JPS63149564A - Method for judging antigen-antibody reaction - Google Patents

Method for judging antigen-antibody reaction

Info

Publication number
JPS63149564A
JPS63149564A JP29641386A JP29641386A JPS63149564A JP S63149564 A JPS63149564 A JP S63149564A JP 29641386 A JP29641386 A JP 29641386A JP 29641386 A JP29641386 A JP 29641386A JP S63149564 A JPS63149564 A JP S63149564A
Authority
JP
Japan
Prior art keywords
antigen
antibody
reaction
wavelength light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29641386A
Other languages
Japanese (ja)
Other versions
JPH07117538B2 (en
Inventor
Michiya Nakagawa
道也 中川
Fumio Ishikawa
文雄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP29641386A priority Critical patent/JPH07117538B2/en
Publication of JPS63149564A publication Critical patent/JPS63149564A/en
Publication of JPH07117538B2 publication Critical patent/JPH07117538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accurately judge whether the first antigen-antibody reaction is performed in either one of an antigen excessive region and an antibody excessive region, by performing the second reaction by further adding an antibody or antigen to the system after the first antigen-antibody reaction. CONSTITUTION:An antigen or antibody and an antibody or antigen generating the antigen-antibody reaction with said antigen or antibody are reacted in a liquid medium to form the first reaction system having an antigen-antibody bonded substance formed therein and said reaction system is irradiated with the first and second wavelength lights having predetermined wavelengths to measure the intensities of transmitted or scattering lights. Next, the second reaction system wherein a new antigen or anti body is added to the system after the first reaction to perform reaction is irradiated with the first and second wavelength lights having the same predetermined wavelengths to respectively measure the intensities of transmitted or scattering lights. Next, the ratio of the measured values due to the first and second wavelength lights of the first and second reaction systems is calculated. A judge index is calculated from the ratio of said measured values and compared with a judge index due to a preliminar ily known amount of the antigen and the antibody to make it possible to accurately judge whether the first reaction is performed in either one of an antigen excessive region and an antibody excessive region.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗原抗体反応が抗原過剰領域および抗体過剰
領域のいずれで行われているかを判定する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for determining whether an antigen-antibody reaction is occurring in an antigen-excessive region or an antibody-excessive region.

(従来の技術) 体液中のII酸成分どの測定方法として、目的とする被
測定物質(抗原または抗体)に該物質と抗原抗体反応し
うる物質(抗体または抗原)を作用させ、生じる抗原−
抗体結合物による凝集の度合を測定する方法が採用され
ている。それには。
(Prior art) As a method for measuring II acid components in body fluids, a target substance to be measured (antigen or antibody) is reacted with a substance (antibody or antigen) capable of antigen-antibody reaction with the substance, and the resulting antigen-
Methods have been employed to measure the degree of agglutination caused by antibody conjugates. For that.

例えば、上記被測定物質を含む検体と上記抗原抗体反応
しうる物質とを直接反応させる免疫比濁法や上記抗原抗
体反応しうる物質を不溶性担体に担持させた試薬を検体
に作用させる方法(例えば。
For example, an immunoturbidimetric method in which a specimen containing the substance to be measured is directly reacted with the substance capable of reacting with the antigen-antibody, or a method in which a reagent in which the substance capable of reacting with the antigen-antibody is supported on an insoluble carrier is applied to the specimen (e.g. .

ラテックス凝集反応法)がある。いずれの場合にも、液
体媒体中で反応を行い、生じた凝集反応を測定機器で測
定する。測定方法としては9反応系に光を入射させ、該
光の透過光強度を測定する方法;反応系に光を入射させ
散乱光強度を測定する方法などがある。
latex agglutination reaction method). In both cases, the reaction is carried out in a liquid medium and the resulting agglutination reaction is measured with a measuring device. Measurement methods include a method in which light is made incident on the reaction system and the intensity of the transmitted light is measured; a method is made in which light is made incident on the reaction system and the intensity of the scattered light is measured.

例えば、血清に含まれるCRP (c反応性蛋白質)は
、該血清と抗CRP抗体を含む溶液とを混合し。
For example, CRP (c-reactive protein) contained in serum can be obtained by mixing the serum with a solution containing anti-CRP antibodies.

生じた抗原−抗体結合物の量を吸光度を測定することに
より測定される。この抗原−抗体結合物生成量はcRp
a度が高(なるにつれて多くなり、かつ該結合物の粒径
が大きくなるため、吸光度が上昇する。しかし、CRP
(抗原)が抗CRP抗体に対して大過剰に存在する場合
には、抗原による抗原−抗体架橋効果がなくなるため、
抗原−抗体結合物の粒径が小さくなり、その結果、吸光
度は低下する。例えば第2図に示すようなCRP ?a
度と吸光度(750nmにて測定)の関係が得られる。
The amount of antigen-antibody conjugate produced is determined by measuring absorbance. The amount of antigen-antibody complex produced is cRp
The absorbance increases as the a degree increases and the particle size of the bond increases. However, CRP
(antigen) present in large excess relative to the anti-CRP antibody, the antigen-antibody bridging effect by the antigen disappears,
The particle size of the antigen-antibody conjugate decreases, resulting in a decrease in absorbance. For example, CRP as shown in Figure 2? a
The relationship between power and absorbance (measured at 750 nm) is obtained.

第2図によれば1例えば、吸光度0.3に対応するC 
RP 濃度は2種(5μg/−および150μg/−)
存在するため、ある吸光度に対するcRp濃度が一義的
に定まらない。そのため異常に高い値でCRPを含有す
る検体のCRP値を低く判定する可能性がある。
According to FIG. 2, 1, for example, C corresponds to an absorbance of 0.3.
Two RP concentrations (5μg/- and 150μg/-)
Therefore, the cRp concentration for a certain absorbance cannot be uniquely determined. Therefore, the CRP value of a sample containing CRP with an abnormally high value may be determined to be low.

抗原抗体反応が抗原過剰領域および抗体過剰領域のいず
れで行われているのかを判定し、被測定物質を正確に測
定する方法が提案されている。例えば、特開昭60−7
9269号には、検体中の抗原または抗体に対応する抗
体または抗原の量を変化させて(例えば抗体量を2とす
る)反応させ、生じた抗原−抗体結合物を測定する方法
が開示されている。このように異なった濃度で複数回反
応させることにより、最初の反応が抗原過剰領域および
抗体過剰領域のいずれで行われたかがわかり、被測定物
質濃度が一義的に決定される。しかし、複数個の反応容
器を用いる必要があり、測定工程が繁雑である。
A method has been proposed for accurately measuring a substance to be measured by determining whether the antigen-antibody reaction is occurring in an antigen-excessive region or an antibody-excessive region. For example, JP-A-60-7
No. 9269 discloses a method of reacting with an antigen or antibody in a sample by changing the amount of the corresponding antibody or antigen (for example, setting the amount of antibody to 2) and measuring the resulting antigen-antibody bond. There is. By performing the reaction multiple times at different concentrations in this manner, it can be determined whether the first reaction occurred in the antigen-excessive region or the antibody-excessive region, and the concentration of the analyte can be uniquely determined. However, it is necessary to use a plurality of reaction vessels, and the measurement process is complicated.

