JPS6314910B2 - - Google Patents

Info

Publication number
JPS6314910B2
JPS6314910B2 JP10093982A JP10093982A JPS6314910B2 JP S6314910 B2 JPS6314910 B2 JP S6314910B2 JP 10093982 A JP10093982 A JP 10093982A JP 10093982 A JP10093982 A JP 10093982A JP S6314910 B2 JPS6314910 B2 JP S6314910B2
Authority
JP
Japan
Prior art keywords
reaction
saccharides
flow path
column
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10093982A
Other languages
Japanese (ja)
Other versions
JPS58216953A (en
Inventor
Hirohisa Mikami
Yasuo Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10093982A priority Critical patent/JPS58216953A/en
Publication of JPS58216953A publication Critical patent/JPS58216953A/en
Publication of JPS6314910B2 publication Critical patent/JPS6314910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 この発明は糖類の分析法及び装置に関する。更
に詳しくは、この発明は、糖類を含有する試料又
はそれを液体クロマトグラフイーに付して得たカ
ラム溶離液に塩基性アミノ酸を含有するホウ酸水
溶液からなる反応試薬を加え、加熱反応を行つた
後冷却し、励起光をあててその蛍光光度を測定す
るか及び/又は紫外線をあててその吸光度を測定
することにより糖類を定性及び/又は定量分析す
ることを特徴とする糖類の蛍光光度分析法及び/
又は紫外線吸収分析法及びこの方法の実施に好適
な分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for analyzing sugars. More specifically, the present invention involves adding a reaction reagent consisting of a boric acid aqueous solution containing a basic amino acid to a sample containing sugars or a column eluate obtained by subjecting the same to liquid chromatography, and performing a heating reaction. Fluorophotometric analysis of saccharides, characterized in that the saccharides are qualitatively and/or quantitatively analyzed by cooling the saccharides, irradiating them with excitation light and measuring their fluorescence intensity, and/or irradiating them with ultraviolet rays and measuring their absorbance. law and/or
The present invention also relates to an ultraviolet absorption analysis method and an analysis device suitable for implementing this method.

従来、液体クロマトグラフでの糖類の検出は示
差屈折計を用いて行われてきた。しかしこの示差
屈折計では傾斜溶離法を採用することができない
ので、生体試料のように多成分の糖類を含む試料
の分析が容易でなかつた。つまり、液体クロマト
グラフにおいて、溶媒の組成を連続的に変化させ
ることによつて糖類を溶離させても、通常各溶媒
の屈折率に大きな差があるから、溶媒の組成の変
化による屈折率の差が大きく影響して糖類の分析
はほとんど不可能であつた。更に示差屈折計はも
ともと感度が低く、微量の糖類の検出は難しいと
されてきた。
Conventionally, sugars have been detected using a liquid chromatograph using a differential refractometer. However, since this differential refractometer cannot employ the gradient elution method, it is not easy to analyze samples containing multi-component sugars such as biological samples. In other words, in liquid chromatography, even if sugars are eluted by continuously changing the solvent composition, there is usually a large difference in the refractive index of each solvent. It was almost impossible to analyze sugars due to the large influence of Furthermore, differential refractometers have inherently low sensitivity, making it difficult to detect trace amounts of sugars.

この点に関しこの発明の発明者らは先に、糖類
に特定の反応試薬を反応させてそれ自体蛍光を発
しない糖類に蛍光を発生させ、その蛍光光度を検
出して糖類を分析する方法及び装置を提案した
(特開昭55−70739号公報参照)。この発明の発明
者らは、更に研究を重ねた結果、糖類に塩基性ア
ミノ酸を添加したホウ酸水溶液を加えて反応させ
ることにより、蛍光光度測定による糖類のより高
感度で直線性に優れた分析ができると共に、紫外
吸光度測定による糖類の同様に優れた分析ができ
ることを見出しこの発明に到達した。
In this regard, the inventors of the present invention have previously developed a method and apparatus for reacting saccharides with a specific reaction reagent to generate fluorescence in saccharides that do not themselves emit fluorescence, and detecting the fluorescence intensity to analyze saccharides. (Refer to Japanese Patent Application Laid-open No. 70739/1983). As a result of further research, the inventors of this invention discovered that by adding and reacting a boric acid aqueous solution containing basic amino acids to saccharides, they were able to analyze saccharides with higher sensitivity and excellent linearity by fluorescence measurement. The present invention was achieved by discovering that it is possible to perform a similar analysis of saccharides by ultraviolet absorbance measurement.

