JPS63148559A - Manufacture of bromine absorbing electrode - Google Patents

Manufacture of bromine absorbing electrode

Info

Publication number
JPS63148559A
JPS63148559A JP61292602A JP29260286A JPS63148559A JP S63148559 A JPS63148559 A JP S63148559A JP 61292602 A JP61292602 A JP 61292602A JP 29260286 A JP29260286 A JP 29260286A JP S63148559 A JPS63148559 A JP S63148559A
Authority
JP
Japan
Prior art keywords
electrode
bromine
ion exchange
powder
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61292602A
Other languages
Japanese (ja)
Other versions
JPH0559551B2 (en
Inventor
Toshinori Fujii
藤井 利宣
Kazuo Fushimi
伏見 和夫
Yasuo Ando
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61292602A priority Critical patent/JPS63148559A/en
Publication of JPS63148559A publication Critical patent/JPS63148559A/en
Publication of JPH0559551B2 publication Critical patent/JPH0559551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase the absorbing capacity of bromine which is active material by adding ion exchange resin having a cation exchange group, carbon black, extractable material, hydrophilic property forming agent to a polymer, and kneading them to form a porous electrode. CONSTITUTION:An ion exchange resin used for giving ion exchange property is polyvinyl alcohol cation exchanger having a sulfonic group. This ion exchange resin powder is mixed with carbon black powder for giving conductivity and the mixture is kneaded with polyethylene powder serving as the base material of an electrode, and a sheet is formed. Dioctyl phthalate is used as extractable material and extracted after forming the sheet to make the electrode porous. Silica or alumina powder gives hydrophlic property to the polymer and ion exchanger so as to uniformly wet in the extractable material. By forming the porous electrode having ion exchange property, an electrode having high bromine-absorbing capacity can be obtained.

Description

【発明の詳細な説明】 A、a業上の利用分野 この発明は、金属−ハロゲン電池の電極に関し、とくに
亜鉛−臭素電池における臭素活物質を吸収して保持可能
な電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to an electrode for a metal-halogen battery, and more particularly to an electrode capable of absorbing and retaining a bromine active material in a zinc-bromine battery.

B9発明の概要 この発明は、高分子化合物(熱可塑性樹脂)をマトリッ
クスとする電極において、上記の高分子化合物に、陽イ
オン交換基をもつイオン交換体とカーボンブラックと油
出物と親、水性付与剤を添加混練して多孔質電極を形成
し、この電極に活物質である臭素を保持する吸収能を高
めた臭素吸収電極の製造方法を提供するものである。
B9 Summary of the Invention This invention provides an electrode having a polymer compound (thermoplastic resin) as a matrix, in which the above-mentioned polymer compound is combined with an ion exchanger having a cation exchange group, carbon black, an oil exudate, and a hydrophilic, aqueous polymer. The present invention provides a method for manufacturing a bromine-absorbing electrode in which a porous electrode is formed by adding and kneading an imparting agent, and the electrode has enhanced absorption capacity for retaining bromine as an active material.

C9従来の技術 近年、新型電池を用いた各種応用が検討されている。例
えば、電力貯蔵、電気自動車用電池への応用が活発であ
る。
C9 Prior Art In recent years, various applications using new types of batteries have been studied. For example, it is actively being applied to power storage and electric vehicle batteries.

