JPS63149555A - Assembling structure of detection element - Google Patents

Assembling structure of detection element

Info

Publication number
JPS63149555A
JPS63149555A JP61297241A JP29724186A JPS63149555A JP S63149555 A JPS63149555 A JP S63149555A JP 61297241 A JP61297241 A JP 61297241A JP 29724186 A JP29724186 A JP 29724186A JP S63149555 A JPS63149555 A JP S63149555A
Authority
JP
Japan
Prior art keywords
detection element
glass
flange part
flange
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61297241A
Other languages
Japanese (ja)
Inventor
Hisaharu Nishio
久治 西尾
Toshihiko Aoyama
青山 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61297241A priority Critical patent/JPS63149555A/en
Publication of JPS63149555A publication Critical patent/JPS63149555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fix a detection element to a flange part in a high airtightness holding state, by setting the ratio of the coefficients of thermal expansion of the detection element, glass and the flange part to a range of 1:0.5-1:1-2. CONSTITUTION:Glass 20a is allowed to fill the gap 21 between the detection element 10 inserted in a flange part 20 and the flange part 20 to b melted under heating and subsequently cooled and solidified to fix the element 10 to the flange part 20. Since the ratio of the coefficient of thermal expansion of the element 10 and that of the flange part 20 is 1:1-2, the gap 21 between the flange part 20 and the element 10 becomes narrow as the glass 20a is lowered in its temp. and solidified. Therefore, the glass 20a allowed to fill the gap 21 receives stress from the flange part 20 and the element 20 with the advance of solidification, and the flange part 20 and the element 10 are closely adhered so as to make the gap 21 sufficiently airtight. Further, since the ratio of the coefficient of thermal expansion of the element 10 and that of the glass 20a is 1:0.5-1, even when the gap 21 becomes narrow and the stress from the flange part 20 or element 10 increases, stress is prevented from becoming excessive by the shrinkage of the glass 20a and no gap is generated by the excessive shrinkage of the glass 20a and the element 10 is fixed to the flange part 20 in a high airtightness holding state.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、検出素子の鍔部への組み付け構造に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a structure for assembling a detection element to a collar.

[従来の技術] 近年、公害防止、省エネルギー、工程の細かい管理等を
目的として種々のセンサーが使用される。
[Prior Art] In recent years, various sensors have been used for the purposes of pollution prevention, energy conservation, detailed process management, and the like.

このセンサーのひとつとして、筒状あるいは板状のセラ
ミックからなる検出素子を筒状の鍔部を介して筒状の主
体金具に取り付けたものがある。
One such sensor is one in which a detection element made of a cylindrical or plate-shaped ceramic is attached to a cylindrical metal shell via a cylindrical flange.

このようなセンサーは、先ず鍔部に検出素子を挿入し、
次いで該鍔部と該検出素子との間隙にガラス及びセメン
ト等を固定及び気密のために充填し、その後鍔部に固定
された検出素子を主体金具に挿入し、最後に該主体金具
を部分的に抵抗加熱しながら、主体金具の外から加締め
ることにより鍔部を締め付けて、検出素子の組み付けを
行っている。
Such a sensor first inserts a detection element into the flange, and then
Next, the gap between the flange and the detection element is filled with glass, cement, etc. for fixation and airtightness, then the detection element fixed to the flange is inserted into the metal shell, and finally the metal shell is partially sealed. The sensing element is assembled by tightening the flange by crimping from the outside of the metal shell while applying resistance heating.

[発明が解決しようとする問題点] しかしながら、このような検出素子の組み付け構造にお
いては、検出素子を固定するためにガラスを用いるが、
溶融したガラスが冷却して凝固する際に、間隙が生ずる
ことがあり、そのため気密性に問題が生じていた。この
気密が保たれないと、測定ガスが大気側に漏出し、測定
ガス側と大気側のガス分圧の差を利用した測定が不正確
になるので、ガラス以外にもセメント等の他の充填材を
使用して気密性を向上しなければならず、作業工程が複
雑になるという問題点があった。
[Problems to be Solved by the Invention] However, in such a detection element assembly structure, glass is used to fix the detection element;
When the molten glass cools and solidifies, gaps may be created, which causes problems with airtightness. If this airtightness is not maintained, the measured gas will leak to the atmosphere and measurements using the difference in gas partial pressure between the measured gas side and the atmosphere will become inaccurate. There was a problem in that the work process was complicated because the airtightness had to be improved by using materials.

