Publication Number Publication Date
JPS63149583A true JPS63149583A (en) 1988-06-22

Family

ID=17813023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294847A Pending JPS63149583A (en) 1986-12-12 1986-12-12 Doppler type speed sensor

Country Status (1)

Country Link
JP (1) JPS63149583A (en)

Similar Documents

Publication Publication Date Title
Nogueira et al. Local field correction PIV: on the increase of accuracy of digital PIV systems
US6100540A (en) Laser displacement measurement system
JP2003050275A (en) Radar
Kostamovaara et al. Pulsed laser radars with high-modulation frequency in industrial applications
US3264643A (en) Continuous wave radar system
CN112014833A (en) High-speed target time-frequency domain detection method
JPH08220218A (en) Method for measuring speed of moving body and remote detecting device for executing method thereof
JPS63149583A (en) Doppler type speed sensor
CN107272011A (en) Time point discrimination method, time point discriminator circuit system and LDMS
CN110726995A (en) Laser radar high-precision ranging method and system
US4138677A (en) Acceleration filter for slowdown discrimination
JPS61223573A (en) Target altitude measurement
JPS6040980A (en) Doppler radar speedometer
CN215865252U (en) System for improving sampling rate of DAS (data acquisition System) at low cost
JPH05312950A (en) Ranging apparatus and method
JPH04167962A (en) Method for continuously measuring molten iron level for pouring mixer car
JP2830596B2 (en) Monopulse angle measuring circuit
JPH07128349A (en) Speed detector
RU2686674C1 (en) Non-contact method for measuring distance traveled
JP2856042B2 (en) Radar equipment for vehicles
JPS5836062Y2 (en) Doppler radar device
Wang et al. A Fiber Laser Doppler Vibrometer Based on Fringe Counting and Multi-Period Synchronous Frequency Measurement Method
JP3282746B2 (en) Semiconductor laser digital vibration displacement measuring device
SU972238A1 (en) Acoustic level indicator
JPS6225277A (en) Distance tracking device