JPS6314891B2 - - Google Patents

Info

Publication number
JPS6314891B2
JPS6314891B2 JP3193181A JP3193181A JPS6314891B2 JP S6314891 B2 JPS6314891 B2 JP S6314891B2 JP 3193181 A JP3193181 A JP 3193181A JP 3193181 A JP3193181 A JP 3193181A JP S6314891 B2 JPS6314891 B2 JP S6314891B2
Authority
JP
Japan
Prior art keywords
diaphragm
strain
force
assembly
stress concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3193181A
Other languages
Japanese (ja)
Other versions
JPS57147024A (en
Inventor
Hiroshi Takao
Tomokimi Okada
Hidekazu Saito
Katsuzo Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP3193181A priority Critical patent/JPS57147024A/en
Publication of JPS57147024A publication Critical patent/JPS57147024A/en
Publication of JPS6314891B2 publication Critical patent/JPS6314891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2231Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being disc- or ring-shaped, adapted for measuring a force along a single direction

Description

【発明の詳細な説明】 本発明は、圧力または荷重を受けて変位し、こ
れを力に変換するダイヤフラムと、このダイヤフ
ラムに生じた力が機械的に伝達されて変形を生じ
この変形部に添着されたひずみゲージによつて該
力を電気信号に変換する起歪体とからなる信号変
換器における組立体に関する。
Detailed Description of the Invention The present invention provides a diaphragm that is displaced in response to pressure or load and converts it into force, and a diaphragm that is mechanically transmitted to the diaphragm to cause deformation and attach to the deformed portion. The present invention relates to an assembly in a signal converter comprising a strain gauge that converts the force into an electric signal using a strain gauge.

従来、この種の信号変換器のダイヤフラムと起
歪体の組立体は第1図a,bに示すように、周縁
部において支持された円板状のダイヤフラム1
と、両端部が剛体として機能するブロツク状をな
し一端部において支持され他端部が屈曲形成され
るとともに中間部が帯板状に形成されこの帯板状
部分の剛体部分との連結部近傍の背面に検出部を
対応させてひずみゲージ2が添着された起歪体と
してのカンチレバー3と、前記ダイヤフラム1の
中心部の変位を受けてこの変位に応じた力をカン
チレバー3の前記他端部に伝達する伝達棒4とで
構成されていた。なお第1図aは組立体全体の縦
断面図、同図bはカンチレバー3部分のみの正面
図である。
Conventionally, as shown in FIGS. 1a and 1b, the assembly of a diaphragm and a strain body of this type of signal converter consists of a disk-shaped diaphragm 1 supported at its periphery.
It has a block shape with both ends functioning as a rigid body, one end is supported, the other end is bent, and the middle part is formed in a strip shape, and the strip near the connection part with the rigid body part. A cantilever 3 as a strain body to which a strain gauge 2 is attached with a detection portion corresponding to the back surface receives a displacement of the center of the diaphragm 1 and applies a force corresponding to the displacement to the other end of the cantilever 3. It was composed of a transmission rod 4 for transmitting data. Note that FIG. 1a is a longitudinal cross-sectional view of the entire assembly, and FIG. 1b is a front view of only the cantilever 3 portion.

第2図にこのような組立体を圧力変換器に応用
した構成例を示す。
FIG. 2 shows an example of a configuration in which such an assembly is applied to a pressure transducer.

第2図においては第1図と同様の部分には同符
号を付して示しており、5はダイヤフラム1を支
持する外筒、6はダイヤフラム1を変形させる圧
力媒体(液体、気体等)を導入する導入口6aを
有する導入部、7はカンチレバー3を外筒5に固
定する固定部材、8はひずみゲージ2に対する配
線用の配線基板、9はカンチレバー3、配線基板
8等からなる部分を保護するためのケース、10
は配線基板8から信号線を外部に導出するための
防水コネクタ、11はシール用のOリング、12
はコネクタ押えである。
In FIG. 2, the same parts as in FIG. An introduction part having an introduction port 6a for introduction, 7 a fixing member for fixing the cantilever 3 to the outer cylinder 5, 8 a wiring board for wiring to the strain gauge 2, 9 protecting a portion consisting of the cantilever 3, the wiring board 8, etc. Case for, 10
11 is a waterproof connector for leading the signal line to the outside from the wiring board 8; 11 is an O-ring for sealing; 12
is the connector holder.