本発明は、上記問題点を解決することを目的とする。The present invention aims to solve the above problems.

[問題点を解決するための手段] 本発明は上記問題点を解決する手段として次の構成を採
用した。
[Means for Solving the Problems] The present invention employs the following configuration as a means for solving the above problems.

即ち、本発明は、 周囲環境の状態を検出する検出素子を、筒状の鍔部の貫
通孔に挿入するとともに、上記検出素子と鍔部との間隙
にガラスをつめて固定してなる検出素子の組み付け構造
において、 上記検出素子、ガラス及び鍔部の熱膨張係数の比が1:
0.5〜1:1〜2の範囲であることを特徴とする検出
素子の組み付け構造を要旨とする。
That is, the present invention provides a detection element in which a detection element for detecting the state of the surrounding environment is inserted into a through hole of a cylindrical flange, and glass is filled and fixed in the gap between the detection element and the flange. In the assembly structure, the ratio of the thermal expansion coefficients of the detection element, the glass, and the flange is 1:
The gist of the present invention is a detection element assembly structure characterized by a ratio of 0.5 to 1:1 to 2.

ここで、上記ガラスとしては、例えば鉛ガラス又はほう
酸系ガラスが用いられる。また、上記検出素子は円筒状
が望ましく、上記鍔部は、セラミック又は金属(ステン
レス鋼等)が適している。
Here, as the glass, for example, lead glass or boric acid glass is used. Further, the detection element is preferably cylindrical, and the flange is suitably made of ceramic or metal (stainless steel, etc.).

さらに上記熱膨張係数の比を変えない範囲内で、ガラス
に添加物(アルミナ、マグネシア等)を含有していても
よい。
Further, the glass may contain additives (alumina, magnesia, etc.) within a range that does not change the ratio of the thermal expansion coefficients.

尚検出素子としてはZr0zのように固体イオン伝導体
やT!(hのように周囲雰囲気によって抵抗率が変化す
る材料を用いたガス検出素子あるいはサーミスタのよう
な@度検出素子を用いることができる。
The detection element may be a solid ionic conductor such as Zr0z or T! (A gas detection element using a material whose resistivity changes depending on the surrounding atmosphere like h) or a temperature detection element such as a thermistor can be used.

[作用] 筒状の鍔部と、その鍔部に挿入された検出素子との間隙
にガラスを充填し、加熱して溶融させた後に冷却して凝
固させることにより、鍔部に検出素子が固定される。こ
の検出素子と鍔部の熱膨張係数の比が1:1〜2の範囲
であるので、ガラスの温度が低下して凝固するとともに
、鍔部と検出素子との間隙は狭くなる。よってこの間隙
に充填されたガラスは、凝固するとともに鍔部及び検出
素子より応力を受けて、間、隙を十分に気密するように
、鍔部及び検出素子と密着する。
[Operation] The detection element is fixed to the flange by filling the gap between the cylindrical flange and the detection element inserted into the flange with glass, heating it to melt it, and then cooling and solidifying it. be done. Since the ratio of the thermal expansion coefficients of the sensing element and the flange is in the range of 1:1 to 2, the temperature of the glass decreases and solidifies, and the gap between the flange and the sensing element narrows. Therefore, the glass filled in this gap solidifies and receives stress from the flange and the detection element, and comes into close contact with the flange and the detection element so that the gap is sufficiently airtight.

ざらに、検出素子とガラスの熱膨張係数の比は、1:0
.5〜1の範囲であるので、上記間隙が狭くなって、鍔
部及び検出素子からの応力が増大しても、ガラス自身の
収縮によって、その応力が過大になることを防ぎ、ガラ
スに割れやクラックが生ずることがない。また収縮しす
ぎて、間隙を生ずることもないので、高い気密性を保っ
て鍔部に検出素子を固定することができる。
Roughly speaking, the ratio of the thermal expansion coefficients of the detection element and glass is 1:0.
.. Since the value is in the range of 5 to 1, even if the above-mentioned gap becomes narrower and the stress from the flange and the detection element increases, the stress will be prevented from becoming excessive due to shrinkage of the glass itself, and the glass will not break. No cracks will occur. Moreover, since it does not contract too much and create a gap, the detection element can be fixed to the flange while maintaining high airtightness.

[実施例] 本発明の第1実施例について図面を参照しつつ説明する
。尚、説明上各図の縮尺が異なる。
[Example] A first example of the present invention will be described with reference to the drawings. It should be noted that the scales of each figure are different for explanation purposes.