この発明において用いる糖類との反応試薬は、
塩基性アミノ酸を含有するホウ酸水溶液であり、
塩基性アミノ酸としてはアルギニン、リジン、ヒ
スチジン等が挙げられる。通常、反応試薬中の塩
基性アミノ酸の濃度は0.5〜4%、ホウ酸の濃度
は1〜6%とするのが適切であり、この際得られ
る反応試薬のPHはほぼ7〜9である。かような反
応試薬は、糖類を含有する試料を液体クロマトグ
ラフイーに付して得たカラム溶離液にそれぞれ加
えられる。なお、場合によつては試料を分離する
ことなく加えて全糖類の測定用に用いてもよい。
The reagent for reacting with sugars used in this invention is
A boric acid aqueous solution containing basic amino acids,
Examples of basic amino acids include arginine, lysine, histidine, and the like. Usually, it is appropriate that the concentration of basic amino acids in the reaction reagent be 0.5-4% and the concentration of boric acid 1-6%, and the pH of the reaction reagent obtained at this time is approximately 7-9. Such reaction reagents are respectively added to a column eluate obtained by subjecting a sample containing sugars to liquid chromatography. In some cases, the sample may be added without being separated and used for measuring total sugars.

液体クロマトグラフイーに用いるカラム溶離液
としては水または中性〜弱塩基性にPH調整された
ホウ酸水溶液(通常0.1M〜0.5M)を用いるのが
適切であり、このカラム溶離液に対する上記反応
試薬の混合比は50〜150%の範囲が望ましい。な
お、液体クロマトグラフイーに用いるカラムや装
置は公知のものを用いることができる。
As the column eluent used in liquid chromatography, it is appropriate to use water or a boric acid aqueous solution (usually 0.1M to 0.5M) whose pH is adjusted to neutral to weakly basic, and the above reaction to this column eluent The mixing ratio of the reagents is preferably in the range of 50 to 150%. Note that known columns and devices can be used for liquid chromatography.

一方、反応は好ましくは140℃〜180℃で3〜5
分間行われる。反応後室温まで冷却してこれを蛍
光光度計及び/又は紫外吸光光度計に導いて測定
することにより、該蛍光光度及び/又は吸光度に
基づいて糖類を定性および/または定量分析する
ことができる。
On the other hand, the reaction is preferably carried out at 140°C to 180°C for 3 to 5
It takes place for a minute. After the reaction, the reaction mixture is cooled to room temperature and introduced into a fluorometer and/or an ultraviolet absorption photometer for measurement, thereby making it possible to qualitatively and/or quantitatively analyze saccharides based on the fluorescence intensity and/or absorbance.

一方、この発明の分析装置の主要な構成上の特
徴の一つは、カラム溶離液と反応試薬との混合液
が反応液流路を介して、加熱槽、次いで冷却槽へ
移動するよう構成されたことにあり、それによつ
て反応を行わせて蛍光光度分析及び/又は紫外線
吸光光度分析を可能にすると共に、液体クロマト
グラフに傾斜溶離法を採用することができるの
で、生体中の糖類のごとき多成分の糖類を一度に
高精度で分析できる。
On the other hand, one of the main structural features of the analyzer of the present invention is that the mixture of column eluent and reaction reagent is configured to move through a reaction liquid flow path to a heating tank and then to a cooling tank. As a result, it is possible to perform a reaction to perform fluorescence analysis and/or ultraviolet absorption analysis, and it is also possible to employ a gradient elution method in liquid chromatography. Multi-component sugars can be analyzed at once with high precision.

この発明の分析装置のもう一つの構成上の特徴
は、カラム溶離液と反応試薬の供給から反応液の
排出まで試料液の流れが、連続的で且つ一過式で
あることにあり、これによつて高速分析が可能に
なると共に完全自動化に好適となつている。
Another structural feature of the analyzer of the present invention is that the flow of the sample liquid from the supply of the column eluent and reaction reagent to the discharge of the reaction liquid is continuous and one-time flow. This makes high-speed analysis possible and suitable for complete automation.