このほか1例えば吸光度を測定することによって、抗原
抗体反応を経時的に追跡し1時間による吸光度の変化率
により抗原−抗体結合物が経時的に増加しているのか、
あるいは減少しているのかを判断し9反応が抗原過剰領
域および抗体過剰領域のいずれで行われているのかを判
断する方法も採用されている。例えば、特公昭61−1
0775号公報の免疫比濁分析法がこれに相当する。し
かし、この方法においても、抗原または抗体が、対応す
る抗体または抗原に対して極めて大過剰に存在する場合
には測定が困難である。
In addition, 1. For example, by measuring absorbance, we can track the antigen-antibody reaction over time and determine whether the antigen-antibody bond is increasing over time based on the rate of change in absorbance over 1 hour.
Alternatively, a method has also been adopted in which it is determined whether the 9 reaction is occurring in an antigen-excessive region or an antibody-excessive region. For example, Tokko Sho 61-1
The immunoturbidimetric analysis method disclosed in Publication No. 0775 corresponds to this method. However, even with this method, measurement is difficult when the antigen or antibody is present in extremely large excess relative to the corresponding antibody or antigen.

(発明が解決しようとする問題点) 本発明は上記従来の欠点を解決するものであり。(Problem to be solved by the invention) The present invention solves the above-mentioned conventional drawbacks.

その目的とするところは、抗原抗体反応が抗原過剰領域
および抗体過剰領域のいずれで行われているかを簡単な
操作により正確に判定し得る方法を提供することにある
The purpose is to provide a method that can accurately determine by simple operations whether the antigen-antibody reaction is occurring in an antigen-excessive region or an antibody-excessive region.

(問題点を解決するための手段) 本発明の抗原抗体反応の判定法は1(a)抗原もしくは
抗体と、該抗原もしくは抗体に抗原抗体反応しうる抗体
もしくは抗原とを、液体媒体中で反応させて抗原−抗体
結合物を生成させる第1反応工程、 (b)該第1反応
系に所定の波長を有する第1波長光および第2波長光を
それぞれ個別にあるいは同時に照射し、その透過光強度
もしくは散乱光強度をそれぞれ測定する工程1(C)該
第1反応後の系に新たな該抗原または該抗体を加えて反
応させる第2反応工程1(d)該第2反応系に該第1波
長光および第2波長光をそれぞれ個別にあるいは同時に
照射し、その透過光強度もしくは散乱光強度をそれぞれ
測定する工程1(e)該第1および第2反応系における
第1波長光による測定値a、およびaloと該第2波長
光による測定値a2およびa2゛との比A1(すなわち
a+/ax)およびA、゛(すなわちa、l/、21)
をそれぞれ算出する工程+ (’) 該A Iおよび該
へ、゛から判定指標B1を算出する工程、および(J)
あらかじめ規知量の該抗原と該抗体とにより設定した判
定指標B0と該B、とを比較し、該第1反応が抗原過剰
領域および抗体過剰領域のいずれで行われているがを判
断する工程を包含し、そのことにより上記目的が達成さ
れる。
(Means for Solving the Problems) The method for determining an antigen-antibody reaction of the present invention includes 1(a) reacting an antigen or antibody with an antibody or antigen capable of antigen-antibody reaction with the antigen or antibody in a liquid medium; (b) irradiating the first reaction system with a first wavelength light and a second wavelength light each having a predetermined wavelength individually or simultaneously, and producing the transmitted light; Step 1 (C) of measuring the intensity or scattered light intensity, respectively. Second reaction step 1 (d) Adding the new antigen or antibody to the system after the first reaction and causing the reaction. Step 1 (e) of irradiating one-wavelength light and second-wavelength light individually or simultaneously and measuring the transmitted light intensity or scattered light intensity, respectively. Measured values using first-wavelength light in the first and second reaction systems. The ratios A1 (i.e., a+/ax) and A, (i.e., a, l/, 21) of a, and alo to the measured values a2 and a2' by the second wavelength light
(J)
A step of comparing B with a determination index B0 set in advance based on a known amount of the antigen and the antibody, and determining whether the first reaction is occurring in an antigen-excess region or an antibody-excess region. , thereby achieving the above objective.

さらに1本発明の抗原抗体反応の判定法は1(a)抗原
もしくは抗体と、該抗原もしくは抗体に抗原抗体反応し
うる抗体もしくは抗原とを、液体媒体中で反応させて抗
原−抗体結合物を生成させる第1反応工程1(b)該第
1反応が実質的に終了した時点を基点(t0)とし、こ
れ以降の任意の時点において該第1反応系に新たな該抗
原または該抗体を加える第2反応工程1(C)該第2反
応開始後であって該基点(L0)から所定の時点(1,
)において。
Furthermore, the method for determining an antigen-antibody reaction of the present invention includes 1(a) reacting an antigen or an antibody with an antibody or antigen capable of performing an antigen-antibody reaction with the antigen or antibody in a liquid medium to form an antigen-antibody combination. First reaction step for generation 1(b) Adding a new antigen or antibody to the first reaction system at any time after the starting point (t0) at the time when the first reaction is substantially completed. Second reaction step 1 (C) After the start of the second reaction, from the base point (L0) to a predetermined time point (1,
) in.

該第2反応系に所定の波長を有する第1波長光および第
2波長光をそれぞれ個別にあるいは同時に照射し、その
透過光強度もしくは散乱光強度をそれぞれ測定する工程
1(d)該(c)工程による測定後であって該基点(t
0)から所定の時点(t2)において、該(c)工程と
同一の操作を行う工程1(e)該(c1工程および(d
)工程で得られた第1波長光による測定値す、およびす
、+と第2波長光による測定値b2およびb2+との比
A、 (すなわちb1/b2)およびA2゛(すなわち
b1′/bZ’)をそれぞれ算出する工程1(「)該A
2およびA tlから判定指標B2を算出する工程、お
よび(g)あらかじめ規知量の該抗原と該抗体とにより
第1および第2反応を行って設定した判定指標80″と
該Btとを比較し、該第1反応が抗原過剰領域および抗
体過剰領域のいずれで行われているかを判断する工程を
包含し、そのことにより上記目的が達成される。
Step 1 (d) of irradiating the second reaction system with first wavelength light and second wavelength light having a predetermined wavelength, individually or simultaneously, and measuring the transmitted light intensity or scattered light intensity, respectively. After the measurement by the process, the base point (t
Step 1 (e) performing the same operation as step (c) from step 0) to predetermined time (t2); step 1 (c1) and step (d
) The ratio A, (i.e. b1/b2) and A2゛ (i.e. b1'/bZ ') Step 1 of calculating each (') corresponding A
2 and A tl, and (g) comparing the Bt with the determination index 80'' set by performing first and second reactions with known amounts of the antigen and the antibody in advance. However, the method includes a step of determining whether the first reaction is occurring in an antigen-excessive region or an antibody-excessive region, thereby achieving the above object.