このような、組立体の動作を第2図に示す圧力
変換器を例にとつて説明する。
The operation of such an assembly will be explained using the pressure transducer shown in FIG. 2 as an example.

導入部6の導入口6aから圧力媒体が導入され
ダイヤフラム1に圧力がかかるとダイヤフラム1
は圧力により変形しその変位に応じた力が伝達棒
4を介してカンチレバー3に伝達されカンチレバ
ー3が変形して該カンチレバー3に添着されたひ
ずみゲージ2には該変形(すなわち前記圧力に応
じた変形)に応じたひずみ出力が発生する。
When the pressure medium is introduced from the introduction port 6a of the introduction part 6 and pressure is applied to the diaphragm 1, the diaphragm 1
is deformed by the pressure, and a force corresponding to the displacement is transmitted to the cantilever 3 via the transmission rod 4, the cantilever 3 is deformed, and the strain gauge 2 attached to the cantilever 3 undergoes the deformation (that is, the force corresponding to the pressure). A strain output is generated according to the deformation).

ところで、このような組立体は主として低容量
の圧力変換器等に使用される。そして、低容量に
なればなる程所要の出力を得るためには、ダイヤ
フラム1やカンチレバー3の中間部の肉厚を薄く
形成して感度を上げる必要があり、結果的にダイ
ヤフラム1の肉厚に対する変位の量が大きくな
る。このようにダイヤフラム1の肉厚に対する変
位の量が大きくなればなる程ダイヤフラム1の圧
力−変換特性あるいは圧力−力変換特性の直線性
は悪くなり例えば圧力−力変換特性の一例を第3
図に示すように圧力によつて発生する力の増加率
は圧力上昇に伴なつて低下する。これに対して、
カンチレバー3単体では通常の変換器の出力レベ
ルでは充分に良好な直線性が得られ、第4図にカ
ンチレバー3に印加された力に対するカンチレバ
ー3に添着されたひずみゲージ2による力−ひず
み出力変換特性の一例を示すようにほとんど非直
線成分を含まない。したがつて、これらの組合せ
による総合的な圧力−ひずみ出力変換特性はダイ
ヤフラム1の圧力−力変換特性に大きく影響され
る。一般にこのダイヤフラム1の非直線性による
悪影響を小さくするため、直線性のよいカンチレ
バー3の板厚を相対的に厚く、ダイヤフラム1の
板厚を薄くして、カンチレバー3とダイヤフラム
1とのばね定数の比が大きくなるように努力され
るが、機械加工上の限界があるためダイヤフラム
1の板厚はある程度(通常0.2mm程度)以上は薄
くすることができず、結果的には第5図に組立体
全体の圧力−ひずみ出力変換特性の一例を示すよ
うに直線性が悪いものであつた。また、カンチレ
バー3の加工製作はその形状から主にフライス加
工によらねばならず、製作費が高くつくという欠
点もあつた。
Incidentally, such an assembly is mainly used for low capacity pressure transducers and the like. As the capacitance decreases, in order to obtain the required output, it is necessary to make the middle part of the diaphragm 1 and the cantilever 3 thinner to increase the sensitivity. The amount of displacement increases. In this way, the greater the amount of displacement relative to the wall thickness of the diaphragm 1, the worse the linearity of the pressure-force conversion characteristic or pressure-force conversion characteristic of the diaphragm 1 becomes.
As shown in the figure, the rate of increase in the force generated by pressure decreases as the pressure increases. On the contrary,
With the cantilever 3 alone, sufficiently good linearity can be obtained at the output level of a normal transducer, and Figure 4 shows the force-strain output conversion characteristics of the strain gauge 2 attached to the cantilever 3 with respect to the force applied to the cantilever 3. As shown in the example, it contains almost no non-linear components. Therefore, the overall pressure-strain output conversion characteristics resulting from these combinations are greatly influenced by the pressure-force conversion characteristics of the diaphragm 1. Generally, in order to reduce the adverse effects of the nonlinearity of the diaphragm 1, the cantilever 3, which has good linearity, is made relatively thick, and the diaphragm 1 is made thin, thereby reducing the spring constant between the cantilever 3 and the diaphragm 1. Efforts were made to increase the ratio, but due to limitations in machining, the thickness of diaphragm 1 could not be made thinner than a certain level (usually about 0.2 mm), and as a result, the assembly shown in Figure 5 was made. The linearity was poor, as shown by an example of the pressure-strain output conversion characteristics of the entire solid. Furthermore, the cantilever 3 has to be manufactured mainly by milling due to its shape, which has the drawback of increasing manufacturing costs.