新型電池の中でも、金属−ハロゲン電池が注目されてお
り、その中でも亜鉛−臭素電池は、安価であり、構造が
簡単でコンパクトになる点に注目されて開発が進められ
ている。亜鉛−臭素電池は1800年代から提案されて
いるが、正極活物質の臭素が液体であるため、析出した
後、電解液中に一部溶解し、自己放電を生じたり、酸化
力が強いため、構成材料に限界がある等問題をかかえて
いた。しかし最近、臭素と結合してオイル状になる錯化
剤が開発され、本電池の実用性が大きく高まった。この
錯化剤と臭素分子が結合して生ずるオイル状の臭素コン
プレックスは充電時に電極表面、あるいは電解液中で生
成され、電解液から分離される。そこで、本電池の基本
構造は第1図で示す様なポンプを用いて電解液を循環さ
せ、生成された臭素コンプレックスをタンク底に貯蔵し
、放電時に電解液と一緒に循環させる、いわゆる電解液
種環形亜鉛−臭素電池が現状の方式である。
Among new types of batteries, metal-halogen batteries are attracting attention, and among them, zinc-bromine batteries are being developed because they are inexpensive, have a simple structure, and are compact. Zinc-bromine batteries have been proposed since the 1800s, but since the positive electrode active material bromine is a liquid, after it precipitates, it partially dissolves in the electrolyte, causing self-discharge, and has strong oxidizing power. There were some problems, such as limitations on the materials used to construct it. However, recently, a complexing agent that combines with bromine to form an oil has been developed, greatly increasing the practicality of this battery. An oil-like bromine complex produced by the combination of this complexing agent and bromine molecules is generated on the electrode surface or in the electrolyte during charging, and is separated from the electrolyte. Therefore, the basic structure of this battery is to circulate the electrolyte using a pump as shown in Figure 1, store the generated bromine complex at the bottom of the tank, and circulate it together with the electrolyte during discharge. Seed ring zinc-bromine batteries are the current method.

なお、第1図は電解液種環形亜鉛−臭素電池の構成説明
図である。図において、1は電池の単セルを示す電池反
応槽、2は正極室、3は負極室、4はセパレータとして
の膜、5は正極、6は負極、7は正極電解液、8は負極
電解液、9は正極電解液用のタンク、10は負極電解液
用のタンク、11及び12は電解液循環用のポンプ、1
3及び13aは電解液循環用の配管系、14は上記の臭
素錯化物(コンプレックス)である。なお、配管系13
及び13aの脇に示した矢印は電解液の流れ方向を示す
ものである。
Note that FIG. 1 is an explanatory diagram of the structure of a ring-type zinc-bromine battery using an electrolytic solution. In the figure, 1 is a battery reaction tank showing a single cell of the battery, 2 is a positive electrode chamber, 3 is a negative electrode chamber, 4 is a membrane as a separator, 5 is a positive electrode, 6 is a negative electrode, 7 is a positive electrode electrolyte, and 8 is a negative electrode electrolyte. 9 is a tank for positive electrode electrolyte, 10 is a tank for negative electrode electrolyte, 11 and 12 are pumps for electrolyte circulation, 1
3 and 13a are piping systems for electrolyte circulation, and 14 is the above-mentioned bromine complex. In addition, piping system 13
The arrows shown beside 13a and 13a indicate the flow direction of the electrolytic solution.

上記のような亜鉛−臭素電池はよく知られており、また
すでに実用化されているので、その動作原理などの詳細
説明は割愛する。
Since the zinc-bromine battery described above is well known and has already been put into practical use, a detailed explanation of its operating principle will be omitted.