本発明でいう抗原または抗体とは、抗原抗体反応しうる
あらゆる物質を指していい、それには例えば、臨床検査
において検出されるIgG、 IgA、 IgM。
The term "antigen or antibody" as used in the present invention refers to any substance capable of causing an antigen-antibody reaction, including, for example, IgG, IgA, and IgM detected in clinical tests.

フィブリノーゲン、 FDP−D、 FDP−E、  
リューマチ因子(RF)、C反応性蛋白質(cRP) 
、抗ストレプトリジン−〇 (ASO)、  α−フェ
トプロティン(AFP) 。
Fibrinogen, FDP-D, FDP-E,
Rheumatoid factor (RF), C-reactive protein (cRP)
, anti-streptolysin-〇 (ASO), α-fetoprotein (AFP).

HCG、 CEA等が包含される。Includes HCG, CEA, etc.

例えば、上記抗原(抗体)に対応する抗体(抗原)は、
一般的な免疫・精製などの公知の方法により得られる。
For example, the antibody (antigen) corresponding to the above antigen (antibody) is
It can be obtained by known methods such as general immunization and purification.

例えば、ヒト^FPをヤギに免疫して抗ヒ) AFPヤ
ギ抗体が得られる。これらの物質は、使用する液体媒体
に実質的に不溶な不溶性担体粒子に担持されていてもよ
い。不溶性担体粒子としては無機物質微粒子および有機
高分子物質微粒子のいずれもが使用され得る。無機物質
微粒子としては、シリカ粉末のような無機酸化物微粒子
For example, an anti-human AFP goat antibody can be obtained by immunizing a goat with human FP. These substances may be supported on insoluble carrier particles that are substantially insoluble in the liquid medium used. As the insoluble carrier particles, both inorganic fine particles and organic polymeric substance fine particles can be used. Examples of inorganic substance particles include inorganic oxide particles such as silica powder.

アルミナ粉末のような金属酸化物微粒子、カオリンやベ
ントナイトのような無機/金属酸化物微粒子、各種鉱物
微粒子などが用いられる。有機高分子物質微粒子として
は、生物体の細胞(例えばニワトリ赤血球)や合成樹脂
微粒子(例えばスチレン系樹脂)が用いられる。特にポ
リスチレンやスチレン系共重合体粒子を均一に懸濁させ
たラテックスが好適に用いられる。ラテックス粒子に上
記既知の抗体または抗原を担持させたラテックス試薬が
市販されており、これを利用することもできる。
Metal oxide fine particles such as alumina powder, inorganic/metal oxide fine particles such as kaolin and bentonite, various mineral fine particles, etc. are used. As the organic polymer substance fine particles, biological cells (for example, chicken red blood cells) and synthetic resin fine particles (for example, styrene resin) are used. In particular, latex in which polystyrene or styrene copolymer particles are uniformly suspended is preferably used. Latex reagents in which latex particles support the above-mentioned known antibodies or antigens are commercially available and can also be used.

本発明方法において、抗原抗体反応の測定に用いられる
光の波長は300rv以上であり9通常、300〜10
00nmである。第1波長光と第2波長光との波長の差
は50nm以上に設定する。第2波長光と第1波長光と
の波長の差が小さいと、第1波長光による測定値と第2
波長光による測定値との差が小さいため、被測定物質の
正確が測定が困難となる。
In the method of the present invention, the wavelength of the light used to measure the antigen-antibody reaction is 300 rv or more,9 and usually 300 to 10 rv.
00 nm. The difference in wavelength between the first wavelength light and the second wavelength light is set to 50 nm or more. If the difference in wavelength between the second wavelength light and the first wavelength light is small, the measured value with the first wavelength light and the second wavelength light may differ.
Since the difference from the measured value with the wavelength light is small, it becomes difficult to accurately measure the substance to be measured.

次に9本発明方法を、  CRPと抗CRP抗体との反
応を例に挙げて説明する。
Next, the method of the present invention will be explained using the reaction between CRP and anti-CRP antibody as an example.

まず、  CRPを含む溶液に所定量の抗CRP抗体を
加えて、液体媒体中で反応(第1反応)させる。
First, a predetermined amount of anti-CRP antibody is added to a solution containing CRP and reacted in a liquid medium (first reaction).

この第1反応液に所定の波長(例えば550nm)の光
(第1波長光)を照射し、その吸光度a、を測定する。
This first reaction solution is irradiated with light (first wavelength light) of a predetermined wavelength (for example, 550 nm), and its absorbance a is measured.

次に、上記第1波長光とは異なる波長(例えば750n
m)の光(第2波長光)を照射し、その吸光度a2を測
定し+ alとa2との比A1を算出する。
Next, a wavelength different from the first wavelength light (for example, 750 nm) is applied.
m) is irradiated with light (second wavelength light), its absorbance a2 is measured, and the ratio A1 between +al and a2 is calculated.

次に9例えば、既知量の抗CRP抗体を加えて第2反応
を行う。第2反応後の反応液に再び上記第1波長光およ
び第2波長光をそれぞれ照射する。その吸光度a、゛お
よびa2°から吸光度比A 、 lを算出する。上記A
tおよびA 、 Iから判定指標B、を算出する。
Next, for example, a known amount of anti-CRP antibody is added to perform a second reaction. The reaction solution after the second reaction is irradiated again with the first wavelength light and the second wavelength light, respectively. The absorbance ratios A and l are calculated from the absorbances a, ゛ and a2°. A above
A determination index B is calculated from t, A, and I.

例えば、第1図は、既知濃度のCRPを用いて第1およ
び第2の抗原抗体反応を行った結果を示すグラフである
。実線で示される第1反応において。
For example, FIG. 1 is a graph showing the results of first and second antigen-antibody reactions using CRP at known concentrations. In the first reaction shown by the solid line.

CRP ’tQ度がO〜40μg/mlの領域は、抗体
過剰領域である。この領域においては、  CRP濃度
の上昇に従い、抗原−抗体結合物の粒径(平均粒径)が
大きくなるため、吸光度は上昇しく第2図)、そして吸
光度比(550nm/ 750nm)は逆に低下する(
第1図)。このことは、「懸濁液中の懸濁物質の粒径(
平均粒径)と、該懸濁液の透過光または散乱光(例えば
吸光度)を2波長において測定したときの測定値の比と
は相関関係を有する」という発明者らの知見(後述の参
考例に示す)により裏づけられる。40μg/m1以上
の濃度範囲は抗原過剰領域となるため、  cRpyH
度の上昇に従い、逆に吸光度比は上昇する。
The region where the CRP 'tQ degree is O to 40 μg/ml is the antibody excess region. In this region, as the CRP concentration increases, the particle size (average particle size) of the antigen-antibody conjugate increases, so the absorbance increases (Fig. 2), and the absorbance ratio (550 nm/750 nm) conversely decreases. do(
Figure 1). This means that the particle size of suspended solids in a suspension (
The inventors' knowledge that there is a correlation between the average particle diameter) and the ratio of the measured values when the transmitted light or scattered light (e.g. absorbance) of the suspension is measured at two wavelengths (reference example described below) ). Since the concentration range of 40 μg/ml or more is an antigen-excessive region, cRpyH
Conversely, as the temperature increases, the absorbance ratio increases.