本発明は、このような事情に鑑みてなされたも
ので、直線性を改善ししかも製作費の低廉化も図
り得るダイヤフラムと起歪体の組立体を提供する
ことを目的としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an assembly of a diaphragm and a strain body that can improve linearity and reduce manufacturing costs.

即ち、本発明の特徴は、起歪体をダイヤフラム
からの力が中央部に与えられ且つ各端部において
支持されるビーム状をなすとともにその変形方向
についての一方の面に前記中央部を中心とする円
弧状の応力集中溝を形成してその背面にひずみゲ
ージを添着した構成とし、前記応力集中溝は前記
ダイヤフラムの変換特性に対応しその非直線性を
補償する非直線変換特性を呈するごとく設定する
ことにある。
That is, the feature of the present invention is that the strain-generating body is shaped like a beam to which the force from the diaphragm is applied at the center and is supported at each end, and the strain body is shaped like a beam with the center being the center on one surface in the direction of deformation. An arcuate stress concentration groove is formed and a strain gauge is attached to the back surface of the stress concentration groove, and the stress concentration groove is set to exhibit a nonlinear conversion characteristic that corresponds to the conversion characteristic of the diaphragm and compensates for its nonlinearity. It's about doing.

以下、図面を参照して本発明の一実施例を説明
する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第6図aおよびbに本実施例の組立体の縦断面
図および正面図を示す。第6図a,bにおいて、
ダイヤフラム1および伝達棒4は第1図a,bの
場合とほぼ同様である。起歪体はダイヤフラム1
の外周支持部と周縁部において一体に結合された
円板状部13の一方の面、この場合ダイヤフラム
1側の面に2本の同心円状の溝14,15が設け
られ、さらに該円板状部13の任意の直径に平行
に中心を挾んで2本のスリツト状の透孔16,1
7が穿設されて形成され両端部が支持された帯板
状をなす一文字ビーム状の起歪体18により構成
される。この起歪体18は中心部において伝達棒
4に溶接等によつて固着連結されている。前記溝
14,15はこの起歪体18の部分において円弧
状の応力集中溝14a,14b,15a,15b
を形成する。この応力集中溝14a,14b,1
5a,15bとなる溝14,15の断面形状は半
円状あるいはU字状あるいはコ字状のいずれでも
よい。(図ではU字溝の場合を示している。)そし
て、起歪体18の応力集中溝14a,15aおよ
び14b,15bの背面側には各溝部分に検出部
を対応させてひずみゲージ19,20を添着す
る。
FIGS. 6a and 6b show a longitudinal sectional view and a front view of the assembly of this embodiment. In Figures 6a and b,
The diaphragm 1 and the transmission rod 4 are substantially the same as in FIGS. 1a and 1b. The strain body is diaphragm 1
Two concentric grooves 14 and 15 are provided on one surface of the disc-shaped part 13 which is integrally connected to the outer peripheral support part of the disc-shaped part at the peripheral part thereof, in this case, the surface on the diaphragm 1 side. Two slit-shaped through holes 16, 1 are formed parallel to the arbitrary diameter of the portion 13 and sandwiched at the center.
It is constituted by a linear beam-shaped strain-generating body 18 which is formed by perforating 7 and is supported at both ends. The strain body 18 is fixedly connected to the transmission rod 4 at its center by welding or the like. The grooves 14, 15 are arcuate stress concentration grooves 14a, 14b, 15a, 15b in the strain body 18.
form. These stress concentration grooves 14a, 14b, 1
The cross-sectional shapes of the grooves 14 and 15, which become the grooves 5a and 15b, may be semicircular, U-shaped, or U-shaped. (The figure shows the case of a U-shaped groove.) Then, on the back side of the stress concentration grooves 14a, 15a and 14b, 15b of the strain body 18, a strain gauge 19 is installed, with a detection part corresponding to each groove part. Attach 20.