本実施例は柱状の酸素検出素子10を用いた酸素センサ
S1に本発明を適用したものであって、第1図は酸素セ
ンサS1の一部破断正面図であり、第2図はその要部を
示す一部破断斜視図である。
In this embodiment, the present invention is applied to an oxygen sensor S1 using a columnar oxygen detection element 10, and FIG. 1 is a partially cutaway front view of the oxygen sensor S1, and FIG. 2 is a main part thereof. FIG.

ステンレス(StJS430)製の主体金具12は酸素
検出素子10を固定すると共に本センサを内燃機関に取
り付けるために筒状に形成されている。この主体金具1
2の外周には内燃機関取り付け用のネジ部12aが刻設
されている。酸素検出素子10の構成については後述す
る。
The metal shell 12 made of stainless steel (StJS430) is formed into a cylindrical shape in order to fix the oxygen detection element 10 and to attach this sensor to an internal combustion engine. This main metal fitting 1
A threaded portion 12a for attaching an internal combustion engine is carved on the outer periphery of 2. The configuration of the oxygen detection element 10 will be described later.

プロテクタ14は主体金具12の内燃機関側先端部に取
り付けられ、酸素検出素子10を保護する。筒16は主
体金具12に取り付けられ、また外筒18は筒16に取
り付けられて、酸素検出素子10及びそのピン端子10
a、10bを保護する。
The protector 14 is attached to the tip of the metal shell 12 on the internal combustion engine side, and protects the oxygen detection element 10. The tube 16 is attached to the main metal fitting 12, and the outer tube 18 is attached to the tube 16 to connect the oxygen detection element 10 and its pin terminal 10.
a, protect 10b.

酸素検出素子10を主体金具12へ組み付けるには、ま
ず筒状のセラミック(AQzOi、ZrO2等)製の鍔
部20に酸素検出素子10を挿入し、鍔部20と酸素検
出素子10とが形成する間隙21に、ガラス20a (
鉛ガラス、はう酸系ガラス等)を充填し加熱して溶融す
る。次にガラス20aを冷却して凝固させ、間隙21を
閉塞して気密するとともに、鍔部20に酸素検出素子1
0を固定する(第2図参照)。次に、鍔部20と主体金
具12との間隙22に、タルク等の充填材23を詰め、
ステンレス!jil (SUS403)からなる固定リ
ング24をその上から挿入して、主体金具12の外側か
ら抵抗加熱により加締めて鍔部20を固定する。
To assemble the oxygen detection element 10 to the metal shell 12, first insert the oxygen detection element 10 into the cylindrical ceramic (AQzOi, ZrO2, etc.) flange 20, so that the flange 20 and the oxygen detection element 10 are formed. Glass 20a (
Fill with lead glass, oxalic acid glass, etc.) and heat to melt. Next, the glass 20a is cooled and solidified to close the gap 21 and make it airtight, and the oxygen detection element 1 is attached to the flange 20.
Fix 0 (see Figure 2). Next, the gap 22 between the flange 20 and the metal shell 12 is filled with a filler 23 such as talc,
stainless! A fixing ring 24 made of steel (SUS403) is inserted from above, and the collar portion 20 is fixed by crimping from the outside of the metal shell 12 by resistance heating.

なお、上記検出素子の外径は3゜3mmであり、鍔部の
全長は27mm、鍔部のガラスと接触する部分の内径は
4.7mm、外径は7.4mm、である。これら各部材
間の熱膨張係数の関係として、検出素子、ガラス及び鍔
部の熱膨張係数の比が1:0.5〜1:1〜2の範囲の
部材を用いる。上記充填材23としては、タルク等のセ
ラミック粉末。
The outer diameter of the detection element is 3.degree. 3 mm, the total length of the flange is 27 mm, the inner diameter of the portion of the flange that contacts the glass is 4.7 mm, and the outer diameter is 7.4 mm. Regarding the relationship of thermal expansion coefficients among these members, members are used in which the ratio of the thermal expansion coefficients of the detection element, the glass, and the flange is in the range of 1:0.5 to 1:1 to 2. The filler 23 is ceramic powder such as talc.

ガラス繊維などのセラミック製繊維、ステンレスなどの
耐熱金属繊維などを用いることができる。
Ceramic fibers such as glass fibers, heat-resistant metal fibers such as stainless steel, etc. can be used.