この第1反応において9例えば、吸光度比^1が2.0
であるとき、第1反応時におけるC RP ?a度は約
5μg /d (抗体過剰領域)または約200μg/
111(抗原過剰領域)であると考えられる。第2反応
を行った後(破線で示される)においては、 CRP濃
度が5μg/−であれば吸光度比A、1はちとのA、よ
りも高い値を示し、  CRPtm度が200μg/m
lであれば逆に低い値を示す。
In this first reaction, 9 For example, the absorbance ratio ^1 is 2.0
When, C RP at the time of the first reaction? degree is about 5 μg/d (antibody excess area) or about 200 μg/d
111 (antigen-rich region). After the second reaction (indicated by the dashed line), if the CRP concentration is 5 μg/-, the absorbance ratio A, 1, will be higher than A, and if the CRPtm degree is 200 μg/m
On the other hand, if it is l, it shows a low value.

従って9例えば、a+/ /l、tを判定指標B1とし
Therefore, for example, let a+//l, t be the determination index B1.

あらかじめ試験を行って適当な値に設定した判定指標B
0と比較すれば、上記第1反応が抗原過剰領域および抗
体過剰領域のいずれで行われているかが判定される。
Judgment index B that was tested in advance and set to an appropriate value
By comparing it with 0, it is determined whether the first reaction is occurring in the antigen-excessive region or the antibody-excessive region.

上記方法のように透過光強度または散乱光強度の測定値
(例えば吸光度比)を算出するよりも。
Rather than calculating the measured value (for example, absorbance ratio) of transmitted light intensity or scattered light intensity as in the above method.

ある波長(例えば750nm)で測定した測定値(吸光
度)そのものを比較する方法を採用するほうが。
It is better to adopt a method that compares the measured value (absorbance) itself measured at a certain wavelength (for example, 750 nm).

より簡便であると考えられる。しかし、特に、不溶性担
体に抗体もしくは抗原を担持させた試薬(ラテックス試
薬など)を用いる場合は、担持体自身による吸光度もし
くは散乱光強度の度合が大きいため抗原抗体反応に起因
する吸光度もしくは散乱光強度の変化を正確に測定する
のが困難である。
It is considered to be simpler. However, especially when using a reagent in which an antibody or antigen is supported on an insoluble carrier (such as a latex reagent), the degree of absorbance or scattered light intensity due to the carrier itself is large, so the absorbance or scattered light intensity due to the antigen-antibody reaction is It is difficult to accurately measure changes in

このように、抗原−抗体結合物の生成量を基準として判
定する方法の他、該結合物の生成速度を基準として判定
する方法も採用され得る。
In this way, in addition to the method of determining based on the amount of antigen-antibody bond produced, a method of determining based on the rate of production of the bond may also be adopted.

この方法においては、まず、  CRPを含む溶液に所
定量の抗CRP抗体を加えて、液体媒体中で反応(第1
反応)させる。この第1反応が実質的に終了した時点を
基点(t6;例えば0分)とする。これ以降の任意の時
点において、上記第1反応系に新たな抗CRP抗体(ま
たはCRP)を加えて、第2反応を行わせる。第2反応
開始後であって、該基点(t0)から所定の時点(tl
;例えば3分後)において、この第2反応系に所定の波
長(例えば550nm)を有する光(第1波長光)を照
射し、その吸光度す、を測定する。次に上記第1波長光
とは異なる波長(例えば750nm)の光(第2波長光
)を照射し、その吸光度b2を測定し+ blとb2と
の比Atを算出する。さらに、これらの測定の後、上記
基点(t、)から所定の時点(tt;例えば3分30秒
後)において、上記と同様に第1波長光および第2波長
光による測定を行い、それぞれの測定値b1″およびb
2“から、その比A、lを算出する。そして。
In this method, first, a predetermined amount of anti-CRP antibody is added to a solution containing CRP, and a reaction (first
react). The time point at which this first reaction is substantially completed is defined as the base point (t6; for example, 0 minutes). At any time thereafter, a new anti-CRP antibody (or CRP) is added to the first reaction system to perform a second reaction. After the start of the second reaction, at a predetermined time point (tl) from the base point (t0)
; For example, after 3 minutes), this second reaction system is irradiated with light (first wavelength light) having a predetermined wavelength (for example, 550 nm), and its absorbance is measured. Next, light (second wavelength light) having a wavelength different from the first wavelength light (for example, 750 nm) is irradiated, the absorbance b2 thereof is measured, and the ratio At between +bl and b2 is calculated. Furthermore, after these measurements, at a predetermined time (tt; for example, 3 minutes and 30 seconds after) from the base point (t,), measurements using the first wavelength light and the second wavelength light are performed in the same manner as above, and each Measured values b1″ and b
2", calculate the ratio A, l. Then.

上記A2およびA2“から判定指標B2を算出する。例
えば、上記測定値の比の時間による変化率〔(A2“−
A2 ) / (tz −tt ) )を判定指標B″
とし、あらかじめ試験を行って設定・した判定指標B、
lと比較することにより、上記第1反応が抗原過剰領域
および抗体過剰領域のいずれで行われているかが判定さ
れる。例えば、第1反応が抗原過剰領域で行われていれ
ば、第2反応で抗体を加えることにより、抗原−抗体結
合物の粒径が大きくなる。そのことにより (八2”−
八2)のイ直はマイナスとなるため変化率B″はマイナ
スの値となる。
The determination index B2 is calculated from the above A2 and A2". For example, the rate of change over time of the ratio of the measured values [(A2"-
A2) / (tz - tt)) as the determination index B''
Judgment index B, which was set and tested in advance,
By comparing with 1, it is determined whether the first reaction is occurring in the antigen-excessive region or the antibody-excessive region. For example, if the first reaction is performed in an antigen-excessive region, adding an antibody in the second reaction increases the particle size of the antigen-antibody conjugate. By that (82”-
Since the value of A in 82) is negative, the rate of change B'' is a negative value.