D5発明が解決しようとする問題点 °上記のような亜鉛、臭素電池の正極は過去に数多く検
討され、現在では、カーボンプラスチック電極が主流で
ある。これは、ポリオレフィン系の樹脂に導電性を付与
するためカーボン粉末を添加し、混練、成型したもめで
ある。この電極表面に活性化処理を施し充電時における
臭素発生(酸化反応)を容易にし、また放電時に於ては
臭素活物質との反応面積の増大及び還元反応を容易にし
ている。この様な活性化処理面で充電時に発生した臭素
は直ちに電解液中に穆動し、電解液と共に循環する。こ
れより電極及び電極表面の活性処理面は発生した臭素を
保持する機能を兼ね備えていない事になる。しかし、こ
の保持機能は従来の活性化処理面に掻くわずかに存在し
ている。これは、通常の活性化処理によって、カーボン
ブラック粉末あるいは活性炭粉末が若干の吸着機能をも
っているため、これにより発生する臭素分子が電極表面
上にわずかながら保持される事による。例えばカーボン
プラスチック電極表面に熱圧着した活性炭繊維(東洋紡
製CF−303)においては電流密度20 mA/cm
2で3 mol/Ilの臭化亜鉛溶液で充電した場合約
1時間、つまり20 mAh/cm2までは電解液は無
色透明で臭素が電解液中へ析出せず保持されるが、それ
以上になると、電解液が赤褐色化して、臭素保持が不可
能になることを示す。この程度の保持力だと電池容量と
しても少なく、電気自動車や、電力貯蔵用電池としての
電極としては不十分である。従ってとくに、電気自動車
のようなコンパクトで高性能を要求される電池において
も、ポンプや配管やタンク等を使用しなければならず大
きなネックとなる問題点である。
D5 Problems to be Solved by the Invention Many positive electrodes for zinc and bromine batteries as described above have been studied in the past, and carbon plastic electrodes are currently the mainstream. This is a product made by adding carbon powder to polyolefin resin to give it electrical conductivity, kneading and molding it. This electrode surface is subjected to activation treatment to facilitate bromine generation (oxidation reaction) during charging, and to increase the reaction area with the bromine active material and facilitate reduction reaction during discharging. Bromine generated during charging during such activation treatment immediately migrates into the electrolyte and circulates together with the electrolyte. This means that the electrode and the active treatment surface on the electrode surface do not have the function of retaining the generated bromine. However, this retention function exists only slightly on conventional activated surfaces. This is because the carbon black powder or activated carbon powder has a slight adsorption function due to the normal activation treatment, so that a small amount of the bromine molecules generated thereby are retained on the electrode surface. For example, in the case of activated carbon fiber (CF-303 manufactured by Toyobo Co., Ltd.) bonded by thermocompression to the surface of a carbon plastic electrode, the current density is 20 mA/cm.
When charging with a 3 mol/Il zinc bromide solution at 2, the electrolyte is colorless and transparent for about 1 hour, that is, up to 20 mAh/cm2, and bromine is retained without being precipitated into the electrolyte. , indicating that the electrolyte becomes reddish-brown and bromine retention becomes impossible. With this level of holding power, the battery capacity is also small, making it insufficient as an electrode for electric vehicles or power storage batteries. Therefore, even in batteries that are required to be compact and have high performance, such as those used in electric vehicles, pumps, piping, tanks, etc. must be used, which is a major problem.

E0問題点を解決するための手段 この発明は以上の問題点を解決するためになされたもの
で、電極の母体である高分子化合物に、陽イオン交換性
をもつイオン交換体とカーボンブラックなどの導電物の
ほか、抽出物と親水性付与剤を添加混練して電極を形成
したもので、充電特電極表面で発生した臭素活物質が電
極に保持されるとともに、放電時にはこれを活物質とし
て利用し得るような臭素保持力を飛躍的に高めた臭素吸
叡電極の製造方法であり、上記のような応用分野に十分
使用できるものである。
Means for Solving the E0 Problem This invention was made to solve the above problems, and includes an ion exchanger having cation exchange properties and carbon black etc. in the polymer compound that is the base material of the electrode. Electrodes are formed by adding and kneading extracts and hydrophilic agents in addition to conductive materials.The bromine active material generated on the surface of the special charging electrode is retained in the electrode, and is used as an active material during discharge. This is a method for producing a bromine-absorbing electrode that has dramatically increased bromine retention, and can be fully used in the above-mentioned application fields.

F0作用 この発明において、イオン交換性を付与するために用い
たイオン交換樹脂は、スルホン酸基(−SO3−H”)
をもつポリビニルアルコールの陽イオン交換体であり、
このポリビニルアルコール粉末と、導電性を与えるカー
ボンブラックの粉末を混合し、電極母体をなす高分子化
合物である熱可塑性樹脂すなわちポリエチレン粉末と混
練してシート化したプラスチック電極は実験の結果臭素
をよく吸収する特性を有することが判明している。
F0 effect In this invention, the ion exchange resin used to impart ion exchange properties has a sulfonic acid group (-SO3-H")
It is a cation exchanger of polyvinyl alcohol with
Experiments have shown that this plastic electrode is made by mixing this polyvinyl alcohol powder with carbon black powder, which provides conductivity, and kneading it with a thermoplastic resin (polyethylene powder), which is a polymeric compound that forms the electrode base, to form a sheet that absorbs bromine well. It has been found that it has the following properties.