酸素検出素子10は2本の測定用ビン端子10a、10
b及び図示しない2本のヒータ用ピン端子の計4本のピ
ン端子を有する。この酸素検出素子10のピン端子10
a、10bは酸素検出素子10の電極端子308〜30
d (第4図参照)とろう付Cプにより接続されている
。そして測定用ピン端子10a、10b及びヒータ用ピ
ン端子は、各々対応するリード線328〜32dに加締
め接続される。この接続部分はシリコンゴムからなるシ
ール材34によって絶縁保護される。
The oxygen detection element 10 has two measurement bottle terminals 10a, 10.
It has a total of four pin terminals: b and two heater pin terminals (not shown). Pin terminal 10 of this oxygen detection element 10
a and 10b are electrode terminals 308 to 30 of the oxygen detection element 10
d (see Figure 4) and is connected by a brazed C-pull. The measurement pin terminals 10a and 10b and the heater pin terminals are crimped and connected to the corresponding lead wires 328 to 32d, respectively. This connection portion is insulated and protected by a sealing material 34 made of silicone rubber.

酸素検出素子10の構成を第3図の斜視図、第4図の分
解斜視図を用いて説明する。
The configuration of the oxygen detection element 10 will be explained using the perspective view of FIG. 3 and the exploded perspective view of FIG. 4.

この酸素検出素子10は、ジルコニア製の底101を接
着した中空のジルコニア製の芯材102を、内側電極1
03.外側電極104及び発熱体105を設けた固体電
解質層106で覆っているものである。この内側電極1
03と外側電極104は固体電解質層106を介して対
向している。
This oxygen detection element 10 includes a hollow zirconia core material 102 to which a zirconia bottom 101 is bonded, and an inner electrode 1
03. It is covered with a solid electrolyte layer 106 provided with an outer electrode 104 and a heating element 105. This inner electrode 1
03 and the outer electrode 104 are opposed to each other with a solid electrolyte layer 106 in between.

又、内側電極103はスルーホール処理によって内側電
極端子30aに接続される。又、外側電極104は外側
電極端子30bに、発熱体105は発熱体端子30c、
30dにおのおの接続される。
Furthermore, the inner electrode 103 is connected to the inner electrode terminal 30a by through-hole processing. Further, the outer electrode 104 is connected to the outer electrode terminal 30b, the heating element 105 is connected to the heating element terminal 30c,
30d.

更に、内側電極端子30a、外側電極端子30bは測定
用ビン端子10a、10bに、発熱体端子30c、30
dはヒータ用ピン端子に各々銀ろう付けによって接続さ
れる。尚、発熱体105は発熱体保護層に覆われている
ために第3図では見ることはできない。更に、芯材10
2には大気を内側電極103に導く孔110が二つ設け
られている。
Furthermore, the inner electrode terminal 30a and the outer electrode terminal 30b are connected to the measurement bottle terminals 10a, 10b, and the heating element terminals 30c, 30.
d are connected to heater pin terminals by silver soldering. Note that the heating element 105 cannot be seen in FIG. 3 because it is covered with a heating element protective layer. Furthermore, core material 10
2 is provided with two holes 110 for guiding the atmosphere to the inner electrode 103.

この酸素検出素子10に使用する芯材102は、外径2
.5mm、内径1.5mm、長さ5Qmmの中空状円筒
形である。この芯材102は押し出し成形によって容易
に形成することができる。
The core material 102 used in this oxygen detection element 10 has an outer diameter of 2
.. It has a hollow cylindrical shape with a diameter of 5 mm, an inner diameter of 1.5 mm, and a length of 5 Q mm. This core material 102 can be easily formed by extrusion molding.

固体電解質層106は、Y2O3−ZrO2固溶体原料
粉末に通常使用されるバインダーを混合し、グリーンシ
ートとしたものを17mmx37mmに切断することに
より得られる。このグリーンシートには第3図の如き電
極パターンを厚膜印刷によって設ける。電極103.1
04、発熱体105、及び端子30a〜30dはY20
3−Zroz固溶体を15wt%含む白金からなる。又
、発熱体105と固体電解質層106及び/又は芯材1
02との間には、図示を省略したがアルミナ等からなる
絶縁層を設けである。
The solid electrolyte layer 106 is obtained by mixing Y2O3-ZrO2 solid solution raw material powder with a commonly used binder and cutting the green sheet into 17 mm x 37 mm. This green sheet is provided with an electrode pattern as shown in FIG. 3 by thick film printing. Electrode 103.1
04, heating element 105 and terminals 30a to 30d are Y20
It consists of platinum containing 15 wt% of 3-Zroz solid solution. Moreover, the heating element 105, the solid electrolyte layer 106 and/or the core material 1
02, an insulating layer made of alumina or the like is provided, although not shown.