第1反応が抗体過剰領域で行われていれば、第2反応で
抗体を加えることにより、抗原抗体結合物の粒径が変化
しない場合と抗原による架橋効果が失われて粒径が小さ
くなる場合とがある。第1反応で被測定検体に抗原が含
まれていない場合はA2”−Az=0となるため変化率
B′はOとなり、抗体過剰領域であれば(A21−A2
)の値がプラスとなるため変化率B゛はプラスの値とな
る。
If the first reaction is carried out in the antibody-excessive region, the particle size of the antigen-antibody conjugate may not change by adding antibody in the second reaction, or the particle size may become smaller due to loss of the cross-linking effect of the antigen. There is. If the antigen is not contained in the sample to be measured in the first reaction, A2''-Az=0, so the rate of change B' is O, and if it is in the antibody excess region (A21-A2
) is a positive value, so the rate of change B' is a positive value.

上記変化率を測定する方法においては、第2反応後3回
以上の測定を行い、それぞれの比の値(At、 Az″
+A2−・・)を算出して変化率を求める方法も有利に
採用され得る。上記各方法において、第1波長光と第2
波長光とは、これらを含む連続波長の光を用い、その成
分を回折格子で分離して取り出し、これを照射すること
により第1波長光と第2波長光を同時に測定することも
可能である。
In the method of measuring the rate of change described above, measurements are performed three or more times after the second reaction, and each ratio value (At, Az''
+A2-...) to determine the rate of change may also be advantageously adopted. In each of the above methods, the first wavelength light and the second wavelength light
Wavelength light refers to continuous wavelength light that includes these components, and by separating and extracting the components with a diffraction grating, it is also possible to simultaneously measure the first wavelength light and the second wavelength light by irradiating it. .

さらに、上記抗原−抗体結合物の生成量を測定する方法
および生成速度を測定する方法のいずれの方法において
も、第1および第2波長光とは異なる波長における測定
を行うことも可能である。
Furthermore, in both of the methods for measuring the amount of antigen-antibody conjugate produced and the method for measuring the production rate, it is also possible to perform measurement at a wavelength different from the first and second wavelength light.

例えば、第3波長光(900nm)による測定を行い。For example, measurement is performed using third wavelength light (900 nm).

得られた吸光度比A3+  A:l゛を加えて指標を算
出する。このように3以上の複数波長光を用いると。
An index is calculated by adding the obtained absorbance ratio A3+A:l. When multiple wavelength light of 3 or more is used in this way.

より高精度の測定がなされ得る。More accurate measurements can be made.

反応系の抗原−抗体反応物を測定するための装置として
は1通常の分光光度針や光の散乱強度を測定するための
装置が用いられる。生化学自動分析装置、免疫比濁法に
用いられる専用装置、ラテックスの凝集反応を測定する
ための専用装置など分光光度計が組み込まれた機器も有
利に利用される。このほか、抗原抗体反応をマイクロタ
イタープレートのウェルで反応させ、このプレートをプ
レートリーダーにかけてその吸光度を測定する方法を採
用すると、小型の装置で短時間のうちに大量の判定が可
能となる。
As a device for measuring the antigen-antibody reaction product in the reaction system, a conventional spectrophotometric needle or a device for measuring the scattering intensity of light is used. Instruments with built-in spectrophotometers, such as automatic biochemical analyzers, specialized devices used for immunoturbidimetry, and specialized devices for measuring latex agglutination reactions, are also advantageously used. In addition, if a method is adopted in which an antigen-antibody reaction is performed in the wells of a microtiter plate and the absorbance is measured using a plate reader, a large amount of determination can be made in a short time using a small device.

(作用) 本発明によれば、このように、第1抗原抗体反応後の系
にさらに抗体もしくは抗原を加えて第2反応を行わせる
ため2反応容器を複数個準備することなく簡単に上記第
1反応が抗原過剰領域および抗体過剰領域のいずれで行
われているかが判定される。抗原または抗体が極端に過
剰であっても。
(Function) According to the present invention, in order to perform the second reaction by further adding an antibody or antigen to the system after the first antigen-antibody reaction, the above-mentioned reaction can be easily carried out without preparing a plurality of second reaction vessels. It is determined whether one reaction is occurring in an antigen-excess region or an antibody-excess region. Even if the antigen or antibody is in extreme excess.

判定が正確になされる。測定には、波長が5onII+
以上異なる2種またはそれ以上の波長が用いられるため
、従来の1種の波長による測定の場合に比較すると、特
に不溶性担体に抗体もしくは、抗原を担持させた試薬(
ラテックス試薬など)において抗原抗体反応による抗原
−抗体結合物の生成状況を正確に測定することが可能で
ある。
Judgments are made accurately. For measurement, the wavelength is 5onII+
Since two or more different wavelengths are used, compared to the conventional measurement using one wavelength, it is especially difficult to use a reagent (in which an antibody or antigen is supported on an insoluble carrier).
It is possible to accurately measure the state of production of antigen-antibody bonds due to antigen-antibody reactions in latex reagents, etc.).

(実施例) 以下に本発明の実施例につき説明する。(Example) Examples of the present invention will be described below.

皇亙拠 粒径0.1μmのポリスチレン製ラテックスの蒸留水懸
濁液(0,25%)を調製し、これを光路長2龍のセル
に入れた。これに550nmの光(第1波長光)を照射
し、その吸光度a、を測定した。次に750nmの光(
第2波長光)を照射し、その吸光度a2を測定し+ a
lとa2との比(八+=a+/ax)を算出した。
A suspension (0.25%) of polystyrene latex with a particle size of 0.1 μm in distilled water was prepared and placed in a cell with an optical path length of 2. This was irradiated with 550 nm light (first wavelength light), and its absorbance a was measured. Next, 750 nm light (
2nd wavelength light) and measure its absorbance a2. + a
The ratio between l and a2 (8+=a+/ax) was calculated.

次ニラテックスの粒径を0.2μmとしくiJm度0.
1%)、同様の方法で第1波長光による吸光度す、およ
び第2波長光による吸光度b2を測定し、b、とb2と
の比(A2 = tll /b2)を算出した。ラテッ
クスの粒径を0.45μm(濃度0.036%)+ 1
.0μm(濃度0.017%) 、 1.97.czm
(濃度0.008%)とし、同様の方法でA3(cI/
C2) 、八4. (dt/at)およびAs (e+
/e2)を算出した。ラテックスの粒径と吸光度の比(
八、〜^、)との関係を第3図に示す。
Next, the particle size of Nilatex is 0.2 μm and the iJm degree is 0.
1%), the absorbance due to the first wavelength light and the absorbance b2 due to the second wavelength light were measured in the same manner, and the ratio between b and b2 (A2 = tll /b2) was calculated. The particle size of latex is 0.45 μm (concentration 0.036%) + 1
.. 0 μm (concentration 0.017%), 1.97. czm
(concentration 0.008%) and A3 (cI/
C2), 84. (dt/at) and As (e+
/e2) was calculated. The ratio of latex particle size to absorbance (
8,~^,) is shown in Figure 3.