とくに、本電池の正極面上で充電時に発生する臭素分子
(s rz)を電極中に存在する陽イオン交換樹脂微粉
末が直ちにトラップし、電解液中に溶比させないことが
確認されている。
In particular, it has been confirmed that the cation exchange resin fine powder present in the electrode immediately traps bromine molecules (s rz) generated on the positive electrode surface of the battery during charging, and does not dissolve them into the electrolyte.

しかし、より詳細な化学的根拠は不明であるが、この陽
イオン交換微粉末が、臭素を吸収すると赤色化する事が
観察された。また、この微粉末を含む上記の電極に臭素
を含ませ、あるいは後述する電池の充放電過程の中で、
充電後この電極を取り出し、約60〜80℃程度に加熱
すると、電極表面から臭素が放出される様子が顕微鏡下
で観察されている。
However, although the detailed chemical basis is unknown, it was observed that this cation exchange fine powder turned red when absorbing bromine. In addition, by impregnating the above-mentioned electrode containing this fine powder with bromine, or during the charging and discharging process of the battery described below,
After charging, the electrode is taken out and heated to about 60 to 80°C, and the release of bromine from the electrode surface is observed under a microscope.

以上のほか、本発明で用いた添加物のうち、抽出物には
ジオクチルフタレートを用いるが、これはシート成形後
に溶剤で抽出除去し、電極の多孔化を行なうものである
。さらに、シリカ又はアルミナ粉末は母体である高分子
化合物とイオン交換性粉末とが均一に抽出物に濡れるよ
うに親水性を付与するものである。
In addition to the above, among the additives used in the present invention, dioctyl phthalate is used as an extract, which is extracted and removed with a solvent after sheet forming to make the electrode porous. Furthermore, the silica or alumina powder imparts hydrophilicity so that the parent polymer compound and the ion exchange powder are uniformly wetted by the extract.

G0発明の実施例 はじめに、本発明による電極用シートであるカーボンプ
ラスチック電極の製法と材料など予備実験で得た条件に
ついて説明する。
G0 Example of the Invention First, the conditions obtained in preliminary experiments, such as the manufacturing method and materials of the carbon plastic electrode, which is the electrode sheet according to the present invention, will be explained.

本シートは高分子化合物と、導電性付与用にカーボンブ
ラックと、イオン交換性付与にイオン交換樹脂粉末とさ
らに多孔性付与のための形成物質つまり抽出物と、親木
性を増すための無機塩を混練し、成形後に上記多孔質形
成物質をシート中より除去し、イオン交換性を供与した
多孔質導電シートを製造した。
This sheet contains a polymer compound, carbon black to impart conductivity, ion exchange resin powder to impart ion exchange properties, a forming substance or extract to impart porosity, and an inorganic salt to increase wood affinity. After kneading and molding, the porous forming substance was removed from the sheet to produce a porous conductive sheet having ion exchange properties.

成形方法は、一般的なカレンダーロール、コンプレッシ
ョン法、インジェクション法、押出機による成形法が用
いられる。高分子化合物としては、ポリオレフィン系、
ポリアミド系、ポリイミド系がある。一般的で安価とい
う意味ではポリオレフィン系が良い。特に本目的の電池
に使用する場合に於ては、耐薬品性も要求されるため、
ポリエチレンが最良である。またシートに多孔性を与え
る抽出物としては、親油性のものは、石油オイル、ジオ
クチルフタレートがあり、親水性のものは、ポリビニル
アルコールや無機塩としては、塩化カリウム、塩化ナト
リウム、シリカ、アルミナ粉末が一般的である。
As the molding method, a general calender roll method, compression method, injection method, or molding method using an extruder is used. Examples of polymer compounds include polyolefins,
There are polyamide and polyimide types. Polyolefins are good because they are common and inexpensive. Especially when used in batteries for this purpose, chemical resistance is also required.
Polyethylene is best. Lipophilic extracts that give porosity to the sheet include petroleum oil and dioctyl phthalate, hydrophilic extracts such as polyvinyl alcohol, and inorganic salts such as potassium chloride, sodium chloride, silica, and alumina powder. is common.

また、イオン交換性粉末としては、高分子母体としてス
チレンとジビニルベンゼンとの共重合体が一般的である
。最近ポリビニルアルコールを高分子母体としたイオン
交換樹脂もある。
Further, as an ion exchange powder, a copolymer of styrene and divinylbenzene is generally used as a polymer base. Recently, there are also ion exchange resins that use polyvinyl alcohol as a polymer matrix.

そこで、本電極の基シートである高分子化合物100重
量部に対して、イオン交換体粉末は10〜90重量部が
シートの強度から好ましい。
Therefore, from the viewpoint of the strength of the sheet, it is preferable that the ion exchanger powder be used in an amount of 10 to 90 parts by weight based on 100 parts by weight of the polymer compound that is the base sheet of the present electrode.

ただし、本電極にイオン交換能力をさらに高めたい場合
は90重量部以上でもよいし、該能力が低くてもよい場
合には、10重量部以下でもよい。
However, if it is desired to further increase the ion exchange ability of the electrode, the amount may be 90 parts by weight or more, and if the ability is acceptable to be low, the amount may be 10 parts by weight or less.

一般にイオン交換樹脂のイオン交換能力を判定すル場合
に“イオン交換容量”が使われている。本電極のイオン
交換容量を増加させて、本シートの臭素吸収能力を高め
るためには、イオン交換樹脂粉末の添加量を増大させれ
ばよい。
Generally, "ion exchange capacity" is used to judge the ion exchange ability of an ion exchange resin. In order to increase the ion exchange capacity of this electrode and the bromine absorption capacity of this sheet, it is sufficient to increase the amount of ion exchange resin powder added.

また、抽出物の量は20〜50重量部であることが好ま
しい。そして、この抽出物量は高分子物質とイオン交換
性粉末とが均一に抽出物に濡れることが好ましい。また
、この添、加量によって多孔部分の量を調節することが
できる。多孔部分を増加させようとすれば、抽出物の添
加量を増加させればよいが、150重量部以上では、シ
ートの機J的強度が低下するし、20重量部以下である
と、上記構成原料を均一に濡らすのに不足することがわ
かフた。
Moreover, it is preferable that the amount of extract is 20 to 50 parts by weight. It is preferable that the amount of the extract is such that the polymer substance and the ion exchange powder are uniformly wetted with the extract. Further, the amount of porous portion can be adjusted by this addition. If you want to increase the porous area, you can increase the amount of extract added, but if it is more than 150 parts by weight, the mechanical strength of the sheet will decrease, and if it is less than 20 parts by weight, the above structure It was found that it was insufficient to wet the raw materials uniformly.

このほか、導電性付与のためのカーボンブラッりについ
ては、導電性を上げる場合は添加量を増大させればよい
が、通常は30〜90重量部の範囲で添加される。また
、上記のイオン交換樹脂粉末で若干の親水性をもってい
るが、さらに親水性を増大するために、無機物のシリカ
(Si O2)又はアルミナ(Aj220.)の粉末を
30〜50重量部で添加すればよいことがわかった。
In addition, regarding carbon brazing for imparting conductivity, the amount added may be increased to increase conductivity, but it is usually added in a range of 30 to 90 parts by weight. In addition, although the above ion exchange resin powder has some hydrophilicity, in order to further increase the hydrophilicity, 30 to 50 parts by weight of inorganic silica (SiO2) or alumina (Aj220.) powder may be added. It turned out to be a good thing.