第7図にこのような組立体を圧力変換器に応用
した具体的構成例を示す。
FIG. 7 shows a specific configuration example in which such an assembly is applied to a pressure transducer.

第7図においては、第2図および第6図a,b
と同様の部分に同様の符号を付して示し、その説
明を省略する。
In Fig. 7, Fig. 2 and Fig. 6 a, b
The same parts are shown with the same reference numerals, and the explanation thereof will be omitted.

上述のように構成した一文字ビーム状の起歪体
18単体における力−ひずみ出力変換特性は、通
常の変換器の出力レベル(約4000×10-6ひずみ)
程度では、第8図に示すように力により発生する
ひずみ出力の増加率が力の増大とともに大きくな
るという特性を持つている。
The force-strain output conversion characteristic of the single beam-shaped strain body 18 configured as described above is the output level of a normal converter (approximately 4000×10 -6 strain).
As shown in FIG. 8, the rate of increase in strain output caused by force increases as the force increases.

また、この変換特性は応力集中溝14a,14
b,15a,15bの円弧状の半径の大きさによ
つて変化させることができる。すなわち、該半径
を大きくすると応力集中溝14a〜15bは直線
に近くなり、従来のカンチレバーの特性に近くな
つて、前記変換特性曲線は曲率が小さく直線に近
くなる。そして、該半径を小さくすると力の増加
に対するひずみ出力の増加率は大きくなり変換特
性曲線の曲率が大きくなる。また、半径の異なる
2種の応力集中溝14aと15a(14bと15
b)間の距離(ひずみゲージ、検出部間の距離に
等しい)を一定とし、半径だけを変化させると、
第9図a,b、第10図a,bおよび第11図
a,bに示すようにひずみ出力値はほとんど同じ
で前記変換特性だけを変化させることができる。
第9図〜第11図で、lは応力集中溝14a−1
5a(14b−15b)間の距離で一定であり、
r1〜r3は半径でr1<r2<r3である。
Moreover, this conversion characteristic is the stress concentration groove 14a, 14
It can be changed depending on the radius of the arcs b, 15a, and 15b. That is, when the radius is increased, the stress concentration grooves 14a to 15b become closer to a straight line, and the characteristics become closer to those of a conventional cantilever, and the conversion characteristic curve has a smaller curvature and becomes closer to a straight line. When the radius is made smaller, the rate of increase in strain output with respect to increase in force becomes larger, and the curvature of the conversion characteristic curve becomes larger. In addition, two types of stress concentration grooves 14a and 15a (14b and 15
b) If the distance between (equal to the distance between the strain gauge and detection part) is constant and only the radius is changed, then
As shown in FIGS. 9a and 9b, FIGS. 10a and 10b, and FIGS. 11a and 11b, the strain output values are almost the same and only the conversion characteristics can be changed.
In FIGS. 9 to 11, l is the stress concentration groove 14a-1
The distance between 5a (14b-15b) is constant,
r 1 to r 3 are radii and satisfies r 1 < r 2 < r 3 .