第3図から、ラテックスの粒径と吸光度の比(A1〜^
、)とは一定の相関関係を有し、ラテックスの粒径が大
きくなる程、上記2波長(550nmおよび750nm
)で測定した吸光度の比が小さくなることがわかる。こ
の事実は、抗原抗体反応により抗原−抗体結合物が生成
して反応系に含まれる粒子径(平抱粒径)が大きくなる
程、上記比が低下することを意味する。
From Figure 3, the ratio of the particle size of latex to the absorbance (A1~^
) has a certain correlation with the above two wavelengths (550 nm and 750 nm), and the larger the latex particle size
It can be seen that the ratio of absorbance measured at ) becomes smaller. This fact means that the above ratio decreases as the antigen-antibody bond is produced by the antigen-antibody reaction and the particle size (average particle size) included in the reaction system becomes larger.

尖泡拠 粒径0.2μmのポリスチレン製ラテックスに抗CRP
抗体を吸着させ、ラテックス固形分0.5%の抗CRP
抗体感作ラテックス液(水懸濁液)を調製した。別に、
  CRPを所定濃度で含有するCRP水溶液を準備し
た。上記ラテックス液40μlおよびCRP水溶液20
μlを光路長51璽のガラス製透明セルに入れ、37℃
で15分間反応させた。これにウシ血清アルブミン1%
を含むリン酸食塩緩衝液(pH7,0)13001!を
加え、  550nmにおける吸光度a1および750
nmにおける吸光度a2を測定した。
Anti-CRP on polystyrene latex with a microfoam particle size of 0.2μm
Anti-CRP with 0.5% latex solid content by adsorbing antibodies
An antibody sensitization latex solution (water suspension) was prepared. Separately,
A CRP aqueous solution containing CRP at a predetermined concentration was prepared. 40 μl of the above latex solution and 20 μl of CRP aqueous solution
Place the μl into a glass transparent cell with an optical path length of 51 cm and hold at 37°C.
The mixture was allowed to react for 15 minutes. This includes 1% bovine serum albumin.
Phosphate saline buffer (pH 7,0) containing 13001! and absorbance a1 at 550 nm and 750
Absorbance a2 in nm was measured.

次に、上記反応液に新たな抗CRP抗体感作ラテックス
液40μlを添加し、37℃にて15秒間反応させた後
、上記と同様に550nmおよび750nmにおける吸
光度aI′および82°それぞれ測定した。
Next, 40 μl of a new anti-CRP antibody-sensitized latex solution was added to the above reaction solution, and after reacting at 37° C. for 15 seconds, absorbances aI' and 82° at 550 nm and 750 nm were measured in the same manner as above.

上記a、およびa2の比(a l/ a z ” A 
r ) + そして 、+およびa2゛の比(a、l/
 a、1 = a+’)をそれぞれ算出した。上記CR
P ?M度は第1図に示すO〜200μg/−の6種類
に設定し、それぞれについて反応を行った。CRP >
77、度とA1との関係(第1反応)を第1図に実線で
、そして、  CRP 濃度とA 、 Iとの関係(第
2反応)を第1図に破線で示す。
The ratio of a and a2 above (a l/ a z ” A
r) + and the ratio of + and a2゛ (a, l/
a, 1 = a+') were calculated. Above CR
P? The M degree was set to 6 types from O to 200 μg/- as shown in FIG. 1, and reactions were performed for each. CRP>
The relationship between CRP concentration and A1 (first reaction) is shown in FIG. 1 as a solid line, and the relationship between CRP concentration and A and I (second reaction) is shown in FIG. 1 as a broken line.

第1図実線においてCRP >74度がO〜40μg/
mlの範囲においては、  cRp濃度の上昇とともに
上記吸光度の比A1は低下する。このことは(: RP
 t7M度の上昇とともに反応系における平均粒径が大
きくなっていること、つまり抗体過剰領域であることを
示す。逆に、  CRP :a度が40μg/−以上は
抗原過剰領域であることを示す。
In the solid line in Figure 1, CRP >74 degrees is 0~40 μg/
ml range, the absorbance ratio A1 decreases as the cRp concentration increases. This is (: RP
This shows that the average particle size in the reaction system increases as the t7M degree increases, that is, the region is in the antibody excess region. On the contrary, CRP:A degree of 40 μg/- or more indicates an antigen-excessive region.

例えば吸光度比が2.0である場合には、  CRI’
1ffi度が5μg/−の抗体過剰領域または200μ
g/m1の抗原過剰領域であり得る。第2反応によりC
RP濃度が5μg/−の場合には吸光度比は上昇し。
For example, when the absorbance ratio is 2.0, CRI'
1ffi degree 5μg/- antibody excess area or 200μ
g/ml of antigen excess. By the second reaction, C
When the RP concentration was 5 μg/-, the absorbance ratio increased.

200μg/ytrlの場合には逆に下降する。従って
Conversely, it decreases at 200 μg/ytrl. Therefore.

例えばA t / A+ ’ という判定指標を決め、
これをあらかじめ適当な値に設定しておけば、  CR
P濃度が未知の検体について抗原抗体反応を行ったとき
に。
For example, decide on the judgment index A t / A+ ',
If you set this to an appropriate value in advance, CR
When performing an antigen-antibody reaction on a sample with unknown P concentration.

それが抗原過剰領域および抗体過剰領域のいずれで行わ
れているかが容易に判定される。
It is easily determined whether this occurs in the antigen-excessive region or the antibody-excessive region.

(発明の効果) 本発明方法によれば、このように、抗原抗体反応が抗原
過剰領域および抗体過剰領域のいずれで行われているか
が、簡単な操作で容易に判定される。本発明方法は9例
えば、生化学自動分析装置などにより大量の検体を測定
するときに、異常値を有する検体を発見するのに有利に
使用され得る。
(Effects of the Invention) According to the method of the present invention, whether the antigen-antibody reaction is occurring in the antigen-excess region or the antibody-excess region can be easily determined by a simple operation. The method of the present invention can be advantageously used, for example, to discover samples with abnormal values when measuring a large amount of samples using an automatic biochemical analyzer.

4、 ス  の  ゛な看゛■ 第1図は9本発明方法により第1および第2反応を行な
ったときの、それぞれの反応液中のCRP濃度と、異な
る2波長の吸光度比との関係を示すグラフ;第2図は、
従来法によりCRPの測定を行ったときの反応液中のC
RP濃度と所定の波長における吸光度との関係を示すグ
ラフ;そして第3図は、ラテックス懸@液中のラテック
ス粒径と異なる2波長の吸光度比との関係を示すグラフ
である。
Figure 1 shows the relationship between the CRP concentration in each reaction solution and the absorbance ratio of two different wavelengths when the first and second reactions were performed according to the method of the present invention. The graph shown in Figure 2 is
C in the reaction solution when measuring CRP using the conventional method
A graph showing the relationship between RP concentration and absorbance at a predetermined wavelength; and FIG. 3 is a graph showing the relationship between the latex particle size in the latex suspension and the absorbance ratio at two different wavelengths.

