JPS63148181A - Variation system for source voltage - Google Patents

Variation system for source voltage

Info

Publication number
JPS63148181A
JPS63148181A JP61295522A JP29552286A JPS63148181A JP S63148181 A JPS63148181 A JP S63148181A JP 61295522 A JP61295522 A JP 61295522A JP 29552286 A JP29552286 A JP 29552286A JP S63148181 A JPS63148181 A JP S63148181A
Authority
JP
Japan
Prior art keywords
voltage
resistors
power supply
resistor
voltage dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61295522A
Other languages
Japanese (ja)
Inventor
Shunji Shimada
俊次 島田
Akitaka Minagawa
彰孝 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61295522A priority Critical patent/JPS63148181A/en
Publication of JPS63148181A publication Critical patent/JPS63148181A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To conduct a voltage variation test automatically with a control command by providing two resistors connected in parallel to two voltage dividing resistors which set a source voltage and an opening/closing means which opens and closes said connection between said two resistors. CONSTITUTION:The resistors R3 and R4 equipped with opening/closing means Q1 and Q2 are connected to the voltage dividing resistors R1 and R2 for voltage adjustment in parallel. Those opening/closing means Q1 and Q2 are brought under the on/off control of, for example, a processor to vary a voltage division ratio, thereby obtaining a prescribed voltage which is varied. Thus, a voltage setting means is provided to a test program, etc., to conduct a test regarding variation in source voltage automatically. Further, there are a resistor which divides an output voltage and a resistor which divides a reference voltage as the voltage dividing resistors for setting the output voltage and they can be applied to any voltage dividing resistor.

Description

【発明の詳細な説明】 〔概要〕 電源電圧調整用の分圧抵抗器にそれぞれ並列に抵抗器を
接続するとともに該抵抗器の接続を開閉制御し、分圧比
を変えて電源電圧を変動する方式〔産業上の利用分野〕 本発明は電源電圧を変動させる変動方式の改良に関する
[Detailed Description of the Invention] [Summary] A method in which resistors are connected in parallel to voltage dividing resistors for power supply voltage adjustment, and the connection of the resistors is controlled to open and close, thereby changing the voltage division ratio to vary the power supply voltage. [Industrial Application Field] The present invention relates to an improvement in a variation method for varying power supply voltage.

装置の環境試験、例えば低温試験等では動作電圧の上下
限で各部の試験が行われるが、電源電圧を温度槽外から
設定できないと試験に時間がかかる。
In environmental tests of equipment, such as low-temperature tests, each part is tested at the upper and lower limits of the operating voltage, but testing takes time if the power supply voltage cannot be set from outside the temperature chamber.

このため、装置組み込み型の電源では電圧調整用の端子
を温度槽外に引出ししなければならず、また電圧調整に
手間がかかるという問題点があった。
For this reason, in a device built-in power supply, the terminal for voltage adjustment must be drawn out of the temperature chamber, and there is a problem in that it takes time and effort to adjust the voltage.

特に近年では環境試験は自動化されつつあり、簡易な電
源電圧の変動方式が求められている。
Particularly in recent years, environmental tests are becoming automated, and a simple method for varying the power supply voltage is required.

〔従来の技術〕[Conventional technology]

第3図は従来の変動方式説明図である。 FIG. 3 is an explanatory diagram of a conventional variation method.

図中、1は装置内に組み込まれた電源1例えばDC−D
Cコンバータの電圧調整部であうで、QOは電圧調整用
のトランジスタ、2は基準電圧■refと出力電圧Vo
を分圧した電圧Vcとを比較する比較部、RO,R2は
固定抵抗器、VRIは可変抵抗器である。
In the figure, 1 is a power supply 1 built into the device, e.g. DC-D
In the voltage adjustment section of the C converter, QO is a transistor for voltage adjustment, and 2 is a reference voltage ref and an output voltage Vo.
RO and R2 are fixed resistors, and VRI is a variable resistor.

なお、以下ではRO+VR1をR1とし、R1とR2と
を分圧抵抗器と称する。
Note that, hereinafter, RO+VR1 will be referred to as R1, and R1 and R2 will be referred to as a voltage dividing resistor.