芯材102に、底101及び上記電極パターンを形成し
た固体電解質層106となるグリーンシートを巻き付【
プ圧着固定し、大気中で焼成する。
A green sheet, which will become the solid electrolyte layer 106 on which the bottom 101 and the electrode pattern described above are formed, is wrapped around the core material 102 [
Crimp and fix and bake in the atmosphere.

さらに上記各端子308〜30dに測定用ピン端子10
a、10b及びヒーター用ピン端子を上述の如く接続す
ると共に、鍔部20を第1図に示す如く芯材102の端
部120から4Qmmの位置にガラス20aを用い固定
して酸素検出素子10を得る。この芯材102は中空で
あるため熱容Mが小さく、発熱体105により酸素検出
素子10を容易に測定に適した温度とすることができる
Furthermore, measurement pin terminals 10 are attached to each of the above terminals 308 to 30d.
A, 10b and the heater pin terminal are connected as described above, and the flange 20 is fixed at a position 4 Qmm from the end 120 of the core material 102 using the glass 20a as shown in FIG. obtain. Since this core material 102 is hollow, its heat capacity M is small, and the heating element 105 can easily bring the oxygen detection element 10 to a temperature suitable for measurement.

又、酸素検出素子10を組み付けた酸素センサS1は、
酸素検出素子10が棒状であるために、方向性が少ない
Moreover, the oxygen sensor S1 assembled with the oxygen detection element 10 is as follows:
Since the oxygen detection element 10 is rod-shaped, there is little directionality.

上記酸素センサS1を用いて行った、気密性の実験の結
果を第1表に示す。第1表には、実験を行った酸素セン
サS1の酸素検出素子10.ガラス20a及び鍔部20
の熱膨張係数が、実施例(No1〜4)と比較例(No
5〜6)に分Cプて記載してあり、それぞれ気密性に関
しての判定が良好(OK)又は不適(NG)と記載され
ている。
Table 1 shows the results of airtightness experiments conducted using the oxygen sensor S1. Table 1 shows the oxygen detection element 10 of the oxygen sensor S1 used in the experiment. Glass 20a and flange 20
The thermal expansion coefficient of Examples (No. 1 to 4) and Comparative Example (No.
5 to 6), and the evaluation of airtightness is described as either good (OK) or unsuitable (NG).

第1表 次に酸素検出素子10とガラス20a及び酸素検出素子
10と鍔部20との間の熱膨張係数の比を第2表に示す
Table 1 Next, Table 2 shows the ratios of thermal expansion coefficients between the oxygen detection element 10 and the glass 20a, and between the oxygen detection element 10 and the flange 20.

第2表 第1表及び第2表に記載された結果から明らかなように
、上記の検出素子の組み付け構造を用いた本酸素センサ
S1は、酸素検出素子10.ガラス20a及び鍔部20
の熱膨張係数の比がに〇。
Table 2 As is clear from the results listed in Tables 1 and 2, the present oxygen sensor S1 using the above-mentioned detection element assembly structure has an oxygen detection element 10. Glass 20a and flange 20
The ratio of thermal expansion coefficients is 〇.

5〜1:1〜2の範囲である。従って、ガラス20aが
溶融した高温の状態では、鍔部の熱膨張係数が大きいこ
とから、鍔部20と酸素検出素子10とによって形成さ
れる間隙21が広がり、次に温度が低下してガラス20
aが凝固するとともに間隙が狭くなる。それによりガラ
ス20aが両側から応力を受けて、鍔部20と酸素検出
素子10とに密着して十分に気密することができる。さ
らにガラス20aも冷却と同時に収縮するが、上記比率
の範囲内であれば、応力を受けて割れやクランクを生ず
ることもなく、収縮しすぎて間隙を生ずることがない。
The ratio is in the range of 5-1:1-2. Therefore, in a high temperature state where the glass 20a is molten, the gap 21 formed by the flange 20 and the oxygen detection element 10 widens because the flange has a large coefficient of thermal expansion, and then the temperature decreases and the glass 20a expands.
As a solidifies, the gap narrows. As a result, the glass 20a receives stress from both sides, and can be brought into close contact with the flange portion 20 and the oxygen detection element 10 to achieve a sufficient airtight seal. Further, the glass 20a also contracts upon cooling, but as long as the ratio is within the above range, the glass 20a will not crack or crack due to stress, and will not contract too much and create gaps.

故に他の充填材を用いることなく、ガラス20aのみで
、鍔部20に酸素検出素子10を固定することができる
とともに、−1分に気密も行うことができる。よって作
業工程が非常に容易かつ簡単になる。
Therefore, the oxygen detection element 10 can be fixed to the flange 20 using only the glass 20a without using any other filler, and airtightness can also be achieved within -1 minute. This makes the working process very easy and simple.

次に本発明の第2実施例について第5図を参照しつつ説
明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

本実施例は柱状の酸素検出素子200を用いた酸素セン
サS2に本発明を適用したものであって、第5図は酸素
センサS2の一部破断正面図である。
In this embodiment, the present invention is applied to an oxygen sensor S2 using a columnar oxygen detection element 200, and FIG. 5 is a partially cutaway front view of the oxygen sensor S2.

この酸素センサS2は酸素検出素子200を挿入する鍔
部210が剛性のある耐熱金属であって、例えばステン
レスm (SUS3108等)から形成されている点が
第1実施例との主な相異点である。本酸素センサS2は
、主体金具212、プロテクタ214、筒216a、2
16bl素検出素子200の電極端子230a、230
bとろう付けにより接続されている測定用ピン端子20
0a、図示しないヒータ用ピン端子、ピン端子200a
と加締め接続されたリード線232a〜232d、この
接続部分を絶縁保護するシリコンゴムからなるシール材
234を有する。又、酸素検出素子200と鍔部210
とはガラス210aを用いて固定されて気密性を保って
いる。
The main difference between this oxygen sensor S2 and the first embodiment is that the flange 210 into which the oxygen detection element 200 is inserted is made of a rigid, heat-resistant metal, such as stainless steel (SUS3108, etc.). It is. This oxygen sensor S2 includes a metal shell 212, a protector 214, cylinders 216a, 2
Electrode terminals 230a, 230 of the 16BL element detection element 200
measurement pin terminal 20 connected to b by brazing
0a, heater pin terminal (not shown), pin terminal 200a
The lead wires 232a to 232d are crimped and connected to the lead wires 232a to 232d, and a sealing material 234 made of silicone rubber is provided to insulate and protect the connected portions. In addition, the oxygen detection element 200 and the flange 210
is fixed using glass 210a to maintain airtightness.

このセンサS2の組み付けは、酸素検出素子200の鍔
部210を主体金具212のネジ部212a側から挿入
して行う。このセンサS2では鍔部210が金属製であ
るので、主体金具212の外側から抵抗加熱により直接
に加締めることができ充填材や固定リングがいらず、作
業工程が非常に簡単になる利点がある。
This sensor S2 is assembled by inserting the flange portion 210 of the oxygen detection element 200 from the threaded portion 212a side of the metal shell 212. In this sensor S2, since the flange 210 is made of metal, it can be crimped directly from the outside of the metal shell 212 by resistance heating, and there is no need for fillers or fixing rings, which has the advantage of simplifying the work process. .

[発明の効果] 上述の如く、本願発明は、検出素子、ガラス及び鍔部の
熱膨張係数の比が1:0.5〜1:1〜2の範囲である
ので、ガラスによって鍔部と検出素子とを固定するとと
もに、十分に気密性を保つことができる。よって他の充
填材を必要としないので作業工程が非常に容易かつ簡単
になる。
[Effects of the Invention] As described above, in the present invention, since the ratio of the thermal expansion coefficients of the detection element, the glass, and the flange is in the range of 1:0.5 to 1:1 to 2, the flange and the detection element can be detected by the glass. In addition to fixing the element, it is possible to maintain sufficient airtightness. Therefore, since no other filler is required, the working process becomes very easy and simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の一部破断正面図、第2図
はその要部を示す一部破断斜視図、第3図はそれに用い
られた酸素検出素子10の斜視図、第4図はその分解斜
視図 第5図は本発明の第2実施例の一部破断正面図である。 Sl、S2・・・酸素センサ 10.200・・・酸素検出素子 12.212・・・主体金具 20.210・・・鍔部 2Qa、210a・・・ガラス
FIG. 1 is a partially cutaway front view of a first embodiment of the present invention, FIG. 2 is a partially cutaway perspective view showing the main parts thereof, and FIG. 3 is a perspective view of an oxygen detection element 10 used therein. FIG. 4 is an exploded perspective view thereof, and FIG. 5 is a partially cutaway front view of the second embodiment of the present invention. Sl, S2... Oxygen sensor 10.200... Oxygen detection element 12.212... Metal shell 20.210... Flange 2Qa, 210a... Glass

Claims (1)

【特許請求の範囲】 1 周囲環境の状態を検出する検出素子を、筒状の鍔部
の貫通孔に挿入するとともに、上記検出素子と鍔部との
間隙にガラスをつめて固定してなる検出素子の組み付け
構造において、 上記検出素子、ガラス及び鍔部の熱膨張係数の比が1:
0.5〜1:1〜2の範囲であることを特徴とする検出
素子の組み付け構造。 2 上記検出素子が円筒状である特許請求の範囲第1項
記載の検出素子の組み付け構造。 3 上記鍔部がセラミック又は金属である特許請求の範
囲第1項又は第2項記載の検出素子の組み付け構造。
[Claims] 1. A detection device in which a detection element for detecting the state of the surrounding environment is inserted into a through hole of a cylindrical flange, and a glass is filled and fixed in the gap between the detection element and the flange. In the element assembly structure, the ratio of the thermal expansion coefficients of the detection element, glass, and flange is 1:
A detection element assembly structure characterized in that the ratio is in the range of 0.5 to 1:1 to 2. 2. The detection element assembly structure according to claim 1, wherein the detection element has a cylindrical shape. 3. The detection element assembly structure according to claim 1 or 2, wherein the flange is made of ceramic or metal.
JP61297241A 1986-12-13 1986-12-13 Assembling structure of detection element Pending JPS63149555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297241A JPS63149555A (en) 1986-12-13 1986-12-13 Assembling structure of detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297241A JPS63149555A (en) 1986-12-13 1986-12-13 Assembling structure of detection element

Publications (1)

Publication Number Publication Date
JPS63149555A true JPS63149555A (en) 1988-06-22

Family

ID=17843991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297241A Pending JPS63149555A (en) 1986-12-13 1986-12-13 Assembling structure of detection element

Country Status (1)

Country Link
JP (1) JPS63149555A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588151B2 (en) * 1976-09-30 1983-02-14 松下電器産業株式会社 Manufacturing method of junction field effect transistor
JPS59187252A (en) * 1983-04-08 1984-10-24 Ngk Insulators Ltd Oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588151B2 (en) * 1976-09-30 1983-02-14 松下電器産業株式会社 Manufacturing method of junction field effect transistor
JPS59187252A (en) * 1983-04-08 1984-10-24 Ngk Insulators Ltd Oxygen sensor

Similar Documents

Publication Publication Date Title
US6880969B2 (en) Temperature sensor and production method thereof
US7740403B2 (en) High-temperature sensor
JP2781753B2 (en) Exhaust sensor
US5228975A (en) Gas sensor having hermetic and electrically insulating seal in housing
US8166813B2 (en) Temperature sensor and method for its manufacture
KR101630452B1 (en) Temperature sensor
US8092086B2 (en) Temperature sensor
US4964736A (en) Immersion measuring probe for use in molten metals
JP5252631B2 (en) Temperature sensor and manufacturing method thereof
CA1300760C (en) Thermocouples
EP0056585B1 (en) Gas sensor having lead wires extending in insulating and hermetically sealed holder
KR101597302B1 (en) Temperature sensor and method of manufacturing thereof
EP0142949B1 (en) Gas component detecting plug
JPS63149555A (en) Assembling structure of detection element
KR101225096B1 (en) Temperature sensor and method of manufacturing thereof
JP2921705B2 (en) High temperature thermometer
JPH11132994A (en) Gas measurement sensor with sealing device
JP2002107233A (en) Thermocouple device
KR101766285B1 (en) Temperature sensor and method of manufacturing thereof
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
JP2000258256A (en) Thermocouple for measuring temperature of pipe wall and its manufacture
US4417228A (en) Gas component detector
JPH0854291A (en) Temperature measuring apparatus
KR102511323B1 (en) Laser welding method and temperature sensor manufacturing method using the same
JPH074565Y2 (en) Oxygen sensor