従つて、この起歪体18によれば、ダイヤフラ
ム1の変換特性の非直線性を補償するような非直
線変換特性を得ることができるので、ダイヤフラ
ム1の変換特性に対応して応力集中溝14a〜1
5bの半径等を定め起歪体18の変換特性を設定
することにより、組立体全体の圧力−ひずみ出力
変換特性の直線性を非常に良好にすることが可能
となる。
Therefore, according to this strain-generating body 18, it is possible to obtain a non-linear conversion characteristic that compensates for the non-linearity of the conversion characteristic of the diaphragm 1. ~1
By determining the radius of 5b and setting the conversion characteristics of the strain body 18, it becomes possible to make the linearity of the pressure-strain output conversion characteristics of the entire assembly very good.

例えば、ダイヤフラム1と起歪体18のばね定
数の比が1:3で、ダイヤフラム1の変換特性曲
線が第12図aに示すように直線からの最大偏差
が+aであつたとすると、起歪体18として第1
2図bに示すように変換特性曲線の直線からの最
大偏差が−a/3となるように応力集中溝半径等を
選定したものを組合わせればよい。このようにダ
イヤフラム1と起歪体18を組合わせて組立体を
構成した場合、全体の変換特性としては第12図
cに示すように良好な直線性を示す。
For example, if the ratio of the spring constants of the diaphragm 1 and the flexure element 18 is 1:3, and the maximum deviation of the conversion characteristic curve of the diaphragm 1 from a straight line is +a as shown in FIG. 1st as 18
As shown in FIG. 2b, the stress concentration groove radius, etc. may be selected so that the maximum deviation from the straight line of the conversion characteristic curve is -a/3. When the diaphragm 1 and the strain body 18 are combined to form an assembly in this way, the overall conversion characteristic exhibits good linearity as shown in FIG. 12c.

このように、ダイヤフラム1と起歪体18の変
換特性を相殺させて非常に直線性の良好な信号変
換器の組立体を構成することができる。また、従
来装置のようにダイヤフラム1と起歪体18のば
ね定数の比によつて変換特性が左右されないの
で、ダイヤフラム1の板厚を極限まで薄く形成し
たりする必要がなく、また、起歪体18がほとん
ど旋盤加工のみで加工でき、フライス加工の依存
率が高い場合に比してはるかに安価にしかも高精
度に製作できるという加工上の大きな利点があ
る。更に、直線性の改善のための複雑な回路を設
けることなく、上記の如く機械的補償手段で足り
るから信号変換器全体の構成が簡単化され、コス
トを低減させ得る利点がある。
In this way, the conversion characteristics of the diaphragm 1 and the strain body 18 can be canceled out, and a signal converter assembly with very good linearity can be constructed. In addition, unlike conventional devices, the conversion characteristics are not affected by the ratio of the spring constants of the diaphragm 1 and the strain-generating body 18, so there is no need to make the thickness of the diaphragm 1 as thin as possible, and the strain-generating body There is a great advantage in processing that the body 18 can be processed almost exclusively by lathe processing, and can be manufactured at a much lower cost and with higher precision than when milling is highly dependent. Furthermore, since the above-mentioned mechanical compensation means is sufficient without providing a complicated circuit for improving linearity, the overall structure of the signal converter is simplified and there is an advantage that costs can be reduced.

なお、上記実施例では、ダイヤフラムに対して
液体、気体等の圧力媒体が分布(均等)荷重とし
て負荷される圧力変換器に応用した場合につき説
明したが、本発明はダイヤフラムに対して集中荷
重が負荷される荷重変換器等にも応用することが
できる。
In the above embodiments, a pressure medium such as liquid or gas is applied to a diaphragm as a distributed (uniform) load. It can also be applied to load transducers and the like.