この発明に係る分析法およびその装置で分析で
きる糖類としては、例えばグルコース、マンノー
ス、ガラクトース、果糖、ラムノース等の単糖、
マルトース、ラクトース、マルトトリオース等の
オリゴ多糖、グルコサミン、ガラクトサミン等の
アミノ糖、グルクロン酸、ガラクツユロン酸等の
ウロン酸が挙げられ、あらゆる還元糖に応用する
ことができる。特に生体試料のように、これらの
糖類を多成分含んでいるものの分析に好適であ
る。
Examples of sugars that can be analyzed using the analytical method and apparatus of the present invention include monosaccharides such as glucose, mannose, galactose, fructose, and rhamnose;
Examples include oligopolysaccharides such as maltose, lactose, and maltotriose, amino sugars such as glucosamine and galactosamine, and uronic acids such as glucuronic acid and galactulonic acid, and can be applied to all reducing sugars. It is particularly suitable for analyzing biological samples that contain multiple components of these saccharides.

以下図に示す実施例に基いてこの発明を詳述す
る。なお、これによつてこの発明が限定を受ける
ものではない。
The present invention will be described in detail below based on embodiments shown in the figures. Note that this invention is not limited by this.

第1図において、糖類の自動分析装置1は、高
速液体クロマトグラフ装置本体25と、そのカラ
ム2の溶離液管路3に延設された反応液管路9
と、この反応液管路に合流接続された反応試薬供
給管路4と、この合流接続部(混合部)5より後
段において前記反応液管路9が順に通過する加熱
槽6、冷却槽7および紫外線吸光光度計及び/又
は蛍光光度計8と、反応液管路9から更に延びる
反応液排出管路10とから主として構成されてい
る。
In FIG. 1, an automatic saccharide analyzer 1 includes a high-performance liquid chromatograph main body 25 and a reaction liquid pipe 9 extending to an eluent pipe 3 of a column 2.
, a reaction reagent supply pipe 4 which is connected to the reaction liquid pipe, and a heating tank 6, a cooling tank 7, through which the reaction liquid pipe 9 passes in order after the joint connection part (mixing part) 5. It mainly consists of an ultraviolet absorption photometer and/or a fluorophotometer 8, and a reaction liquid discharge pipe 10 further extending from a reaction liquid pipe 9.

前記反応試薬供給管路4は、ポンプ11及びダ
ンパー12を介設し、反応試薬として塩基性アミ
ノ酸含有のホウ酸水溶液を前記反応液管路9に供
給し、カラム溶離液と混合される。通常両流路の
合流接続部5には三方管路が用いられる。
The reaction reagent supply line 4 is provided with a pump 11 and a damper 12, and supplies a basic amino acid-containing boric acid aqueous solution as a reaction reagent to the reaction liquid line 9, where it is mixed with the column eluent. Normally, a three-way conduit is used for the merging connection part 5 of both flow paths.

前記加熱槽6は伝熱が良好なスズを加熱媒体と
して充填し、この加熱媒体中に熱源として電気ヒ
ータ17及び反応液管路9を挿通させている。こ
の反応液管路の挿通部13は所定長さでコイル状
に成形されている。なお、18は温度制御用感熱
体、19は内槽部、20は外槽部、21は両槽間
に充填された断熱材である。
The heating tank 6 is filled with tin, which has good heat transfer, as a heating medium, and an electric heater 17 and a reaction liquid pipe 9 as a heat source are inserted into this heating medium. The insertion portion 13 of this reaction liquid conduit is formed into a coil shape with a predetermined length. In addition, 18 is a heat sensitive body for temperature control, 19 is an inner tank part, 20 is an outer tank part, and 21 is a heat insulating material filled between both tanks.

前記冷却槽7は循環する冷却水を導入し、この
冷却水中に反応液管路9を挿通している。この反
応液管路の挿通部14も所定長さでコイル状に成
形されている。
The cooling tank 7 introduces circulating cooling water, and the reaction liquid pipe 9 is inserted into this cooling water. The insertion portion 14 of this reaction liquid conduit is also formed into a coil shape with a predetermined length.

前記蛍光光度計及び/又は紫外線吸光光度計8
は、記録計16などが付設され、また反応液排出
管路10には抵抗管22が介設されている。
Said fluorometer and/or ultraviolet absorption photometer 8
A recorder 16 and the like are attached, and a resistance tube 22 is interposed in the reaction liquid discharge conduit 10.