上記電圧調整部1において、出力電圧Voは分圧抵抗器
R1とR2との比(分注比)で決定され、可変抵抗器V
RIによって所定電圧、例えば5■に設定されるが、規
定電圧5■の他、装置の動作を保証する電圧範囲の上下
限(5,5V、4.5V)で温度試験が行われる。
In the voltage regulator 1, the output voltage Vo is determined by the ratio (dispensing ratio) between the voltage dividing resistors R1 and R2, and the output voltage Vo is determined by the ratio (dispensing ratio) between the voltage dividing resistors R1 and R2.
Although the voltage is set to a predetermined voltage, for example, 5■ by RI, a temperature test is performed at the upper and lower limits (5.5V, 4.5V) of the voltage range that guarantees the operation of the device, in addition to the specified voltage 5■.

このため、可変抵抗器VRA、VRBを図示のごとくそ
れぞれ接続して温度槽外に引出し、電圧計を見ながらそ
れぞれ調整して変動している。
For this reason, the variable resistors VRA and VRB are connected as shown in the figure and pulled out of the temperature chamber, and each is adjusted and varied while checking the voltmeter.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した環境試験のための従来の電圧変動方法では
、電圧設定に時間を要するとか、手間がかかるという問
題点があった。
The conventional voltage variation method for environmental testing described above has the problem that setting the voltage takes time and effort.

本発明は、上記問題点を解決し電源電圧変動を自動化す
る簡易な電圧変動方式を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple voltage variation method that solves the above problems and automates power supply voltage variation.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的のため、本発明の電源電圧の変動方式は、第1
図本発明の原理説明図に示すように、電源電圧を設定す
る2組の分圧抵抗器(R1,R2)にそれぞれ並列に接
続する2組の抵抗器(R3,R4)と、 2組の該抵抗器(R3,R4)の前記接続をそれぞれ開
閉する開閉手段(Q1、Q2 )と、該開閉手段(Q1
、Q2 ”)をそれぞれ開閉制御する制御手段(10)
と を設けたものである。
For the above purpose, the power supply voltage variation method of the present invention uses the first
As shown in the diagram explaining the principle of the present invention, two sets of resistors (R3, R4) are connected in parallel to two sets of voltage dividing resistors (R1, R2) that set the power supply voltage, and two sets of resistors (R3, R4) are connected in parallel to each other. switching means (Q1, Q2) for respectively opening and closing the connections of the resistors (R3, R4);
, Q2'') respectively.
It has been established that

〔作用〕[Effect]

開閉手段Q1、Q2をそれぞれ備えた抵抗器R3、R4
を電圧調整用の分圧抵抗器R1,R2に並列にそれぞれ
接続する。
Resistors R3 and R4 each equipped with switching means Q1 and Q2
are connected in parallel to voltage-adjusting voltage dividing resistors R1 and R2, respectively.

この開閉手段Q1、Q2を、例えばプロセッサによって
オン/オフ制御することにより、分圧比が変わり、変動
した所定の電圧が得られる。
By controlling the opening/closing means Q1, Q2 on/off, for example, by a processor, the voltage division ratio changes and a predetermined voltage that fluctuates can be obtained.

以上により、テストプログラム等に電圧設定手段を設け
ておけば、電源電圧変動に関する試験を自動的に行うこ
とができる。
As described above, if a voltage setting means is provided in a test program or the like, a test regarding power supply voltage fluctuations can be automatically performed.

なお、出力電圧を設定する分圧抵抗器として、出力電圧
を分圧するもの、基準電圧を分圧するもの等があり、い
ずれの分圧抵抗器に対しても適用できる。
Note that as voltage dividing resistors for setting the output voltage, there are those that divide the output voltage, those that divide the reference voltage, etc., and the present invention can be applied to any of the voltage dividing resistors.

〔実施例〕〔Example〕

本発明の実施例を第2図を参照しつつ説明する。 An embodiment of the present invention will be described with reference to FIG.

本実施例は出力電圧を分圧して電圧を変動する例を示す
This embodiment shows an example in which the output voltage is divided to vary the voltage.

