JPS63149554A - Enzyme sensor - Google Patents
Enzyme sensorInfo
- Publication number
- JPS63149554A JPS63149554A JP61295953A JP29595386A JPS63149554A JP S63149554 A JPS63149554 A JP S63149554A JP 61295953 A JP61295953 A JP 61295953A JP 29595386 A JP29595386 A JP 29595386A JP S63149554 A JPS63149554 A JP S63149554A
- Authority
- JP
- Japan
- Prior art keywords
- ion
- enzyme
- membrane
- sensor
- immobilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 35
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 35
- 150000002500 ions Chemical class 0.000 claims abstract description 64
- 239000012528 membrane Substances 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 11
- 238000005342 ion exchange Methods 0.000 claims abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- -1 ammonia ions Chemical class 0.000 claims description 3
- 229920005597 polymer membrane Polymers 0.000 abstract description 3
- 230000002255 enzymatic effect Effects 0.000 abstract 1
- 230000003100 immobilizing effect Effects 0.000 abstract 1
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 229940109239 creatinine Drugs 0.000 description 21
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 20
- 239000004202 carbamide Substances 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 11
- 108010046334 Urease Proteins 0.000 description 8
- 230000001546 nitrifying effect Effects 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 229920000557 Nafion® Polymers 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 4
- 238000005341 cation exchange Methods 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229940045136 urea Drugs 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 208000033809 Suppuration Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002913 oxalic acids Chemical class 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は複数の基質を測定する酵素センサの構造に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to the structure of an enzyme sensor that measures multiple substrates.
(従来の技術〕
酵素センサは特定の基′1t(反応種)に対し特定の反
応を起こさせる触媒の機能を有する酵素を利用して特定
の基質を検知するセンサで生体機能を応用するバイオセ
ンサの1つである。(Prior art) An enzyme sensor is a biosensor that uses biological functions to detect a specific substrate using an enzyme that has a catalytic function that causes a specific reaction to occur with a specific group '1t (reactive species). It is one of the
酵素センサは酵素の基質選択性の故に、特異的にグルコ
ース、尿素、クレアチニン等を検知することができる。Enzyme sensors can specifically detect glucose, urea, creatinine, etc. due to the substrate selectivity of enzymes.
酵素センサは従来例えば第3図に示すように、ウレアー
ゼなどの酵素を共有結合法、架橋法などの方法で高分子
膜に固定化した酵素固定化膜23を酸素電極21と硝化
菌固定化B22とからなるアンモニアイオンセンサ27
などに対向して張りつけて構成していた。この従来例で
は水中の尿素が酵素ウレアーゼによって加水分解され反
応式fi+のようにアンモニア (Nus)と炭酸ガス
(C(h)を生成する。Conventionally, an enzyme sensor has an enzyme-immobilized membrane 23 in which an enzyme such as urease is immobilized on a polymer membrane by a method such as a covalent bonding method or a cross-linking method, and an oxygen electrode 21 and a nitrifying bacteria-immobilized B 22, as shown in FIG. Ammonia ion sensor 27 consisting of
It was constructed by pasting them facing each other. In this conventional example, urea in water is hydrolyzed by the enzyme urease to produce ammonia (Nus) and carbon dioxide (C(h)) as shown in the reaction formula fi+.
Co (NHz)z +H! O冨2 N fI 3
+ COz−・−・(1)生成したNI(3は酸性の護
衛水溶液中においてアンモニアイオン(NH,”″)に
変換される。Co (NHz)z +H! Otomi 2 N fI 3
+ COz-- (1) The generated NI (3) is converted to ammonia ion (NH, "") in the acidic escort aqueous solution.
生成したNH,” イオンはアンモニアイオンセンサ2
7の硝化菌固定化膜22において水中の酸素と反応し、
亜硝酸塩1硝酸塩に変換される。従って水中の酸素はN
H#“の量に対応して減少するので、その減少量を酸素
電極21で検知することができる。The generated NH,'' ions are detected by the ammonia ion sensor 2.