次に以上の構成からなる糖類の自動分析装置1
を用いた糖類の分析方法を説明する。
Next, automatic saccharide analyzer 1 consisting of the above configuration
We will explain how to analyze sugars using

まず、予め反応試薬供給管路4のポンプ11お
よび高速液体クロマトグラフ装置本体25のポン
プ23を作動させて、塩基性アミノ酸を含有する
ホウ酸水溶液からなる反応試薬と、カラム溶離液
とを反応液管路9に流入し、定常状態を維持す
る。次いで、本体注入部24から試料をカラム2
に注入すると試料はカラムで成分毎に分離され、
カラムから溶出して溶離液管路3を通じて反応液
管路9に入り、ここで反応試薬と混合され加熱槽
6において例えば約5分間150℃に加熱されて反
応し、更に冷却槽7を通過することによつて室温
まで冷却される。この通過によつて分離された各
試料成分(糖)は紫外線吸収性でかつ蛍光性の物
質に変換され、紫外線吸光光度計及び/又は蛍光
光度計8によつて濃度が検出される。
First, the pump 11 of the reaction reagent supply line 4 and the pump 23 of the high performance liquid chromatography apparatus main body 25 are activated in advance, and a reaction reagent consisting of a boric acid aqueous solution containing a basic amino acid and a column eluent are mixed into the reaction solution. It flows into the conduit 9 and maintains a steady state. Next, the sample is transferred from the main body injection part 24 to the column 2.
When injected into the column, the sample is separated into components by column,
It is eluted from the column and enters the reaction liquid pipe 9 through the eluent pipe 3, where it is mixed with a reaction reagent and heated to 150°C for about 5 minutes to react in a heating tank 6, and then passes through a cooling tank 7. It is then cooled down to room temperature. Each sample component (sugar) separated by this passage is converted into an ultraviolet absorbing and fluorescent substance, and its concentration is detected by an ultraviolet absorption photometer and/or a fluorometer 8.

かくして糖類の分析が高感度で可能になる。更
に反応試薬にカラム溶離液を混合してから後は、
一過式に移動して排出される間に自動的に反応、
冷却、紫外線吸光光度及び/又は蛍光光度測定な
どが行われるので、完全自動化に好適である。も
ちろん途中において移動を中断する個所もないの
で分析が高速度で行える。
In this way, sugar analysis becomes possible with high sensitivity. Furthermore, after mixing the column eluent with the reaction reagent,
Automatically reacts while being moved and discharged in a transitory manner,
Since cooling, ultraviolet absorbance and/or fluorescence measurements are performed, it is suitable for complete automation. Of course, there is no point where the movement is interrupted, so analysis can be performed at high speed.

更に重要なことは、液体クロマトグラフにおい
て傾斜溶離法を採用することができるので、生体
中の糖類のごとき多成分の糖類を一度に高精度で
分析することも可能である。
More importantly, since a gradient elution method can be employed in a liquid chromatograph, it is also possible to analyze multi-component saccharides such as saccharides in living organisms at once with high precision.

以下、実施例を示しこの発明をさらに詳しく説
明する。
Hereinafter, this invention will be explained in more detail with reference to Examples.

実施例 1 第1図に示すごとき自動分析装置1を用いて糖
類の分析を行なつた。条件を以下に示す。
Example 1 Saccharides were analyzed using an automatic analyzer 1 as shown in FIG. The conditions are shown below.

液体クロマトグラフ装置
:島津高速液体クロマトグラフLC−3A 分析カラム :シマヅゲル SCR−101N 移動相 :精製水 移動相流量 :0.5ml/分 カラム温度 :60℃ 検出器 :蛍光光度計(島津RF−530 ;励起波長320nm;蛍光波長430nm) 反応試薬:2.0%アルギニン/5.0ホウ酸水溶液 反応試薬流量 :0.5ml/分 反応温度 :150℃ 試料:グルコース、マルトース、フラクトー
ス、キシロース 試料注入量 :各々0.25〜7.5μg 以上のように、アルギニンを反応試薬に用いた
時の、各糖の注入量と分析値との直線性を調べ
た。この結果を第2図に示す。このようにいずれ
の糖においても広範囲に亘つて優れた直線性が得
られており、高精度、高確度の測定が可能である
ことがわかる。
Liquid chromatograph device: Shimadzu High Performance Liquid Chromatograph LC-3A Analytical column: Shimadzu Gel SCR-101N Mobile phase: Purified water Mobile phase flow rate: 0.5 ml/min Column temperature: 60°C Detector: Fluorometer (Shimadzu RF-530; (excitation wavelength 320 nm; fluorescence wavelength 430 nm) Reaction reagent: 2.0% arginine/5.0 boric acid aqueous solution Reaction reagent flow rate: 0.5 ml/min Reaction temperature: 150°C Sample: glucose, maltose, fructose, xylose Sample injection amount: 0.25 to 7.5 μg each As described above, when arginine was used as a reaction reagent, the linearity between the injection amount of each sugar and the analytical value was investigated. The results are shown in FIG. In this way, excellent linearity was obtained over a wide range for all sugars, indicating that highly accurate and accurate measurements are possible.