第2図は実施例の電圧変動部ブロック図であって、 Q1、Q2はスイッチングトランジスタ(開閉手段)、 R3,R4は抵抗器であって、Q1、Q2がオンのとき
、それぞれ抵抗器R1,R2に並列に接続されるもの、 3.4はそれぞれQ1、Q2をオンオフするドライバ、 5は、図示省略したプロセッサより出力されるオンオフ
指令をセントし、対応するドライバ3゜4を駆動するI
Oボート、 であり、その細筒3図と同一符号は同一対象物を表す。
FIG. 2 is a block diagram of the voltage fluctuation section of the embodiment, in which Q1 and Q2 are switching transistors (switching means), R3 and R4 are resistors, and when Q1 and Q2 are on, the resistors R1 and R4 are turned on, respectively. Connected in parallel to R2 are drivers 3 and 4 that turn on and off Q1 and Q2, respectively; and 5 an I that receives on/off commands output from a processor (not shown) and drives the corresponding drivers 3 and 4.
O boat, and the same reference numerals as those in Figure 3 of the thin tube represent the same objects.

なお、制御手段10は、IOポート5および図示省略し
たプロセッサに対応する。
Note that the control means 10 corresponds to the IO port 5 and a processor (not shown).

以上の構成において、抵抗器R3の抵抗値r3は、Ql
がオン且つQ2がオフのとき、出力電圧VOが4.5V
に設定されるように選択され、抵抗器R4の抵抗値r4
は、Qlがオフ且つQ2がオンのとき出力電圧■0が5
゜5■に設定されるように選択される。即ち、 Q1オン Q2オフ  4.5V Q1オフ Q2オフ  5.0V Q1オフ Q2オン  5.5V である。
In the above configuration, the resistance value r3 of the resistor R3 is Ql
is on and Q2 is off, the output voltage VO is 4.5V
and the resistance value r4 of resistor R4 is selected to be set to .
is, when Ql is off and Q2 is on, the output voltage ■0 is 5
It is selected to be set to ゜5■. That is, Q1 on Q2 off 4.5V Q1 off Q2 off 5.0V Q1 off Q2 on 5.5V.

上記Q1、Q2のオンオフ制御は、IOボート5の対応
するビットにオンオフ指令(“1”または“0”)を図
示省略したプロセッサより書込むことにより制御される
The on/off control of Q1 and Q2 is controlled by writing an on/off command (“1” or “0”) to the corresponding bit of the IO boat 5 from a processor (not shown).

このため、例えば温度試験を行うテストプログラムの初
期設定に電圧設定手段、即ちIOポート5への書込み手
段を設けておくと、自動的に電源電圧が設定され、規定
電圧、上下限電圧におけるテストを自動的に実施するこ
とができる。
For this reason, for example, if a voltage setting means, that is, a writing means to the IO port 5 is provided in the initial settings of a test program that performs a temperature test, the power supply voltage will be automatically set, and the test at the specified voltage and upper and lower limit voltages will be performed. It can be performed automatically.

なお、通常動作では電源投入時にIOボート5がリセッ
トされてQ1、Q2はオフ状態であり、R1およびR2
によって5Vに設定されて動作する。
Note that in normal operation, the IO boat 5 is reset when the power is turned on, Q1 and Q2 are in the off state, and R1 and R2 are in the off state.
It operates by setting it to 5V.

また、前述したように電圧設定用として基準電圧を分圧
する方法等があり、本実施例に限るものではない。
Further, as described above, there are methods of dividing the reference voltage for voltage setting, and the method is not limited to this embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明は、制御指令によって自動的に電圧を変動する方
式を提供するものであるから、環境試験等における効果
は極めて多大である。
Since the present invention provides a method for automatically varying the voltage according to control commands, the present invention is extremely effective in environmental tests and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は実施例の電圧変動部ブロック図、第3図は従来
の変動方式説明図、 である。図中、 RO,R2は固定抵抗器で、R1,R2は分圧抵抗器、 R3,R4は抵抗器、 VRI、VRA、VRBは可変抵抗器、Q1、Q2はス
イッチングトランジスタ(開閉手段)、 1は電圧調整部、   2は比較部、 3.4はドライバ、   5は■0ポート、未発H目の
涼工里−茎〈ら任H「4 不1 閥 爽屓に伊[の蔽厘’!−!ffei’Pブ旨・ソ7図−
第2@
FIG. 1 is a diagram illustrating the principle of the present invention, FIG. 2 is a block diagram of a voltage variation section of an embodiment, and FIG. 3 is a diagram illustrating a conventional variation method. In the figure, RO and R2 are fixed resistors, R1 and R2 are voltage dividing resistors, R3 and R4 are resistors, VRI, VRA and VRB are variable resistors, Q1 and Q2 are switching transistors (switching means), 1 is the voltage adjustment section, 2 is the comparison section, 3.4 is the driver, 5 is ■0 port, !-!ffei'P buji・So7 figure-
2nd @

Claims (1)

【特許請求の範囲】 電源電圧を設定する2組の分圧抵抗器(R1、R2)を
備える電圧調整部(1)において、 2組の該分圧抵抗器(R1、R2)にそれぞれ並列に接
続する2組の抵抗器(R3、R4)と、2組の該抵抗器
(R3、R4)の前記接続をそれぞれ開閉する開閉手段
(Q1、Q2)と、 該開閉手段(Q1、Q2)をそれぞれ開閉制御する制御
手段(10)と を設け、2組の該抵抗器(R3、R4)をそれぞれ分圧
抵抗器(R1、R2)に接続制御して電源電圧を変動せ
しめることを特徴とする電源電圧の変動方式。
[Claims] In a voltage adjustment unit (1) that includes two sets of voltage dividing resistors (R1, R2) for setting a power supply voltage, each of the two sets of voltage dividing resistors (R1, R2) has a two sets of resistors (R3, R4) to be connected; switching means (Q1, Q2) for respectively opening and closing the connection of the two sets of resistors (R3, R4); and the switching means (Q1, Q2). A control means (10) for respectively controlling opening and closing is provided, and the two sets of resistors (R3, R4) are connected and controlled to respective voltage dividing resistors (R1, R2) to vary the power supply voltage. Power supply voltage variation method.
JP61295522A 1986-12-10 1986-12-10 Variation system for source voltage Pending JPS63148181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61295522A JPS63148181A (en) 1986-12-10 1986-12-10 Variation system for source voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61295522A JPS63148181A (en) 1986-12-10 1986-12-10 Variation system for source voltage

Publications (1)

Publication Number Publication Date
JPS63148181A true JPS63148181A (en) 1988-06-21

Family

ID=17821709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61295522A Pending JPS63148181A (en) 1986-12-10 1986-12-10 Variation system for source voltage

Country Status (1)

Country Link
JP (1) JPS63148181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116738A (en) * 1987-10-30 1989-05-09 Nec Corp Power unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932021A (en) * 1982-08-17 1984-02-21 Toshiba Corp Power supply output controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932021A (en) * 1982-08-17 1984-02-21 Toshiba Corp Power supply output controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116738A (en) * 1987-10-30 1989-05-09 Nec Corp Power unit

Similar Documents

Publication Publication Date Title
WO2018040497A1 (en) Gate voltage driving device, method, driving circuit and liquid crystal display panel
CN109845084B (en) Micro-stepping control circuit, control method and stepping motor system
US9291677B1 (en) Test system and method for testing electromechanical components
JPH03131051A (en) Trimming circuit
CN114937433A (en) Constant-current driving circuit, driving chip and electronic device for LED display screen
WO2019062532A1 (en) Voltage regulation system, drive circuit, display device and voltage regulation method
US6448845B2 (en) Trimmable reference generator
US4712058A (en) Active load network
JPS63148181A (en) Variation system for source voltage
US4701701A (en) Apparatus for measuring characteristics of circuit elements
CN114326893B (en) PID control system of adjustable voltage source, adjustable voltage source and image signal generator
CN114333656B (en) Power self-checking system, adjustable voltage source and image signal generator
JPH0686540A (en) Microcomputer controlled stabilized power supply circuit
JPH07280889A (en) Method of voltage margin test for device
JP2023548703A (en) Voltage calibration circuit and method
JP2021139665A (en) Current detection circuit and current detection system
KR20080083825A (en) Apparatus for measuring temperature using dual temperature sensor
KR19990007250A (en) How to adjust the current regulator
Bai et al. A Programmable High-Voltage Power Supply
JPH04329381A (en) Electronic circuit testing device and testing method
CN115309223B (en) DC voltage bias setting method, device, computer equipment and storage medium
US20060214812A1 (en) Measurement of output voltage characteristics on dynamic logic signals
CN114879795B (en) Low dropout regulator capable of realizing voltage domain output
JP7481094B2 (en) Method, control device and system for regulating coil current - Patents.com
CN117008003A (en) Circuit and test method for power module output load transient response test