以上that's all

Claims (1)

【特許請求の範囲】 1、(a)抗原もしくは抗体と、該抗原もしくは抗体に
抗原抗体反応しうる抗体もしくは抗原とを、液体媒体中
で反応させて抗原−抗体結合物を生成させる第1反応工
程、 (b)該第1反応系に所定の波長を有する第1波長光お
よび第2波長光をそれぞれ個別にあるいは同時に照射し
、その透過光強度もしくは散乱光強度をそれぞれ測定す
る工程、 (c)該第1反応後の系に新たな該抗原または該抗体を
加えて反応させる第2反応工程、 (d)該第2反応系に該第1波長光および第2波長光を
それぞれ個別にあるいは同時に照射し、その透過光強度
もしくは散乱光強度をそれぞれ測定する工程、 (e)該第1および第2反応系における第1波長光によ
る測定値a_1およびa_1’と該第2波長光による測
定値a_2およびa_2’との比A_1(すなわちa_
1/a_2)およびA_1’(すなわちa_1’/a_
2’)をそれぞれ算出する工程、 (i)該A_1および該A_1’から判定指標B_1を
算出する工程、および (j)あらかじめ規知量の該抗原と該抗体とにより設定
した判定指標B_0と該B_1とを比較し、該第1反応
が抗原過剰領域および抗体過剰領域のいずれで行われて
いるかを判断する工程、 を包含する抗原抗体反応の判定法。 2、前記判定指標B_1およびB_0が、A_1とA_
1’との比である特許請求の範囲第1項に記載の判定法
。 3、前記第1波長光および第2波長光の波長が300n
m以上であり、かつ該第1波長光と第2波長光との波長
の差が50nm以上である特許請求の範囲第1項に記載
の判定法。 4、前記測定値が、透過光強度から計算された吸光度あ
るいは透過率である特許請求の範囲第1項に記載の判定
法。 5、前記抗体もしくは抗原が、前記液体媒体に実質的に
不溶な有機高分子物質微粒子または無機物質微粒子でな
る担体に担持された特許請求の範囲第1項に記載の判定
法。 6、前記有機高分子物質微粒子が合成樹脂微粒子または
生物体の細胞である特許請求の範囲第5項に記載の判定
法。 7、前記合成樹脂がスチレン系樹脂である特許請求の範
囲第6項に記載の判定法。 8、前記無機物質が金属酸化物および/または無機酸化
物である特許請求の範囲第5項に記載の判定法。 9、前記透過光強度の測定が、吸光度計;または吸光度
計が組み込まれた生化学自動分析装置、免疫比濁法専用
測定装置またはラテックス凝集反応専用測定装置でなさ
れる特許請求の範囲第1項に記載の判定法。 10、前記第1および第2の抗原抗体反応をマイクロタ
イタープレート上で行い、前記透過光強度をプレートリ
ーダーで測定する特許請求の範囲第1項に記載の判定法
。 11、(a)抗原もしくは抗体と、該抗原もしくは抗体
に抗原抗体反応しうる抗体もしくは抗原とを、液体媒体
中で反応させて抗原−抗体結合物を生成させる第1反応
工程、 (b)該第1反応が実質的に終了した時点を基点(t_
0)とし、これ以降の任意の時点において該第1反応系
に新たな該抗原または該抗体を加える第2反応工程、 (c)該第2反応開始後であって該基点(t_0)から
所定の時点(t_1)において、該第2反応系に所定の
波長を有する第1波長光および第2波長光をそれぞれ個
別に照射し、その透過光もしくは散乱光をそれぞれ測定
する工程、 (d)該(c)工程による測定後であって該基点(t_
0)から所定の時点(t_2)において、該(c)工程
と同一の操作を行う工程、 (e)該(c)工程および(d)工程で得られた第1波
長光による測定値b_1およびb_1’と第2波長光に
よる測定値b_2およびb_2’との比A_2(すなわ
ちb_1/b_2)およびA_2’(すなわちb_1’
/b_2’)をそれぞれ算出する工程、(f)該A_2
およびA_2’から判定指標B_2を算出する工程、お
よび (g)あらかじめ規知量の該抗原と該抗体とにより第1
および第2反応を行って設定した判定指標B_0’と該
B_2とを比較し、該第1反応が抗原過剰領域および抗
体過剰領域のいずれで行われているかを判断する工程、 を包含する抗原抗体反応の判定法。 12、前記判定指標B_2およびB_0’が、第2反応
後の該測定値の比の時間による変化率 〔(A_2’−A_2)/(t_2−t_1)〕で示さ
れる特許請求の範囲第11項に記載の判定法。 13、前記第1波長光および第2波長光の波長が300
nm以上であり、かつ該第1波長光と第2波長光との波
長の差が50nm以上である特許請求の範囲第11項に
記載の判定法。 14、前記測定値が、透過光強度から計算された吸光度
あるいは透過率である特許請求の範囲第11項に記載の
判定法。 15、前記抗体もしくは抗原が、前記液体媒体に実質的
に不溶な有機高分子物質微粒子または無機物質微粒子で
なる担体に担持された特許請求の範囲第11項に記載の
判定法。 16、前記有機高分子物質微粒子が合成樹脂微粒子また
は生物体の細胞である特許請求の範囲第15項に記載の
判定法。 17、前記合成樹脂がスチレン系樹脂である特許請求の
範囲第16項に記載の判定法。 18、前記無機物質が金属酸化物および/または無機酸
化物である特許請求の範囲第15項に記載の判定法。 19、前記透過光強度の測定が、吸光度計;または吸光
度計が組み込まれた生化学自動分析装置。 免疫比濁法専用測定装置またはラテックス凝集反応専用
測定装置でなされる特許請求の範囲第11項に記載の判
定法。 20、前記第1および第2の抗原抗体反応をマイクロタ
イタープレート上で行い、前記透過光強度をプレートリ
ーダーで測定する特許請求の範囲第11項に記載の判定
法。
[Claims] 1. (a) A first reaction in which an antigen or antibody and an antibody or antigen capable of performing an antigen-antibody reaction with the antigen or antibody are reacted in a liquid medium to produce an antigen-antibody bond. (b) irradiating the first reaction system with a first wavelength light and a second wavelength light having a predetermined wavelength, respectively or simultaneously, and measuring the transmitted light intensity or scattered light intensity, respectively, (c ) a second reaction step of adding and reacting the new antigen or the antibody to the system after the first reaction; (d) applying the first wavelength light and the second wavelength light to the second reaction system individually or (e) Measured values a_1 and a_1' of the first wavelength light in the first and second reaction systems and measured values of the second wavelength light in the first and second reaction systems; The ratio A_1 with a_2 and a_2' (i.e. a_
1/a_2) and A_1' (i.e. a_1'/a_
2'), (i) calculating the determination index B_1 from the A_1 and the A_1', and (j) calculating the determination index B_0 set in advance based on known amounts of the antigen and the antibody A method for determining an antigen-antibody reaction, comprising the step of comparing the first reaction with B_1 and determining whether the first reaction is occurring in an antigen-excessive region or an antibody-excessive region. 2. The judgment indicators B_1 and B_0 are A_1 and A_
1'. 3. The wavelength of the first wavelength light and the second wavelength light is 300n.
The determination method according to claim 1, wherein the difference in wavelength between the first wavelength light and the second wavelength light is 50 nm or more. 4. The determination method according to claim 1, wherein the measured value is absorbance or transmittance calculated from transmitted light intensity. 5. The determination method according to claim 1, wherein the antibody or antigen is supported on a carrier made of organic polymeric substance fine particles or inorganic substance fine particles that are substantially insoluble in the liquid medium. 6. The determination method according to claim 5, wherein the organic polymer substance fine particles are synthetic resin fine particles or biological cells. 7. The determination method according to claim 6, wherein the synthetic resin is a styrene resin. 8. The determination method according to claim 5, wherein the inorganic substance is a metal oxide and/or an inorganic oxide. 9. Claim 1, wherein the transmitted light intensity is measured by an absorbance meter; or an automatic biochemical analyzer incorporating an absorbance meter, a measuring device exclusively for immunoturbidimetry, or a measuring device exclusively for latex agglutination reaction. Judgment method described in. 10. The determination method according to claim 1, wherein the first and second antigen-antibody reactions are performed on a microtiter plate, and the transmitted light intensity is measured with a plate reader. 11. (a) A first reaction step in which an antigen or antibody and an antibody or antigen capable of performing an antigen-antibody reaction with the antigen or antibody are reacted in a liquid medium to produce an antigen-antibody conjugate; (b) The starting point is the time when the first reaction has substantially completed (t_
0) and adding a new antigen or antibody to the first reaction system at any time thereafter; (c) a predetermined step from the base point (t_0) after the start of the second reaction; At the time point (t_1), a step of individually irradiating the second reaction system with a first wavelength light and a second wavelength light having a predetermined wavelength, and measuring the transmitted light or scattered light, respectively; (c) After the measurement in the process, the base point (t_
0) to a predetermined time point (t_2), performing the same operation as the step (c); (e) the measured values b_1 and 1 of the first wavelength light obtained in the steps (c) and (d); The ratios A_2 (i.e. b_1/b_2) and A_2' (i.e. b_1') of b_1' and the measured values b_2 and b_2' by the second wavelength light
/b_2'), (f) said A_2
and (g) calculating a determination index B_2 from A_2', and (g) using a previously known amount of the antigen and the antibody.
and a step of comparing the determination index B_0' set by performing a second reaction with the B_2 and determining whether the first reaction is performed in an antigen-excessive region or an antibody-excessive region. How to judge the reaction. 12. Claim 11, wherein the determination indices B_2 and B_0' are represented by the rate of change over time of the ratio of the measured values after the second reaction [(A_2'-A_2)/(t_2-t_1)] Judgment method described in. 13. The wavelength of the first wavelength light and the second wavelength light is 300.
12. The determination method according to claim 11, wherein the difference in wavelength between the first wavelength light and the second wavelength light is 50 nm or more. 14. The determination method according to claim 11, wherein the measured value is absorbance or transmittance calculated from transmitted light intensity. 15. The determination method according to claim 11, wherein the antibody or antigen is supported on a carrier made of organic polymer particles or inorganic particles that are substantially insoluble in the liquid medium. 16. The determination method according to claim 15, wherein the organic polymer substance fine particles are synthetic resin fine particles or biological cells. 17. The determination method according to claim 16, wherein the synthetic resin is a styrene resin. 18. The determination method according to claim 15, wherein the inorganic substance is a metal oxide and/or an inorganic oxide. 19. The transmitted light intensity is measured using an absorbance meter; or an automatic biochemical analyzer incorporating an absorbance meter. The determination method according to claim 11, which is carried out using a measuring device exclusively for immunoturbidimetry or a measuring device exclusively for latex agglutination reaction. 20. The determination method according to claim 11, wherein the first and second antigen-antibody reactions are performed on a microtiter plate, and the transmitted light intensity is measured with a plate reader.
JP29641386A 1986-12-12 1986-12-12 Antigen-antibody reaction determination method Expired - Fee Related JPH07117538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29641386A JPH07117538B2 (en) 1986-12-12 1986-12-12 Antigen-antibody reaction determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29641386A JPH07117538B2 (en) 1986-12-12 1986-12-12 Antigen-antibody reaction determination method