実施例 2 検出器感度を上げ、グルコース、マルトース及
びマルトトリオースを各々2n(ナノ)モル含有す
る試料(20μ)を用いる以外、実施例1と同様
にして分析を行なつた。その結果を第3図に示
す。このように微量でも優れた感度が得られてい
る。
Example 2 Analysis was carried out in the same manner as in Example 1, except that the detector sensitivity was increased and a sample (20μ) containing 2n (nano) moles each of glucose, maltose, and maltotriose was used. The results are shown in FIG. In this way, excellent sensitivity can be obtained even in small amounts.

実施例 3 検出器として紫外線吸光光度計(島津UVD−
2;検出器感度0.01AUFS;使用波長254nm)を
用いる以外、実施例2と同様な方法で分析を行な
つた。その結果を第4図に示す。このように紫外
線吸収によつても優れた感度が得られており、そ
れ自体実質的に紫外線を吸収しない糖類が、この
発明の処理によつて強く紫外線を吸収することよ
うになることも判る。
Example 3 An ultraviolet absorption photometer (Shimadzu UVD-
Analysis was carried out in the same manner as in Example 2, except that 2; detector sensitivity: 0.01 AUFS; wavelength used: 254 nm). The results are shown in FIG. As described above, excellent sensitivity was also obtained with respect to ultraviolet absorption, and it can be seen that saccharides that do not substantially absorb ultraviolet rays by themselves come to strongly absorb ultraviolet rays through the treatment of the present invention.

実施例 4 蛍光光度計(RF−530;励起波長320nm、蛍光
波長430nm;検出器感度16倍)と紫外吸光光度計
(UVD−2;波長254nm)とを検出器として連設
した自動分析装置1を用いて分析を行なつた。条
件は以下の通りである。
Example 4 Automatic analyzer 1 in which a fluorometer (RF-530; excitation wavelength 320 nm, fluorescence wavelength 430 nm; detector sensitivity 16 times) and an ultraviolet absorption photometer (UVD-2; wavelength 254 nm) are connected as detectors. The analysis was performed using The conditions are as follows.

液体クロマトグラフ装置
:島津高速液体クロマトグラフLC−3A 分析カラム :シマヅLCカラムISA−07/S2504 移動相:水酸化カリウムでPH8.5に調整した
0.3Mホウ酸水溶液 移動相流量 :0.5ml/分 カラム温度 :65℃ 反応試薬
:2.0%アルギニン/5.0%ホウ酸水溶液 反応試薬流量 :0.5ml/分 反応温度 :150℃ 試料:グルコース 5、マルトース 1、マン
ノース 2、フラクトース 3、ガラクト
ース 4、及びキシロース 6の混合物 試料注入量 :各々1μg 以上の条件で並行して蛍光光度と吸光光度を
別々に測定し、それに基づいて同時にチヤートを
書かせた結果を第5図に示す。第5図において上
部から下方に突出するピークは紫外吸光光度を示
し、下部から上方に突出するピークは蛍光光度を
示す。
Liquid chromatography device: Shimadzu high performance liquid chromatograph LC-3A Analysis column: Shimazu LC column ISA-07/S2504 Mobile phase: Adjusted to PH8.5 with potassium hydroxide
0.3M boric acid aqueous solution Mobile phase flow rate: 0.5ml/min Column temperature: 65℃ Reaction reagent: 2.0% arginine/5.0% boric acid aqueous solution Reaction reagent flow rate: 0.5ml/min Reaction temperature: 150℃ Sample: Glucose 5, Maltose 1 , a mixture of mannose 2, fructose 3, galactose 4, and xylose 6. Sample injection amount: 1 μg or more of each. Fluorescence and absorbance were measured separately in parallel, and charts were drawn simultaneously based on the results. It is shown in FIG. In FIG. 5, a peak projecting downward from the top indicates ultraviolet absorbance, and a peak projecting upward from the bottom indicates fluorescence intensity.