第13図は、荷重変換器に応用した場合の実施
例を示している。第13図において、21はケー
ス、22は信号導出用のコードである。
FIG. 13 shows an embodiment in which the present invention is applied to a load converter. In FIG. 13, 21 is a case, and 22 is a code for deriving a signal.

本発明を荷重変換器に応用すれば、上記利点の
他、例えばダイヤフラムに対して側方方向や偏心
方向の成分を含む荷重が負荷された場合であつて
も垂直方向の荷重成分のみを有効に検出、変換で
きると共にシーリング性を向上できるという利点
がある。
If the present invention is applied to a load transducer, in addition to the above-mentioned advantages, for example, even if a load including lateral or eccentric components is applied to the diaphragm, only the vertical load component will be effective. It has the advantage of being able to be detected and converted as well as improving sealing properties.

また、起歪体は一文字ビーム状の他、第14図
に示すような十文字ビーム状の起歪体23として
もよい。
Further, the strain generating body 23 may be in the shape of a cross beam as shown in FIG. 14, in addition to the shape of a straight beam.

その他、本発明は、種々の変形実施が可能であ
る。
In addition, the present invention can be implemented in various modifications.

以上詳述したように、本発明によれば、直線性
を改善し、しかも構成簡単で製作費の低廉化も図
り得る信号変換器におけるダイヤフラムと起歪体
の組立体を提供することができる。
As described in detail above, according to the present invention, it is possible to provide an assembly of a diaphragm and a strain body in a signal converter that improves linearity, has a simple structure, and can reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよびbはそれぞれ従来の組立体の構
成の一例を示す縦断面図および要部の正面図、第
2図は同例を用いた圧力変換器の具体的な構成の
一例を示す縦断面図、第3図〜第5図は従来装置
の問題点を説明するための特性図、第6図aおよ
びbは本発明の一実施例の構成を示す縦断面図お
よび正面図、第7図は同実施例を用いた圧力変換
器の具体的な構成の一例を示す縦断面図、第8図
〜第12図は同実施例を説明するための図、第1
3図および第14図は本発明のそれぞれ異なる他
の実施例の構成を示す図である。 1…ダイヤフラム、18,23…起歪体、14
a,14b,15a,15b…応力集中溝、1
9,20…ひずみゲージ。
Figures 1a and b are a longitudinal cross-sectional view and a front view of essential parts, respectively, showing an example of the configuration of a conventional assembly, and Figure 2 is a longitudinal cross-section showing an example of a specific configuration of a pressure transducer using the same example. FIGS. 3 to 5 are characteristic diagrams for explaining the problems of the conventional device. FIGS. The figure is a vertical sectional view showing an example of a specific configuration of a pressure transducer using the same embodiment, FIGS. 8 to 12 are diagrams for explaining the same embodiment,
3 and 14 are diagrams showing the configurations of other different embodiments of the present invention. 1...Diaphragm, 18, 23...Strain element, 14
a, 14b, 15a, 15b... stress concentration groove, 1
9,20...Strain gauge.

Claims (1)