実施例: 上記のような予備実験の結果にもとづいて、イオン交換
性をもつ多孔質の臭素吸収電極を作製した。すなわち、
密度が0.96g/c+n3、MFR(フローインデッ
クス) 0.80g/l 0m1nのポリエチレン10
0重量部に対し、イオン交換樹脂粉末にチビKK製、イ
オン交換容量3.6meq/gのもの)とカーボンブラ
ック(ライオンアクゾKK製、商標:ケッチェンEC)
をそれぞれ50重量部添加し、さらにシリカ粉末50重
量部を加えて均一に乾燥混合した。この混合物に、ポリ
エチレン100重量部に対して、抽出物としてのジオク
チルフタレートを100重量部の重量混合比率で、バン
バリーミキサ−やニーダ−などにより混練した。この混
練物をカレンダ成形によって厚さ1 mmのシートに成
形した。この成形シートを有機溶媒トリクロルエチレン
によって上記抽出物ジオクチルフタレートを抽出し、多
孔化した電極シートを形成した。
Example: Based on the results of the preliminary experiments as described above, a porous bromine absorption electrode with ion exchange properties was produced. That is,
Polyethylene 10 with density 0.96g/c+n3, MFR (flow index) 0.80g/l 0mln
0 parts by weight, ion exchange resin powder manufactured by Chibi KK, ion exchange capacity 3.6 meq/g) and carbon black (manufactured by Lion Akzo KK, trademark: Ketjen EC)
50 parts by weight of each were added, and further 50 parts by weight of silica powder were added and uniformly mixed by drying. This mixture was kneaded with a Banbury mixer, a kneader, etc. at a mixing ratio of 100 parts by weight of dioctyl phthalate as an extract to 100 parts by weight of polyethylene. This kneaded material was formed into a sheet with a thickness of 1 mm by calendering. The above-mentioned extract dioctyl phthalate was extracted from this molded sheet using an organic solvent trichlorethylene to form a porous electrode sheet.

上記のようにして得たイオン交換性多孔質シートの比表
面積は600II12/gで、イオン交換容量は1、O
meq/gである。また、この電極シートの電気抵抗値
は1 mm厚のシートで0.370Ωであった。また、
このシートの臭素の吸収能力を調べた所、1 cmx 
1 cmx 1 mm厚のもので、約0.5gの臭素の
吸収を確認した。
The specific surface area of the ion-exchangeable porous sheet obtained as described above is 600II12/g, the ion-exchange capacity is 1, O
meq/g. Further, the electrical resistance value of this electrode sheet was 0.370Ω for a 1 mm thick sheet. Also,
When I investigated the bromine absorption capacity of this sheet, it was found that 1 cmx
It was confirmed that about 0.5 g of bromine was absorbed by a 1 cm x 1 mm thick piece.

H1発明の効果 この発明は以上説明したとおり、亜鉛−臭素電池などで
使用される正極用のカーボンプラスチック電極として、
高分子化合物の母体に、イオン交換樹脂と抽出物および
カーボンブラックを混練し、これに抽出物除去の処理を
行なうことによって、イオン交換性をもつ多孔質電極を
構成したので、臭素吸収能の高い電極を得ることができ
た。
H1 Effects of the invention As explained above, this invention can be used as a carbon plastic electrode for positive electrodes used in zinc-bromine batteries, etc.
A porous electrode with ion-exchange properties was constructed by kneading ion-exchange resin, extracts, and carbon black into a matrix of polymeric compounds, and then treating this to remove the extracts. I was able to obtain the electrode.

このため、電池の運転における充電時に正極表面に発生
する臭素活物質を電極内に吸収保持し、放電時にこれを
活物質として利用できるので、電解液のタンクおよび配
管系と切り放して電池を使用できるため電気自動車への
搭載容積を小きくすることができる。
For this reason, the bromine active material generated on the surface of the positive electrode during charging during battery operation can be absorbed and retained within the electrode and used as an active material during discharge, allowing the battery to be used separately from the electrolyte tank and piping system. Therefore, the mounting volume on an electric vehicle can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解液種環形亜鉛−臭素電池の動作原理説明図
である。
FIG. 1 is an explanatory diagram of the operating principle of an annular zinc-bromine battery using an electrolytic solution.

Claims (4)