Publications (2)

Publication Number Publication Date
JPS63149564A true JPS63149564A (en) 1988-06-22
JPH07117538B2 JPH07117538B2 (en) 1995-12-18

Family

ID=17833222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29641386A Expired - Fee Related JPH07117538B2 (en) 1986-12-12 1986-12-12 Antigen-antibody reaction determination method

Country Status (1)

Country Link
JP (1) JPH07117538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204378A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Immune reaction automatic analyzer
JP2022501604A (en) * 2018-09-28 2022-01-06 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド How to detect hook effects associated with the desired analyses during or due to a diagnostic assay being performed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204378A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Immune reaction automatic analyzer
JP2022501604A (en) * 2018-09-28 2022-01-06 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド How to detect hook effects associated with the desired analyses during or due to a diagnostic assay being performed

Also Published As

Publication number Publication date
JPH07117538B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US4118192A (en) Method and apparatus for the measurement of antigens and antibodies
US4174952A (en) Immunoassay by light scattering intensity anisotropy measurements
JPH03502246A (en) Coagulation methods for the analysis of substances
EP0005978A1 (en) Process for detecting and quantifying an antigen or antibody
CN107422113A (en) The detection method of cyclic citrullinated peptid
JP4033853B2 (en) Solid phase assay for detection of ligands
US20130302907A1 (en) Method of assaying antigen and reagent therefor
Von Schulthess et al. Laser light scattering spectroscopic immunoassay for mouse IgA
JPS6365369A (en) Method for measuring antigen-antibody reaction
US5093271A (en) Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
JPH01250066A (en) Measurement of one or more component of reaction between protein specifically bonded and corresponding substance allowed to bond by one test sample using at least one labelled component, preparation of labelled component and test kit for measuring immunological component
JP2584530B2 (en) Multiplexed immunoassay method
JPH01301165A (en) Immunoassay
EP2596367A1 (en) Competition assay
JPS63149564A (en) Method for judging antigen-antibody reaction
JPH026023B2 (en)
JPS63149565A (en) Immunoassay
JPH0783929A (en) Measuring method for concentration of antigen or antibody
JPH01158354A (en) Reagent and method for immunological measurement of many components
JPH1090168A (en) Quantitative and/or qualitative analysis method of atom or molecule
JP3618797B2 (en) Immunoassay
Higuchi et al. Novel blood typing method by discrimination of hemagglutination and rouleaux using an erythrocyte aggregometer
JPS5992353A (en) Measuring method of flocculating reaction using insoluble carrier particle
JPS6293664A (en) Method for measuring concentration of antigen or antibody
JPS6293663A (en) Method for measuring concentration of antigen or antibody

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees