JPS63149567A - Optical measuring method in physical property change - Google Patents

Optical measuring method in physical property change

Info

Publication number
JPS63149567A
JPS63149567A JP29470686A JP29470686A JPS63149567A JP S63149567 A JPS63149567 A JP S63149567A JP 29470686 A JP29470686 A JP 29470686A JP 29470686 A JP29470686 A JP 29470686A JP S63149567 A JPS63149567 A JP S63149567A
Authority
JP
Japan
Prior art keywords
light
measured
measurement
changes
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29470686A
Other languages
Japanese (ja)
Inventor
Taichi Tsujii
太一 辻井
Keiichi Miyashita
宮下 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTAADETSUKU KK
Original Assignee
INTAADETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTAADETSUKU KK filed Critical INTAADETSUKU KK
Priority to JP29470686A priority Critical patent/JPS63149567A/en
Publication of JPS63149567A publication Critical patent/JPS63149567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure physical property change, by a method wherein the incident intensity of the light to a light receiving means is measured by each measuring point and the absolute value of the average value per unit time thereof is calculated to be set as the speed component of the physical property change of an object to be measured at each measuring point. CONSTITUTION:The unit elements of the light receiving surface of a light receiving element 3 are arranged in a matrix form. The light from a light emitting element 1 is allowed to irradiate an isolated heart muscle cell 2 and the reflected light from the boundary surface of the cell 2 is received as an image signal by the unit element at the position corresponding to the cell 2. This image signal is resolved into a signal by each unit element by an image resolving circuit 4 to be stored in a frame memory 5. The incident intensity of the reflected light from the boundary surface of the cell 2 to the element 3 is measured by each measuring point and the average value per a unit time thereof is calculated to be set as the speed component of the physical property change of the cell 2 being a substance to be measured at each measuring point. Therefore, by using this speed component, the speed and acceleration at each measuring point, the speed and acceleration of the whole of a measuring region and the cycle of direction of the physical property change of the cell 2 in the measuring region are easily obtained and physical property change can be accurately measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物性変化における光学的測定方法に係り、特に
細胞の薬物動態変化等を測定するのに好適な物性変化に
おける光学的測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical measurement method for changes in physical properties, and particularly to an optical measurement method for changes in physical properties suitable for measuring changes in pharmacokinetics of cells.

〔従来の技術〕[Conventional technology]

一般に、物体の動きを光学的に測定する理論としては、
ドツプラー効果を利用する方法あるいはホログラフィ−
解析等が知られており、既に実用化されている。
Generally, the theory of optically measuring the movement of objects is as follows:
Method using Doppler effect or holography
Analysis, etc. are known and have already been put into practical use.

ところが、これらの理論の対象となる物体は、運動力学
的様式に整然と当てはめることができる剛体に限られて
いる。すなわち、単位時間当りの動きを捉えた場合に、
物体自体が固有の運動をせず、物体のどの点を観察して
も全て等速度で運動する物体に限られている。このため
、例えば心筋細胞の特性である拍動に伴なう収縮性等、
前述の運動方程式に該当しない物性変化は、旧来の光学
的測定方法では測定できず、専ら顕微鏡による目視観察
に頼らざるを得なかった。
However, the objects covered by these theories are limited to rigid bodies that can be systematically applied to kinematics. In other words, when capturing the movement per unit time,
The object itself has no inherent motion, and no matter which point on the object we observe, we are limited to objects that move at the same speed. For this reason, for example, the contractility associated with pulsation, which is a characteristic of cardiac muscle cells,
Changes in physical properties that do not fall under the above-mentioned equation of motion cannot be measured using conventional optical measurement methods, and have had to rely solely on visual observation using a microscope.

しかしながら目視観察による場合には、正確な物性変化
を把握することができず、物性変化の測定方法としては
極めて不完全であるという間融がある。
However, when visual observation is used, it is not possible to accurately determine changes in physical properties, and it is extremely incomplete as a method for measuring changes in physical properties.

そこで一部では、第7図に示すように細胞C上の適当な
位置に、細胞Cを横切る基準線りを設定し、この基準!
L上の二点A、B間の偏位を測定することにより、心筋
細胞の拍動に伴なう収縮性の変化を捉えようとする試み
がなされている。
Therefore, as shown in Fig. 7, a reference line that crosses cell C is set at an appropriate position on cell C, and this reference line!
Attempts have been made to capture changes in contractility accompanying the pulsation of cardiac muscle cells by measuring the deviation between two points A and B on L.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第7図に示す測定方法は、測定結果を数値化
できるため、目視観察に比較してより正確な物性変化を
把握できるという利点を有している。
By the way, the measurement method shown in FIG. 7 has the advantage that the measurement results can be quantified, so that changes in physical properties can be grasped more accurately than visual observation.

ところが、測定点がA、B二点のみであり、基準線りの
設定位置によってA、B二点間の偏位も当然異なるため
、必ずしも細胞C全体の変化を忠実に捉えているとは云
えないという問題がある。
However, since the measurement points are only two points A and B, and the deviation between the two points A and B naturally differs depending on the setting position of the reference line, it cannot be said that changes in the entire cell C are necessarily accurately captured. The problem is that there is no.

本発明はかかる現況に鑑みなされたもので、心筋細胞の
拍動に伴なう収縮性の変化等の物性変化を正確に測定す
ることができる物性変化における光学的測定方法を提供
することを目的とする。
The present invention was made in view of the current situation, and an object of the present invention is to provide an optical measurement method for changes in physical properties that can accurately measure changes in physical properties such as changes in contractility accompanying the pulsation of cardiac muscle cells. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、物体表面からの光の受光面への入射強度が、
単位受光面積と単位時間当りの流れとしてボインティン
グ・ベクトルSの時間平均で与えられることに着目し、
物体の動きにより変化するSの単位時間当りの平均値の
絶対値を速度成分としたものである。
In the present invention, the intensity of light incident on the light receiving surface from the surface of the object is
Focusing on the fact that the unit light receiving area and the flow per unit time are given by the time average of the Bointing vector S,
The velocity component is the absolute value of the average value per unit time of S that changes due to the movement of the object.

すなわち、本発明は、多数の測定点をマトリクス状に配
列して構成される測定領域を被測定物体の表面に設定し
この測定領域に一定光量の光を照射する発光手段と、前
記測定領域からの反射光を受光しこれを前記各測定点別
に分解して認識する受光手段とを備え、前記受光手段に
より、受光手段への光の入射強度を各測定点別に測定す
るとともに、その単位時間当りの平均値の縁対値を求め
、これを各測定点における被測定物体の物性変化の速度
成分とするようにしたことを特徴とする。
That is, the present invention provides a light-emitting means that sets a measurement area formed by arranging a large number of measurement points in a matrix on the surface of an object to be measured, and irradiates this measurement area with a constant amount of light; and a light-receiving means that receives the reflected light and recognizes the reflected light by separating it into each of the measurement points, and the light-receiving means measures the intensity of light incident on the light-receiving means for each measurement point, and measures the incident intensity of the light per unit time. The method is characterized in that the edge pair value of the average value of is determined, and this value is used as the velocity component of the physical property change of the object to be measured at each measurement point.

〔作用〕[Effect]

本発明に係る物性変化における光学的測定方法において
は、受光手段により、受光手段への光の入射強度を各測
定点別に測定するとともに、その単位時間当りの平均値
の絶対値を求め、これを各測定点における被測定物体の
物性変化の速度成分としている。したがって、この速度
成分を用いることにより、各測定点における速度。
In the optical measurement method for changes in physical properties according to the present invention, the intensity of light incident on the light receiving means is measured at each measurement point, and the absolute value of the average value per unit time is determined. This is the velocity component of the physical property change of the object to be measured at each measurement point. Therefore, by using this velocity component, the velocity at each measurement point can be determined.

加速度、測定領域全体の速度、加速度、測定領域におけ
る被測定物体の物性変化の周期および方向等を容易に得
ることができ、物性変化を正確に測定することが可能と
なる。
Acceleration, velocity of the entire measurement area, acceleration, period and direction of changes in physical properties of the object to be measured in the measurement area, etc. can be easily obtained, making it possible to accurately measure changes in physical properties.

〔実施例〕〔Example〕

以下本発明実施の一態様を図面を参照して説明する。 One embodiment of the present invention will be described below with reference to the drawings.

第1図は、単離心筋細胞の拍動に伴なう収縮性の変化を
測定するための装置の一例を示すもので、図中、符号1
は発光素子であり、この発光素子1からは、一定光量の
光が単離心筋細胞2に照射されるようになっている。そ
してこの光は、第1図に示すように単離心筋細胞2の境
界面で反射し、受光素子3の受光面で受光されるように
なっている。
Figure 1 shows an example of an apparatus for measuring changes in contractility associated with the pulsation of isolated cardiomyocytes.
is a light emitting element, and from this light emitting element 1, a constant amount of light is irradiated onto the isolated cardiac muscle cells 2. Then, as shown in FIG. 1, this light is reflected at the interface of the isolated cardiac muscle cells 2 and is received by the light receiving surface of the light receiving element 3.

前記受光素子3は、第2図に示すようにその受光面が、
単位素子をX軸方向およびY軸方向にnXn個マトリク
ス状に配列して構成される例えばCCDで形成されてお
り、この受光素子3は、前記単離心筋細胞2の全域から
の反射光を画像信号として受光できるように位置設定さ
れている。そしてこの画像信号は、第1図に示すように
画像分解回路4により各単位緊子別の信号に分解され、
フレームメモリ5に記憶されるようになっている。
The light-receiving element 3 has a light-receiving surface as shown in FIG.
For example, it is formed of a CCD, which is constructed by arranging nXn unit elements in a matrix in the X-axis direction and the Y-axis direction. The position is set so that it can receive light as a signal. This image signal is then decomposed into signals for each unit by an image decomposition circuit 4 as shown in FIG.
It is designed to be stored in the frame memory 5.

次に、単離心筋細胞2の拍動に伴なう収縮性の変化の測
定方法について説明する。
Next, a method for measuring changes in contractility associated with pulsation of isolated cardiomyocytes 2 will be described.

発光素子1から出力された光は、第1図に示すように単
離心筋細胞2に照射され、単離心筋細胞2の境界面で反
射した反射光は、受光素子3の単離心筋細胞2に対応す
る部分に位置する各単位素子で受光される。
The light output from the light emitting element 1 is irradiated onto the isolated cardiomyocytes 2 as shown in FIG. The light is received by each unit element located at a portion corresponding to the .

ところで、単離心筋細に!t2の境界面からの反射光の
受光素子3への入射強度は、単位素子面積と単位時間当
りの流れとして、ボインティング・ベクトルSの時間平
均で与えられる。
By the way, isolated cardiac muscle in detail! The intensity of the reflected light from the boundary surface at t2 entering the light receiving element 3 is given by the time average of the Bointing vector S, expressed as a unit area of the element and a flow per unit time.

したがって、単位素子(X、Y)上における入射強度を
I(X、Y)とすれば、入射強度工(X、Y)は、 I (X、Y)=<+S+>= !/T/T181 a
tただし E:111場の強さ H:磁場の強さ で表わすことができる。
Therefore, if the incident intensity on the unit element (X, Y) is I(X, Y), the incident intensity factor (X, Y) is I (X, Y)=<+S+>=! /T/T181 a
t However, E: 111 Field strength H: Can be expressed as magnetic field strength.

そしてこの入射強度1(X、Y)は、単離心筋細胞2が
有する固有の組織が変化しない限り、単離心筋細胞2の
境界面の周期的な動きに対応して周期的に変化する。
The incident intensity 1 (X, Y) changes periodically in response to the periodic movement of the interface of the isolated cardiomyocytes 2, unless the unique tissue of the isolated cardiomyocytes 2 changes.

第3図にその一例を示す。第3図は、3個の単位素子(
Xm−1,YmIL (Xm、Ym) e (Xm十1
mYm+1)につき、縦軸に入射強度I、横軸に時間T
を取ってその変化を示したものである。
An example is shown in FIG. Figure 3 shows three unit elements (
Xm-1, YmIL (Xm, Ym) e (Xm11
mYm+1), the vertical axis is the incident intensity I, and the horizontal axis is the time T.
The figure shows the change in the figure.

ところで、単位素子(X、Y)上における入射強度I(
X、Y)の単離心筋細胞2の動きによる時間変化を、I
(X、Y)xtSI(X、Yh、、ts・・・・・・・
・・・・・・・・、I(X、Y)n−xt s (t:
 脇秒)とすれば、速度V(X、Y)および加速度α(
x、y)は次式で示される。
By the way, the incident intensity I(
I
(X,Y)xtSI(X,Yh,,ts...
......,I(X,Y)n-xts (t:
(seconds), velocity V (X, Y) and acceleration α (
x, y) are shown by the following formula.

V(X # Y) = l I(X + Y)nl)”
A1− I(X、Y)n −e−t l/dt ”””
 (2)atx 、 y) = IV(X 、 Y)(
、−2,、。t −V(X* Qn−t )−、t L
/dt鴬−−−−−(3)これを、単離心筋細胞2の全
域について計算すると、速度Vおよび加速度αは次式で
示されるO 第4図は、縦軸に速度V、横軸に時間Tをとって単離心
筋細胞2全域の速度Vの変化を示したものであり、また
第5図は、これに対応する加速度αの変化を縦軸に加速
度α、横軸に時間Tをとって示したものである。
V(X #Y) = l I(X + Y)nl)”
A1- I(X,Y)n-e-t l/dt """
(2) atx, y) = IV(X, Y)(
,-2,,. t-V(X*Qn-t)-, tL
/dt Tsumugi (3) When this is calculated for the entire area of the isolated cardiomyocytes 2, the velocity V and acceleration α are expressed by the following formula. Fig. 5 shows the change in velocity V across the isolated cardiomyocytes 2 over time T, and Fig. 5 shows the corresponding change in acceleration α on the vertical axis and time T on the horizontal axis. This is what is shown.

第4図に示す速度Vの変化および第5図に示す加速度α
の変化は、単離心筋細胞2の拍動に伴なう収縮性の変化
に対応している。したがって、例えば第4図に示すよう
に1個の出力波形の時間tを測定することにより心拍時
間が求められる。なお、第5図に示す出力波形を用いて
も同様に求められる。
Changes in velocity V shown in Figure 4 and acceleration α shown in Figure 5
The change corresponds to the change in contractility accompanying the pulsation of the isolated cardiomyocytes 2. Therefore, for example, as shown in FIG. 4, the heartbeat time can be determined by measuring the time t of one output waveform. Note that it can be similarly obtained using the output waveform shown in FIG.

また、第3図に示すように各単位素子間の位相差および
その方向を測定することにより、単離心筋細胞2の動き
の方向が求められる。すなわち、第3図においては、単
位素子(Xm−1eYm−1)から単位素子(Xm+ 
1 * Ym+ 1)に向かう方向に動いていることが
判る。
Further, as shown in FIG. 3, by measuring the phase difference between each unit element and its direction, the direction of movement of the isolated cardiac muscle cells 2 can be determined. That is, in FIG. 3, from unit element (Xm-1eYm-1) to unit element (Xm+
It can be seen that it is moving in the direction of 1*Ym+1).

本発明者等は、ICR系マウス胎仔(妊娠14〜16日
目)の培養心筋細胞を使用し、細胞外液中のCa  の
濃度を0.4〜10mMの範囲で変化させて収縮性の変
化を測定し、第6図(a)〜(d)に示す結果を得た。
The present inventors used cultured cardiomyocytes of ICR mouse fetuses (days 14 to 16 of pregnancy) to change the contractility by varying the concentration of Ca in the extracellular fluid in the range of 0.4 to 10 mM. were measured, and the results shown in FIGS. 6(a) to (d) were obtained.

なお第6図(a)は速度(inL/m5ec )を、ま
た第6図(b)はプラス方向の加速度(int、/n1
sec9〕を、また第6図(C)はマイナス方向の加速
度(int、7m5ec’〕を、さらに第6図(d)は
心拍時間〔SeC〕をそれぞれ示す。
Note that Fig. 6(a) shows the velocity (inL/m5ec), and Fig. 6(b) shows the acceleration in the positive direction (int, /n1
sec9], FIG. 6(C) shows the acceleration in the negative direction (int, 7m5ec'), and FIG. 6(d) shows the heartbeat time [SeC].

本発明者等はまた、前記測定結果と第7図に示す従来の
測定方法による結果とを比較した。
The inventors also compared the above measurement results with the results obtained by the conventional measurement method shown in FIG.

その結果、本発明に係る測定方法の方が、単離心筋細胞
の拍動に伴なう収縮性の変化をより忠実に捉えているこ
とが確認された。また本発明に係る測定方法は、細胞の
薬物動態変化に限らず、低酸素や心毒性物質等の外的刺
蛍に対する心筋細胞の応答過程を測定する上でも有用で
あることが確認された。
As a result, it was confirmed that the measurement method according to the present invention more faithfully captures changes in contractility accompanying the pulsation of isolated cardiomyocytes. Furthermore, it has been confirmed that the measuring method according to the present invention is useful not only for measuring pharmacokinetic changes in cells, but also for measuring the response process of cardiac muscle cells to external stimuli such as hypoxia and cardiotoxic substances.

なお、前記実施の一郭様では、受光素子3としてCCD
を用いる場合について説明したが、BBDあるいはCI
D等の他の固体撮像素子を用いるようにしてもよい。
Note that in the above embodiment, the light receiving element 3 is a CCD.
We have explained the case where BBD or CI is used.
Other solid-state image sensors such as D may also be used.

また前記実施の一郭様では、受光素子3からの画像信号
を、画像分解回路4で単位素子の個数と同一のnXn個
の信号に分解する。すなわち単位素子の位置と単離心筋
細胞2上の測定点の位置とが一致している場合について
説明したが、受光素子3からの出力信号は連続した画像
信号であるので、単位素子の個数よりも多くの信号に分
解して測定点の数を増やすことも、また逆に測定点の数
を減らすこともできる。したがってこの点からすれば、
受光素子3は固体撮像素子に限らず、ビジコン等の光学
的撮像管を用いることもできる。
Further, in one embodiment, the image signal from the light receiving element 3 is decomposed by the image decomposition circuit 4 into nXn signals, which are the same as the number of unit elements. In other words, we have explained the case where the position of the unit element and the position of the measurement point on the isolated cardiomyocytes 2 coincide, but since the output signal from the light receiving element 3 is a continuous image signal, the number of unit elements is smaller than the number of unit elements. It is also possible to increase the number of measurement points by decomposing the signal into many signals, or conversely to reduce the number of measurement points. Therefore, from this point of view,
The light receiving element 3 is not limited to a solid-state image sensor, and an optical image pickup tube such as a vidicon can also be used.

また前記実施の一郭様では、心筋細胞の拍動に伴なう収
縮性の変化を測定する場合を例に採つて説明したが、心
筋細胞以外の細胞の測定にも同様に適用できる。また細
胞に限らず、スタンディングウェーブ現象によるタイヤ
の変形過程の測定、界面活性における境界面の動的変化
の測定、あるいは発酵により発生する気泡の社で変化す
る液面状態を観察して発酵状態を測定する場合等にも適
用できる。
Further, in the embodiment described above, the case where changes in contractility accompanying the pulsation of cardiomyocytes are measured is taken as an example and explained, but the present invention can be similarly applied to measurement of cells other than myocardial cells. In addition to cells, we can also measure the deformation process of tires due to the standing wave phenomenon, measure dynamic changes in the interface due to surface activity, or observe the changing liquid level in the bubbles generated during fermentation to determine the fermentation state. It can also be applied to measurements, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、受光手段により、受光手
段への光の入射強度を各測定点別に測定するとともに、
その単位時間当りの平均値の絶対値を求め、これを各測
定点における被測定物体の物性変化の速度成分としてい
るので、この速度成分を用いることにより、各測定点に
おける速度、加速度、測定領域全体の速度、加速度、測
定領域における被測定物体の物性変化の周期および方向
等を数値として得ることができ、物性変化を正確に測定
し把握することができる。
As explained above, the present invention measures the intensity of light incident on the light receiving means at each measurement point using the light receiving means, and
The absolute value of the average value per unit time is determined and this is used as the velocity component of the physical property change of the object to be measured at each measurement point. By using this velocity component, the velocity, acceleration, and measurement area at each measurement point can be calculated. The overall velocity, acceleration, period and direction of change in physical properties of the object to be measured in the measurement area can be obtained as numerical values, and changes in physical properties can be accurately measured and understood.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る物性変化における光学的測定方法
で用いられる装置の一例を示す構成図、第2図は第1図
の受光素子の受光面の構成を示す説明図、第3図は3個
の単位素子における入射強度の変化の一例を示すグラフ
、第4図は単離心筋細胞全域の速度変化の一例を示すグ
ラフ、第5図は同様の加速度変化の一例を示すグラフ、
第6図(a)はICR系マウス胎仔の培養心筋細胞を用
いた実験における速度変化の結果を示すグラフ、第6図
(b)は同様のプラス方向の加速度変化の結果を示すグ
ラフ、第6図(C)は同様のマイナス方向の加速度変化
の結果を示すグラフ、第6図(d)は同様の心拍時間の
変化の結果を示すグラフ、第7図は心筋細胞の拍動に伴
なう収縮性の変化を測定する従来の方法を示す説明図で
ある。 1・・・発光素子、 2・・・単離心筋細胞、 3・・
・受光素子、 4・・・画像分解回路、 5・・・7レ
ームメモリ。 第1図 第2図
FIG. 1 is a configuration diagram showing an example of a device used in the optical measurement method for changes in physical properties according to the present invention, FIG. 2 is an explanatory diagram showing the configuration of the light-receiving surface of the light-receiving element in FIG. A graph showing an example of a change in incident intensity in three unit elements, FIG. 4 is a graph showing an example of a velocity change in the entire area of an isolated cardiac muscle cell, and FIG. 5 is a graph showing an example of a similar acceleration change.
FIG. 6(a) is a graph showing the results of velocity changes in an experiment using cultured cardiomyocytes of ICR mouse fetuses, FIG. 6(b) is a graph showing the results of similar acceleration changes in the positive direction, Figure (C) is a graph showing the result of a similar change in acceleration in the negative direction, Figure 6 (d) is a graph showing the result of a similar change in heartbeat time, and Figure 7 is a graph showing the result of a similar change in heartbeat time. FIG. 2 is an explanatory diagram showing a conventional method of measuring changes in contractility. 1... Light emitting element, 2... Isolated cardiomyocytes, 3...
- Light receiving element, 4... Image decomposition circuit, 5... 7 frame memory. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)多数の測定点をマトリクス状に配列して構成される
測定領域を被測定物体の表面に設定しこの測定領域に一
定光量の光を照射する発光手段と、前記測定領域からの
反射光を受光しこれを前記各測定点別に分解して認識す
る受光手段とを備え、前記受光手段により、受光手段へ
の光の入射強度を各測定点別に測定するとともに、その
単位時間当りの平均値の絶対値を求め、これを各測定点
における被測定物体の物性変化の速度成分としたことを
特徴とする物性変化における光学的測定方法。 2)各測定点における速度成分は、その総和により測定
領域における被測定物体の物性変化の速度成分とされる
ことを特徴とする特許請求の範囲第1項記載の物性変化
における光学的測定方法。 3)受光手段は、固体撮像素子または光学的撮像管で形
成される受光装置と、この受光装置からの画像信号を各
測定点別の信号に分離して記憶する記憶装置とを備えて
いることを特徴とする特許請求の範囲第1項または第2
項記載の物性変化における光学的測定方法。
[Scope of Claims] 1) A light emitting means for setting a measurement area formed by arranging a large number of measurement points in a matrix on the surface of an object to be measured and irradiating this measurement area with a constant amount of light; a light receiving means that receives reflected light from the area, decomposes it into each of the measurement points, and recognizes the same; the light receiving means measures the intensity of light incident on the light receiving means for each measurement point; 1. An optical measurement method for changes in physical properties, characterized in that the absolute value of the average value per time is determined, and this is taken as the velocity component of the change in physical properties of an object to be measured at each measurement point. 2) The optical measuring method for changes in physical properties according to claim 1, characterized in that the sum of the velocity components at each measurement point is used as the velocity component of changes in physical properties of the object to be measured in the measurement area. 3) The light-receiving means includes a light-receiving device formed by a solid-state image sensor or an optical image pickup tube, and a storage device that separates and stores the image signal from the light-receiving device into signals for each measurement point. Claim 1 or 2 characterized by
Optical measurement method for changes in physical properties described in Section 1.
JP29470686A 1986-12-12 1986-12-12 Optical measuring method in physical property change Pending JPS63149567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29470686A JPS63149567A (en) 1986-12-12 1986-12-12 Optical measuring method in physical property change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29470686A JPS63149567A (en) 1986-12-12 1986-12-12 Optical measuring method in physical property change

Publications (1)

Publication Number Publication Date
JPS63149567A true JPS63149567A (en) 1988-06-22

Family

ID=17811246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29470686A Pending JPS63149567A (en) 1986-12-12 1986-12-12 Optical measuring method in physical property change

Country Status (1)

Country Link
JP (1) JPS63149567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681855B1 (en) 2004-08-31 2007-02-15 (주) 엠큐브테크놀로지 A measuring method for obtaining an ultrasonic image, having improved resolution
JP2014076000A (en) * 2012-10-10 2014-05-01 Nikon Corp Cell motion observation method, image processing program and image processing apparatus
JP2019140989A (en) * 2018-02-21 2019-08-29 ブレインビジョン株式会社 Cell observation device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123073A (en) * 1978-03-17 1979-09-25 Hitachi Ltd Sensitivity adjusting method and device for laser flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123073A (en) * 1978-03-17 1979-09-25 Hitachi Ltd Sensitivity adjusting method and device for laser flow meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681855B1 (en) 2004-08-31 2007-02-15 (주) 엠큐브테크놀로지 A measuring method for obtaining an ultrasonic image, having improved resolution
JP2014076000A (en) * 2012-10-10 2014-05-01 Nikon Corp Cell motion observation method, image processing program and image processing apparatus
JP2019140989A (en) * 2018-02-21 2019-08-29 ブレインビジョン株式会社 Cell observation device and method

Similar Documents

Publication Publication Date Title
US4862894A (en) Apparatus for monitoring bloodstream
CN111553307A (en) Gesture recognition system fusing bioelectrical impedance information and myoelectric information
DE602004009077T2 (en) DEVICE FOR MEASURING THREE-DIMENSIONAL FORMS
CN100502771C (en) Method and equipment for transcranial cerebral blood flow high-resolution imaging
Tilocca et al. Detecting fabric defects with a neural network using two kinds of optical patterns
Sit et al. Complex dynamics of V1 population responses explained by a simple gain-control model
DE2201830A1 (en) Method and device for wavefront measurement
CN106527530B (en) A kind of the temperature uniformity Detection &amp; Controling method and its system of heated at constant temperature platform
Vijay et al. High-density CMOS microelectrode array system for impedance spectroscopy and imaging of biological cells
JPS6374436A (en) Method and apparatus for recording and evaluating motion behavior of experimental animal
JPS63149567A (en) Optical measuring method in physical property change
Parak et al. Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes?
JPH0528133B2 (en)
CN114912599A (en) Optical artificial neural network intelligent chip, intelligent processing equipment and preparation method
CN104644219B (en) Power density imaging method based on acousto-electric effect
Machikhin et al. Development of ultrasound echocardiography technique for imaging of the cardiovascular system of small organisms in vivo
Sun et al. Comparison of laser Doppler and laser speckle contrast imaging using a concurrent processing system
CN113786179A (en) Human body blood pressure real-time measuring method and device with infrared and optical image fusion
AU748439B2 (en) Device for measuring migration capability of amoeboid moving cells
Yamamoto et al. A CMOS Proximity Capacitance Image Sensor with $16\mu\mathrm {m} $ Pixel Pitch, 0.1 aF Detection Accuracy and 60 Frames Per Second
CN113095492B (en) Topological feature detection method and device based on biological neural network
Halevi et al. Remote optical sensing of neuronal tissue vibrations during regeneration
Coltelli et al. Real-time measurement and analysis of translational and rotational speeds of moving objects in microscope fields
Carrillo et al. Bio-inspired for Detection of Moving Objects Using Three Sensors
JPS6395381A (en) Snow coverage measuring apparatus