Reacts with oxygen in the water in the nitrifying bacteria immobilization membrane 22 of No. 7,
Nitrite is converted to nitrate. Therefore, oxygen in water is N
Since it decreases in accordance with the amount of H#", the amount of decrease can be detected by the oxygen electrode 21.
このようにして水中の尿素は酸素電極21の酸素還元電
流の減少として特異的に検出することができる。In this way, urea in water can be specifically detected as a decrease in the oxygen reduction current of the oxygen electrode 21.
以上のような従来の酵素センサの他に、第4図に示すよ
うに、ウレアーゼ酵素固定化膜23と、クレアチニンデ
ィミナーゼ酵素固定化膜25の複数の酵素固定化膜を備
えると、複数の基質を同時に測定することもできる。ク
レアチニンディミナーゼはクレアチニンに特異的に反応
し、クレアチニンよりNHt ”イオンを生成させる。In addition to the conventional enzyme sensor as described above, as shown in FIG. can also be measured at the same time. Creatinine diminase specifically reacts with creatinine and generates NHt'' ions from creatinine.
しかしながら第3図の従来例では酵素固定化膜が単一で
あるために単一の基質にしか反応せず、その結果複数の
反応種を検知するためには複数種の酵素センサを必要と
した。また第4図の従来例では酵素固定化膜が複数であ
るため、複数の基質に応答することはできるが、尿素に
由来するNH4゜イオンとクレアチニンに由来するNH
4”イオンとが同じ速度で拡散するため、両Nl(、”
イオンが同時にイオンセンサに到達し、尿素とクレアチ
ニンを分離定量することができなかった。However, in the conventional example shown in Figure 3, since the enzyme-immobilized membrane is single, it only reacts with a single substrate, and as a result, multiple types of enzyme sensors are required to detect multiple reactive species. . Furthermore, in the conventional example shown in Fig. 4, since there are multiple enzyme-immobilized membranes, it is possible to respond to multiple substrates;
4" ions diffuse at the same speed, so both Nl(,"
The ions reached the ion sensor at the same time, making it impossible to separate and quantify urea and creatinine.
この発明の目的は、異なる基質に由来する同一イオ′ン
がイオンセンサに到達する時刻を異にするようにして、
単一の酵素センサにより複数の基質を分離定量すること
が可能なハイブリッドバイオセンサを提供することにあ
る。The purpose of this invention is to make the same ions derived from different substrates reach the ion sensor at different times,
An object of the present invention is to provide a hybrid biosensor that can separate and quantify multiple substrates using a single enzyme sensor.
上記の目的を達成するために、この発明によれば、
fイ)相異なる基質を分解して同一のイオンを生成させ
る複数個の異なる酵素固定化膜23.25と、(ロ)該
固定化膜23.25間 に挟持され前述イオンに対しイ
オン交換能を有し前述イオンをよく通過させるイオン交
換@24と、
(ハ)該固定化膜23.25で生成された前述のイオン
を専食知するためのイオンセンサ27とを備える、とす
るものとする。In order to achieve the above object, the present invention provides f) a plurality of different enzyme-immobilized membranes 23, 25 that decompose different substrates to generate the same ion; and (b) the immobilized (c) Ion exchange @ 24 which is sandwiched between the membranes 23 and 25 and has an ion exchange ability for the aforementioned ions and allows the aforementioned ions to pass through well; The ion sensor 27 is provided for the purpose of detecting the condition.
酵素固定化膜23.25はそれぞれ異なる基質(反応種
)に特異的に反応する酵素を共有結合法、架橋法などで
固定した高分子膜でイオンセンサの検知する同一のイオ
ンを生成する。相異なる酵素固定化膜の数に応じた基質
が検知されることになる。The enzyme-immobilized membranes 23 and 25 are polymer membranes in which enzymes that specifically react with different substrates (reactive species) are immobilized by a covalent bonding method, a cross-linking method, etc., and generate the same ions that are detected by the ion sensor. Substrates corresponding to the number of different enzyme-immobilized membranes are detected.