このようにそれぞれの糖について蛍光及び吸光
のいずれによつても優れた感度が示されている。
In this way, excellent sensitivity has been demonstrated for each sugar, both in terms of fluorescence and absorption.

実施例 5 移動相として水酸化カリウムでPH9.0に調整し
た0.4Mホウ酸水溶液を用い、移動相流量を0.6
ml/分とし、蛍光光度計として島津FLD−1;
励起波長300〜400nm(360nm最大)、測定波長
430nm以上(フイルター使用)を用い、反応試薬
として2%ヒスチジン/3.0%ホウ酸水溶液を用
い反応試薬流量を0.6ml/分とし、試料注入量を
各2μgとする以外、実施例4と同様にして分析を
行なつた。その結果を第6図に示す。
Example 5 A 0.4M boric acid aqueous solution adjusted to pH 9.0 with potassium hydroxide was used as the mobile phase, and the mobile phase flow rate was 0.6.
ml/min, Shimadzu FLD-1 as a fluorometer;
Excitation wavelength 300-400nm (360nm maximum), measurement wavelength
The procedure was the same as in Example 4, except that a wavelength of 430 nm or higher (using a filter) was used, a 2% histidine/3.0% boric acid aqueous solution was used as the reaction reagent, the reaction reagent flow rate was 0.6 ml/min, and the sample injection amount was 2 μg each. conducted an analysis. The results are shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の分析装置の一具体例を示
す構成説明図であり、第2図は、この発明の方法
によつて得られる測定強度(ピーク高さ)と実際
の濃度との直線関係を示すグラフであり、第3〜
6図は、この発明の方法によつて得られるクロマ
トグラフの一例をそれぞれ示す図である。 1……糖類の自動分析装置、2……高速液体ク
ロマトグラフのカラム、3……溶出液管路、4…
…反応試薬供給管路、5……混合部、6……加熱
槽、7……冷却槽、8……紫外線吸光光度計及
び/又は蛍光光度計、9……反応液管路、10…
…反応液排出部、11……ポンプ、12……ダン
パー、13……反応液管路部、14……反応液管
路部、25……クロマトグラフ装置本体。
FIG. 1 is a configuration explanatory diagram showing a specific example of the analyzer of the present invention, and FIG. 2 is a straight line between the measured intensity (peak height) obtained by the method of the present invention and the actual concentration. It is a graph showing the relationship, and the third to
FIG. 6 is a diagram showing an example of a chromatograph obtained by the method of the present invention. 1... Automated saccharide analyzer, 2... High performance liquid chromatography column, 3... Eluent pipe line, 4...
...Reaction reagent supply pipe line, 5...Mixing section, 6...Heating tank, 7...Cooling tank, 8...Ultraviolet absorption photometer and/or fluorometer, 9...Reaction liquid pipe line, 10...
...Reaction liquid discharge part, 11... Pump, 12... Damper, 13... Reaction liquid pipe line part, 14... Reaction liquid pipe line part, 25... Chromatography apparatus main body.

Claims (1)

【特許請求の範囲】 1 糖類を含有する試料又はそれを液体クロマト
グラフイーに付して得たカラム溶離液に塩基性ア
ミノ酸を含有するホウ酸水溶液からなる反応試薬
を加え、加熱反応を行つた後冷却し、励起光をあ
ててその蛍光光度を測定するか及び/又は紫外線
をあててその吸光度を測定することにより糖類を
分析することを特徴とする糖類の分析法。 2 液体クロマトグラフ装置本体に、そのカラム
溶離液流路から反応液流路を延設し、この流路に
塩基性アミノ酸添加のホウ酸水溶液の供給流路を
接続し、次いで加熱部と冷却部と蛍光光度測定部
及び/又は紫外線吸光光度測定部とをこの順で付
設したことを特徴とする糖類の分析装置。
[Claims] 1. A reaction reagent consisting of a boric acid aqueous solution containing a basic amino acid is added to a sample containing sugars or a column eluate obtained by subjecting the same to liquid chromatography, and a heating reaction is performed. 1. A method for analyzing saccharides, characterized in that the saccharides are analyzed by cooling the saccharides after cooling, irradiating them with excitation light and measuring their fluorescence intensity, and/or irradiating them with ultraviolet rays and measuring their absorbance. 2. A reaction solution flow path is extended from the column eluent flow path to the main body of the liquid chromatograph apparatus, a supply flow path for a boric acid aqueous solution containing a basic amino acid is connected to this flow path, and then a heating section and a cooling section are connected. A saccharide analysis device characterized in that a saccharide analyzer is provided with a fluorescence measurement section and/or an ultraviolet absorption measurement section in this order.
JP10093982A 1982-06-10 1982-06-10 Saccharide assay method and apparatus Granted JPS58216953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10093982A JPS58216953A (en) 1982-06-10 1982-06-10 Saccharide assay method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10093982A JPS58216953A (en) 1982-06-10 1982-06-10 Saccharide assay method and apparatus