【特許請求の範囲】 1 圧力または荷重を受けて変位しこれを力に変
換するダイヤフラムと、このダイヤフラムの変位
によつて生じた力が機械的に伝達されて変形を生
じこの変形部に添着されたひずみゲージによつて
該力を電気信号に変換する起歪体とを備える信号
変換器において、前記起歪体は前記ダイヤフラム
からの力が、中央部に与えられ且つ各端部におい
て支持されるビーム状をなすと共にその変形方向
についての一方の面に前記中央部を中心とする円
弧状の応力集中溝を形成してその背面にひずみゲ
ージを添着した構成とし、前記応力集中溝は前記
ダイヤフラムの変換特性に対応しその非直線性を
補償する非直線変換特性を呈するごとく設定した
ことを特徴とする信号変換器におけるダイヤフラ
ムと起歪体の組立体。 2 起歪体は一文字ビーム状をなすことを特徴と
する特許請求の範囲第1項記載信号検出器におけ
るダイヤフラムと起歪体の組立体。 3 起歪体は十文字ビーム状をなすことを特徴と
する特許請求の範囲第1項記載信号変換器におけ
るダイヤフラムと起歪体の組立体。
[Claims] 1. A diaphragm that is displaced in response to pressure or load and converts it into force, and the force generated by the displacement of this diaphragm is mechanically transmitted to cause deformation and is attached to this deformed portion. A signal converter comprising a strain-generating body that converts the force into an electrical signal by a strain gauge, wherein the strain-generating body receives the force from the diaphragm at a central portion and is supported at each end. It has a beam shape, and has an arc-shaped stress concentration groove centered on the center part formed on one surface in the deformation direction, and a strain gauge is attached to the back surface of the stress concentration groove, and the stress concentration groove is formed on one side of the diaphragm. An assembly of a diaphragm and a strain body in a signal converter, characterized in that it is set to exhibit nonlinear conversion characteristics that correspond to the conversion characteristics and compensate for the nonlinearity thereof. 2. An assembly of a diaphragm and a strain body in a signal detector according to claim 1, wherein the strain body has a straight beam shape. 3. An assembly of a diaphragm and a strain body in a signal converter according to claim 1, wherein the strain body has a cross beam shape.
JP3193181A 1981-03-07 1981-03-07 Assembly of diaphragm and strain inducer for signal converter Granted JPS57147024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193181A JPS57147024A (en) 1981-03-07 1981-03-07 Assembly of diaphragm and strain inducer for signal converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193181A JPS57147024A (en) 1981-03-07 1981-03-07 Assembly of diaphragm and strain inducer for signal converter

Publications (2)

Publication Number Publication Date
JPS57147024A JPS57147024A (en) 1982-09-10
JPS6314891B2 true JPS6314891B2 (en) 1988-04-02

Family

ID=12344711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193181A Granted JPS57147024A (en) 1981-03-07 1981-03-07 Assembly of diaphragm and strain inducer for signal converter

Country Status (1)

Country Link
JP (1) JPS57147024A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438272Y2 (en) * 1984-10-05 1992-09-08
JPS62134043U (en) * 1986-02-17 1987-08-24
JPS6428528A (en) * 1987-07-24 1989-01-31 Nec Corp Highly sensitive semiconductor pressure sensor
KR890010548A (en) * 1987-12-16 1989-08-09 로버트 제이. 에드워즈 Dual pressure sensor
JP6147110B2 (en) * 2013-06-20 2017-06-14 日立オートモティブシステムズ株式会社 Pressure detection device

Also Published As

Publication number Publication date
JPS57147024A (en) 1982-09-10

Similar Documents

Publication Publication Date Title
US5165281A (en) High pressure capacitive transducer
US4507973A (en) Housing for capacitive pressure sensor
US5712428A (en) Pressure sensor with a solid to minimize temperature-related measurement error
JP2777113B2 (en) Pressure sensor
EP0211519A2 (en) Capacitive differential pressure transducer
JP2656566B2 (en) Semiconductor pressure transducer
CA2359278A1 (en) Transducer having temperature compensation
US4703663A (en) Force sensor for electrical measuring of forces, torques, acceleration pressures and mechanical stresses
US4093933A (en) Sculptured pressure diaphragm
US4787249A (en) Differential pressure transducer
JPS6314891B2 (en)
US5889731A (en) Vibration detector
US4520675A (en) Pressure or pressure difference measuring transducer
KR900000657B1 (en) Cylindrical force transducer beam
EP0566130A1 (en) Rotation sensor
JP2527551B2 (en) Thin load cell
JP3586696B2 (en) Thin load cell
JPS6355012B2 (en)
JP2988077B2 (en) Differential pressure measuring device
JP3080212B2 (en) Semiconductor differential pressure measuring device
RU2065588C1 (en) Capacitance force transducer
JPS5850301Y2 (en) differential pressure transmitter
GB2242025A (en) Pressure sensor
JPH0546408Y2 (en)
JPS6355013B2 (en)