イオン交換膜24は陽イオン交換膜の場合は陽イオンを
陰イオンや中性分子より速やかに透過させる。陰イオン
交換膜の場合は、陰イオンを陽イオンや中性分子より速
やかに透過させる。酵素固定膜25で生成した基9Aに
由来するイオンは、固定化膜25でイオンに変換されな
い基質Bと共にイオン交換膜24に入り、ここを透過す
るがイオン交換膜においてはイオンの方が中性分子であ
る基質よりも拡散速度が大きいので基質Aに由来するイ
オンが基質Bより速やかにイオン交換′Mlt、24を
通り抜ける。基質Aに由来するイオンは次の酵素固定化
膜23をそのまま通り抜けてイオンセンサ27に到達す
る。一方基質Bは基iAに由来するイオンにおくれでイ
オン交換膜24を通り抜けて酵素固定化膜23に入り、
ここで基1iAに由来するイオンと同一のイオンに変換
される。基質Bに由来するイオンは酵素固定化膜23を
遺り抜けたあと、基質Aに由来するイオンに遅れてイオ
ンセンサ24に到達する。If the ion exchange membrane 24 is a cation exchange membrane, it allows cations to permeate through it more quickly than anions or neutral molecules. In the case of anion exchange membranes, anions pass through them more quickly than cations and neutral molecules. Ions derived from the group 9A generated in the enzyme immobilization membrane 25 enter the ion exchange membrane 24 together with the substrate B that is not converted into ions in the immobilization membrane 25, and permeate there, but the ions are more neutral in the ion exchange membrane. Since the diffusion rate is higher than that of the molecular substrate, ions originating from substrate A pass through the ion exchange 'Mlt, 24 more quickly than substrate B. The ions originating from the substrate A pass through the next enzyme-immobilized membrane 23 as they are and reach the ion sensor 27 . On the other hand, the substrate B passes through the ion exchange membrane 24 due to the ions derived from the group iA and enters the enzyme immobilization membrane 23.
Here, it is converted into the same ion as the ion originating from group 1iA. After passing through the enzyme-immobilized membrane 23, the ions originating from the substrate B reach the ion sensor 24 behind the ions originating from the substrate A.
以上の関係は基質の数が増えても同じように適用され、
異なる基質に由来する同一のイオンがイオンに変換され
る順序に従い時刻を異にしてイオンセンサに到達する。The above relationship applies in the same way even if the number of substrates increases,
The same ions originating from different substrates reach the ion sensor at different times according to the order in which they are converted into ions.
イオンセンサ24は酵素の作用により基質より変換され
た同一のイオンを順次検知して、異なる基質を分離定量
する。The ion sensor 24 sequentially detects the same ions converted from a substrate by the action of an enzyme, and separates and quantifies different substrates.
透析膜は蛋白質などにより・イオンセンサや酵素固定化
膜が汚染されるのを防止する。The dialysis membrane prevents the ion sensor and enzyme-immobilized membrane from being contaminated by proteins.
次にこの発明の実施例を図面に基づいて説明する。第1
図はこの発明の実施例に係る酵素センサの模式断面図で
21は酸素電極、22は硝化菌固定化膜(22Aは固定
された硝化菌)で両者によりアンモニアイオンセンサ2
7が構成される。23はウレアーゼ酵素固定化膜、24
は陽イオン交換膜であるナフィオン膜、25はクレアチ
ニンディミナーゼ酵素固定化膜、26は透析膜である。Next, embodiments of the present invention will be described based on the drawings. 1st
The figure is a schematic cross-sectional view of an enzyme sensor according to an embodiment of the present invention, where 21 is an oxygen electrode, 22 is a nitrifying bacteria immobilized membrane (22A is an immobilized nitrifying bacteria), and the ammonia ion sensor 2
7 is composed. 23 is a urease enzyme immobilized membrane, 24
25 is a Nafion membrane which is a cation exchange membrane, 25 is a creatinine diminase enzyme immobilized membrane, and 26 is a dialysis membrane.
各膜は密着して設けられている。Each membrane is provided in close contact with each other.
このような酵素センサは次の方法で製作することができ
る。酸素電極21には貴金属アノード、内部電解液、貴
金属カソードを設け、カソード表面にテフロンのような
酸素透過性膜を密着させる。Such an enzyme sensor can be manufactured by the following method. The oxygen electrode 21 is provided with a noble metal anode, an internal electrolyte, and a noble metal cathode, and an oxygen permeable membrane such as Teflon is tightly adhered to the surface of the cathode.
酸素透過性膜は内部電解液を保持すると共に、外界から
の酸素を透過させてカソードに供給し酸素還元電流を生
じさせる。カソードは定電位で駆動される。The oxygen-permeable membrane retains the internal electrolyte and allows oxygen from the outside to permeate and supply it to the cathode, producing an oxygen reduction current. The cathode is driven at a constant potential.
硝化菌固定化膜22は多孔性のアセチルセルロース膜に
硝化l 22Aを含む水溶液を滴下し、硝化菌22Aを
膜上に吸着固定する。ウレアーゼ酵素固定化膜23.タ
レアチニンディミナーゼ酵素固定化膜25はそれぞれウ
レアーゼとクレアチニンディミナーゼをポリメチルグル
タメート誘導体に共有結合法で固定化し、膜厚10tr
mに成膜する。In the nitrifying bacteria immobilization membrane 22, an aqueous solution containing nitrifying bacteria 22A is dripped onto a porous acetyl cellulose membrane, and the nitrifying bacteria 22A are adsorbed and immobilized onto the membrane. Urease enzyme immobilization membrane 23. The taleatinine diminase enzyme-immobilized membrane 25 has urease and creatinine diminase immobilized on a polymethylglutamate derivative by a covalent bonding method, and has a film thickness of 10 tr.
A film is formed on m.
イオン交換膜は、ナフィオン(陽イオン交換膜)の5%
エタノール溶液を用い膜厚6fImに成膜する。The ion exchange membrane is 5% of Nafion (cation exchange membrane)
A film is formed to a thickness of 6 fIm using an ethanol solution.
アンモニアイオンセンサとしては本実施例のように微生
物を利用したイオンセンサの他、ノナクチオン/モチク
チオンを利用した液膜型のNO,。As an ammonia ion sensor, in addition to an ion sensor using microorganisms as in this embodiment, a liquid film type NO sensor using nonaction/mochicution can be used.
イオンセンサ、ガラス膜を用いた隔膜型のNH,”イオ
ンセンサ、イオン感受性電解効果型トランジスタ (I
SFET)などを用いることもできる。Ion sensor, diaphragm-type NH using glass membrane, ion sensor, ion-sensitive field effect transistor (I
SFET) etc. can also be used.
第1図に示すような酵素センサにおいて、尿素。In the enzyme sensor shown in FIG. 1, urea.
クレアチニンの測定はpH=3.0の緩衝溶液中で行な
われる。緩衝溶液中の酸素は尿素、クレアチニンと共に
酵素固定化膜23.25に至り、クレアチニンはクレア
チニンディミナーゼにより加水分解され、アンモニア(
NH,)を生じ酸性の緩衝溶液中においてN114°イ
オンに変換される。尿素はウレアーゼにより加水分解さ
れ同じようにNl+4’ イオンを生じる。 N114
”イオンは、酸素と共にアンモニアイオンセンサ27に
到達し、硝化菌固定化膜22において、亜硝酸イオン(
NOt−)+硝酸イオン(NO3−)に変換される。硝
化菌による上記反応の結果/i2素が消費されるので、
酸素電8i21における酸素還元電流が減少する。酸素
還元電流の減少量は、NH4”イオン量に比例する。N
H,”イオン量は尿素量。Creatinine measurements are carried out in a buffer solution with pH=3.0. Oxygen in the buffer solution reaches the enzyme-immobilized membrane 23.25 together with urea and creatinine, and creatinine is hydrolyzed by creatinine diminase to form ammonia (
NH,) which is converted to N114° ion in an acidic buffer solution. Urea is hydrolyzed by urease to produce Nl+4' ions in the same way. N114
``The ions reach the ammonia ion sensor 27 together with oxygen, and the nitrite ions (
NOt-) + nitrate ion (NO3-). As a result of the above reaction by nitrifying bacteria/I2 element is consumed,
The oxygen reduction current in the oxygen electrode 8i21 decreases. The amount of decrease in oxygen reduction current is proportional to the amount of NH4'' ions.N
H, “The amount of ions is the amount of urea.
クレアチニン量に比例するから、結局酸素還元電流の減
少量により、尿素、クレアチニンを定量できる。酸素電
極21は図示していないが酸素透過性膜を存し、緩衝溶
液中の酸素はこれを透過して、内部のカソード電極に至
り、ここでカソード還元され、酸素電流を生じる。Since it is proportional to the amount of creatinine, urea and creatinine can be quantified based on the amount of decrease in oxygen reduction current. Although not shown, the oxygen electrode 21 has an oxygen permeable membrane, through which oxygen in the buffer solution passes and reaches the internal cathode electrode, where it is cathodically reduced and generates an oxygen current.
陽イオン交換膜であるナフィオン膜24においては、N
H,”イオンは中性分子より拡散速度が大きい。タレア
チニンディミナーゼ酵素固定化膜25においてクレアチ
ニンはNl(、”に変換されるが、尿素はそのままナフ
ィオン膜24に入る。N)1. ”イオンはナフィオン
g!24において尿素より速やかに拡散し、ウレアーゼ
55素固定化11ff23を透のして、アンモニアイオ
ンセンサ27に到達する。尿素はナフィオン膜をクレア
チニン由来のNH4” イオンより遅れて透過し、ウレ
アーゼ酵素固定化膜23においてN114” イオンに
変換され、クレアチニンに由来するNHa ”イオンに
遅れてアンモニアイオンセンサ27に到達する。酸素電
流変化分Δ■を時間に対してプロットすると、第2図に
示す出力特性図が得られる。Aのプラトーはクレアチニ
ンによる電流減少分、Bのプラトーは尿素とクレアチニ
ンによる電流減少分である。尿素の信号はBのプラトー
よりAのプラトーを差引けば良い、尿素の信号はクレア
チニンの信号に約5分遅れていることがわかる。In the Nafion membrane 24, which is a cation exchange membrane, N
H," ions have a higher diffusion rate than neutral molecules. Creatinine is converted to Nl(," in the taleatininine diminase enzyme-immobilized membrane 25, but urea enters the Nafion membrane 24 as is.N)1. "Ions diffuse more quickly than urea in Nafion G!24, pass through the urease 55 element immobilized 11ff23, and reach the ammonia ion sensor 27. Urea passes through the Nafion membrane later than NH4 ions derived from creatinine. However, it is converted into N114'' ions in the urease enzyme immobilized membrane 23, and reaches the ammonia ion sensor 27 behind the NHa'' ions derived from creatinine. When the oxygen current change Δ■ is plotted against time, the output characteristic diagram shown in FIG. 2 is obtained. The plateau in A is the current reduction due to creatinine, and the plateau in B is the current reduction due to urea and creatinine. The urea signal can be obtained by subtracting the A plateau from the B plateau, and it can be seen that the urea signal lags the creatinine signal by about 5 minutes.
以上の実施例では、クレアチニン、尿素の測定を行って
いるがその他にアミノ酸、アデノシン等もそれぞれの酵
素固定化膜を設けて、別個にアンモニアイオンセンサで
検知することができる。In the above embodiments, creatinine and urea are measured, but amino acids, adenosine, etc. can also be detected separately with an ammonia ion sensor by providing enzyme-immobilized membranes for each.
さらに上述の実施例ではアンモニアイオンセンサを用い
ているが、炭酸ガスセンサを用い、水中の重炭酸イオン
を検知することもできる。この場合は酵素によって炭酸
ガスを住じる基質1例えば尿素、尿酸、アノミ酸、シュ
ウ酸などを分鋪定景することも可能である。イオン交換
膜としては重炭酸イオンHCO3−が陰イオンであるの
で陰イオン交換膜が用いられる。Furthermore, although an ammonia ion sensor is used in the above embodiment, a carbon dioxide gas sensor may also be used to detect bicarbonate ions in water. In this case, it is also possible to isolate substrates 1 that contain carbon dioxide gas, such as urea, uric acid, amino acids, oxalic acids, etc., using enzymes. As the ion exchange membrane, an anion exchange membrane is used because bicarbonate ion HCO3- is an anion.
この発明によれば
(イ)相異なる基質を分解して同一のイオンを生成させ
る複数個の異なる酵素固定化膜と、
−)該固定化膜間に挟持され前述のイオンに対しイオン
交換能を有し前述のイオンをよく透過させるイオン交換
膜と、
(ハ)該固定化膜で生成された前述イオンを検知するた
めのイオンセンサとを備えるので、イオン交換膜中では
イオンは中性分子より速やかに拡散するために基質がイ
オンに変換される順序に応じて、各基質に由来するイオ
ンが順次イオンセンサに到達し、その結果単一の酵素セ
ンサで複数の基質を分離定量することが可能となる。According to this invention, (a) a plurality of different enzyme-immobilized membranes that decompose different substrates to generate the same ion; and (c) an ion sensor for detecting the ions generated in the immobilized membrane, so that ions are more easily transmitted than neutral molecules in the ion exchange membrane. Depending on the order in which the substrates are converted into ions for rapid diffusion, ions from each substrate reach the ion sensor in sequence, making it possible to separate and quantify multiple substrates with a single enzyme sensor. becomes.
第1図はこの発明の実施例に係る酵素センサの模式断面
図、第2図はこの発明の実施例に係る酵素センサの出力
特性図、第3図、第4図は従来の酵素センサの模式断面
図である。
23ニウレアーゼ酵素固定化膜、24:ナフィオン膜、
25:クレアチニンディミナーゼ酵素固定化膜、27:
アンモニアイオンセンサ。
時間(分)
第2図
13rI!J
7ソモニ71オンセンブ
定化膿FIG. 1 is a schematic sectional view of an enzyme sensor according to an embodiment of the present invention, FIG. 2 is an output characteristic diagram of an enzyme sensor according to an embodiment of the present invention, and FIGS. 3 and 4 are schematic diagrams of a conventional enzyme sensor. FIG. 23 Niurease enzyme immobilized membrane, 24: Nafion membrane,
25: Creatinine diminase enzyme immobilized membrane, 27:
Ammonia ion sensor. Time (minutes) Figure 2 13rI! J 7 Somoni 71 Onsenbu Suppuration
Claims (1)
させる複数個の異なる酵素固定化膜と、 (ロ)該固定化膜間に挟持され前述イオンに対してイオ
ン交換能を有し前述イオンをよく透過させるイオン交換
膜と、 (ハ)該固定化膜で生成された前述のイオンを検知する
ためのイオンセンサとを備えることを特徴とする酵素セ
ンサ。 2)特許請求の範囲第1項記載のセンサにおいて、複数
個の酵素固定化膜はアンモニアイオンを生成する固定化
膜であることを特徴とする酵素センサ。 3)特許請求の範囲第1項記載のセンサにおいて、イオ
ン交換膜はナフイオン膜であることを特徴とする酵素セ
ンサ。[Scope of Claims] 1) (a) a plurality of different enzyme-immobilized membranes that decompose different substrates to generate the same ion; and (b) a membrane that is sandwiched between the immobilized membranes and that reacts with An enzyme sensor comprising: an ion exchange membrane that has ion exchange ability and allows the aforementioned ions to pass through well; and (iii) an ion sensor for detecting the aforementioned ions generated in the immobilized membrane. 2) The enzyme sensor according to claim 1, wherein the plurality of enzyme immobilization membranes are immobilization membranes that generate ammonia ions. 3) The enzyme sensor according to claim 1, wherein the ion exchange membrane is a naphion ion membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61295953A JPS63149554A (en) | 1986-12-12 | 1986-12-12 | Enzyme sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61295953A JPS63149554A (en) | 1986-12-12 | 1986-12-12 | Enzyme sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63149554A true JPS63149554A (en) | 1988-06-22 |
Family
ID=17827239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61295953A Pending JPS63149554A (en) | 1986-12-12 | 1986-12-12 | Enzyme sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63149554A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0372254A (en) * | 1989-08-11 | 1991-03-27 | Omron Corp | Enzyme electrode |
-
1986
- 1986-12-12 JP JP61295953A patent/JPS63149554A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0372254A (en) * | 1989-08-11 | 1991-03-27 | Omron Corp | Enzyme electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nilsson et al. | Determination of glucose, urea and penicillin using enzyme-pH-electrodes | |
Guilbault et al. | Use of ion selective electrodes in enzymic analysis. Cation electrodes for deaminase enzyme systems | |
Zhang et al. | Recent developments and applications of chemiluminescence sensors | |
Mulchandani et al. | Principles and applications of biosensors for bioprocess monitoring and control | |
CN115266865B (en) | Method for improving stability of electrochemical sensor | |
JPS63182559A (en) | Production of enzyme electrode | |
Abdel-Latif et al. | Fluorometric determination of urea by flow injection analysis | |
Rosario et al. | Use of ionomer membranes to enhance the selectivity of electrode-based biosensors in flow-injection analysis | |
Zhang et al. | Detection of organophosphorus pesticides using potentiometric enzymatic membrane biosensor based on methylcellulose immobilization | |
Kittsteiner-Eberle et al. | Biosensing devices for the semi-automated control of dehydrogenase substrates in fermentations | |
Nwosu et al. | Comparative studies of immobilized enzyme electrodes based on the inhibitory effect of nicotine on choline oxidase and acetylcholinesterase | |
Mieliauskiene et al. | Amperometric determination of acetate with a tri-enzyme based sensor | |
Campmajó et al. | Determination of ammonium and L-glutamine in hybridoma cell cultures by sequential flow injection analysis | |
Yao et al. | Simultaneous determination of L-glutamate, acetylcholine and dopamine in rat brain by a flow-injection biosensor system with microdialysis sampling | |
Tang et al. | Enzyme electrode for amplification of NAD+/NADH using glycerol dehydrogenase and diaphorase with amperometric detection | |
JPS63149554A (en) | Enzyme sensor | |
Zhang et al. | Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system | |
Koryta | Electrochemical sensors based on biological principles | |
Menzel et al. | Application of biosensors with an electrolyte isolator semiconductor capacitor (EIS-CAP) transducer for process monitoring | |
JPH0332357B2 (en) | ||
JP2528102B2 (en) | Glucose substrate sensitive electrode that diffuses in two directions | |
JPS61176845A (en) | Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film | |
JPS63101743A (en) | Functional electrode | |
He et al. | Calibrationless determination of creatinine and ammonia by coulometric flow titration | |
Male et al. | A flow-injection (FI) mediated biosensor for on-line monitoring of lactate in mammalian cell culture |