Publications (2)

Publication Number Publication Date
JPS58216953A JPS58216953A (en) 1983-12-16
JPS6314910B2 true JPS6314910B2 (en) 1988-04-02

Family

ID=14287317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10093982A Granted JPS58216953A (en) 1982-06-10 1982-06-10 Saccharide assay method and apparatus

Country Status (1)

Country Link
JP (1) JPS58216953A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076966B2 (en) * 1984-07-14 1995-01-30 株式会社島津製作所 Saccharide analysis method and device
JP2526544B2 (en) * 1986-03-29 1996-08-21 株式会社島津製作所 UV type organic matter measuring device
JPH0737971B2 (en) * 1989-12-27 1995-04-26 株式会社島津製作所 Analysis method for amino compounds
JP2006125856A (en) * 2004-10-26 2006-05-18 Sumitomo Chemical Co Ltd Liquid chromatography unit
JP5685381B2 (en) 2009-03-13 2015-03-18 Jcrファーマ株式会社 Analysis method of saccharides
US8673648B2 (en) 2010-04-28 2014-03-18 Jcr Pharmaceuticals Co., Ltd. Sugar analysis device and analysis method
JP6092768B2 (en) 2011-03-29 2017-03-08 Jcrファーマ株式会社 Mannose-6-phosphate analyzer and analysis method

Also Published As

Publication number Publication date
JPS58216953A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
Brown High Pressure Liquid Chromatography: Biochemical and Biomedical Applications
Hartford Rapid Spectrophotometric Method for the Determination of Itaconic, Citric, Aconitic, and Fumaric Acids.
US4233030A (en) Methods and apparatus for liquid chromatography
Jones et al. A colorimetric estimation of sugars using benzidine
JPH03102259A (en) Method, apparatus, system and separation column of liquid chromatograph
JPS6314910B2 (en)
Lundgren et al. Automation of ion exchange chromatographic analysis of condensed phosphate mixtures
JPH0477500A (en) Method for separating glycohemoglobin and separation device therefor
JPS5914191B2 (en) Saccharide analysis method and equipment
Esposito On-column formation and analysis of trimethylsilyl derivatives
EP2565644B1 (en) Sugar analysis device and analysis method
US5308774A (en) Liquid chromatographic method and apparatus for analyzing biological samples
RU2670965C9 (en) Method of measuring number of polysorbate-80 with application of alkaline hydrolysis of sample with following hplc
JPS6125059A (en) Method and apparatus for analyzing saccharide
JPS6367662B2 (en)
Emara et al. On the perspectives of capillary electrophoresis modes for the determination of morphine in human plasma without sample pretreatment
Betteridge et al. Development of a flow injection analyser for the post-column detection of sugars separated by high-performance liquid chromatography
Martin et al. The free-falling drop detector--a nover fluorescence detector for high-performance liquid chromatography.
Gumieniczek et al. The choromatographic and colorimetric methods for determination of captopril in tablets
JP3413654B2 (en) Aluminum measurement method
JP2846059B2 (en) Saccharide analysis method and analyzer
Leroy et al. Ion-exchange liquid chromatography method with indirect UV detection for the assay of choline in pharmaceutical preparations
Himes et al. Quantitative Determination of Sugars by Rapid Horizontal Paper Chromatography
Mustillo et al. The development and role of near-infrared detection in thin-layer chromatography
JPH0575066B2 (en)