【特許請求の範囲】[Claims] (1)高分子化合物を母体とする金属−ハロゲン電池用
の電極において、上記高分子化合物100重量部に対し
、陽イオン交換基をもつイオン交換体粉末を10〜90
重量部、抽出物を20〜150重量部、カーボンブラッ
クを30〜90重量部及び親水性付与剤粉末を30〜5
0重量部を添加して混練成形したのち多孔質処理してな
り、該多孔質電極が臭素活物質の吸収能を備えたことを
特徴とする臭素吸収電極の製造方法。
(1) In an electrode for a metal-halogen battery using a polymer compound as a matrix, 10 to 90 parts of ion exchanger powder having a cation exchange group is added to 100 parts by weight of the polymer compound.
parts by weight, 20 to 150 parts by weight of extract, 30 to 90 parts by weight of carbon black, and 30 to 5 parts by weight of hydrophilicity imparting agent powder.
1. A method for producing a bromine-absorbing electrode, which comprises adding 0 parts by weight of the bromine-absorbing electrode, kneading and forming the bromine-absorbing electrode, and then subjecting the porous electrode to a porous treatment so that the porous electrode has the ability to absorb a bromine active material.
(2)上記高分子化合物は熱可塑性樹脂のポリエチレン
である特許請求の範囲第1項記載の電極の製造方法。
(2) The method for manufacturing an electrode according to claim 1, wherein the polymer compound is polyethylene, which is a thermoplastic resin.
(3)上記陽イオン交換基はスルホン酸基である特許請
求の範囲第1項記載の電極の製造方法。
(3) The method for producing an electrode according to claim 1, wherein the cation exchange group is a sulfonic acid group.
(4)上記親水性付与剤粉末はシリカ及びアルミナのい
ずれかの粉末である特許請求の範囲第1項記載の電極の
製造方法。
(4) The method for manufacturing an electrode according to claim 1, wherein the hydrophilicity imparting agent powder is either silica or alumina powder.
JP61292602A 1986-12-10 1986-12-10 Manufacture of bromine absorbing electrode Granted JPS63148559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292602A JPS63148559A (en) 1986-12-10 1986-12-10 Manufacture of bromine absorbing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292602A JPS63148559A (en) 1986-12-10 1986-12-10 Manufacture of bromine absorbing electrode

Publications (2)

Publication Number Publication Date
JPS63148559A true JPS63148559A (en) 1988-06-21
JPH0559551B2 JPH0559551B2 (en) 1993-08-31

Family

ID=17783912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292602A Granted JPS63148559A (en) 1986-12-10 1986-12-10 Manufacture of bromine absorbing electrode

Country Status (1)

Country Link
JP (1) JPS63148559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823072B2 (en) * 2004-11-09 2011-11-24 株式会社ミツバ Wiper blade
US9707932B2 (en) 2014-03-12 2017-07-18 Kbws Corporation Wiper blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823072B2 (en) * 2004-11-09 2011-11-24 株式会社ミツバ Wiper blade
US9707932B2 (en) 2014-03-12 2017-07-18 Kbws Corporation Wiper blade

Also Published As

Publication number Publication date
JPH0559551B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
US5643689A (en) Non-liquid proton conductors for use in electrochemical systems under ambient conditions
US7951494B2 (en) Solid electrolyte with high ion-conductivity and method for manufacturing the same, and electrochemical system using solid electrolyte
US20230253600A1 (en) Composite membranes for flow batteries
JPH09508487A (en) Solid state electrochemical battery
US3573105A (en) Rechargeable non-aqueous alkalimetal-halogen electrochemical cells
JPH09251857A (en) Solid ion conductor
Jana et al. Separator membranes for high energy‐density batteries
CN108777281B (en) Preparation method of lithium ion battery composite diaphragm
JPH06260183A (en) Diaphragm for aqueous solvent electrochemical device and battery with aqueous solvent using same
Lin et al. Research Progress of Zinc Bromine Flow Battery.
JPS63148559A (en) Manufacture of bromine absorbing electrode
US4034144A (en) Separator for secondary alkaline batteries
JP3261425B2 (en) Solid ionic conductor
US4824743A (en) Secondary battery with ion-exchange porous membrane
JPH0765624A (en) Proton conductive thin film electrolyte
EP0347910B1 (en) A thin ribbonlike flexible rechargeable zinc/halide cell
JPS62226580A (en) Redox flow battery
CN101271966A (en) Production method of modified septum for lithium ion battery
CN111512481A (en) Electrode for redox flow battery and redox flow battery
JP3003167B2 (en) Positive electrode of metal halogen battery
CN112117487B (en) Electrolyte material, preparation method thereof, solid electrolyte and battery
US3558364A (en) Leak-proof galvanic cell employing granular anion exchange compound separator
JPS6119056A (en) Separator for battery
JPS62232855A (en) Iodine battery
KR20020029295A (en) Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees