JPS63148162A - Gaseous argon control device - Google Patents

Gaseous argon control device

Info

Publication number
JPS63148162A
JPS63148162A JP29541386A JP29541386A JPS63148162A JP S63148162 A JPS63148162 A JP S63148162A JP 29541386 A JP29541386 A JP 29541386A JP 29541386 A JP29541386 A JP 29541386A JP S63148162 A JPS63148162 A JP S63148162A
Authority
JP
Japan
Prior art keywords
sample
oxygen
argon
control device
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29541386A
Other languages
Japanese (ja)
Inventor
Masami Matsui
松居 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29541386A priority Critical patent/JPS63148162A/en
Publication of JPS63148162A publication Critical patent/JPS63148162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To obtain a gaseous argon control device which eliminates the need for a refrigerant with simple construction by providing a 1st means for selectively removing oxygen in a gaseous sample and 2nd means for gas- chromatographically separating argon to said device. CONSTITUTION:The sample is carried by a carrier gas to a branch pipe 2 and flows into a reaction furnace 1 and a precolumn 9 when the sample is injected to the control device after a selector valve 5 thereof is set at the 1st position. The sample flowing into the reaction furnace 1 contacts a reduced copper particulate matter 1c and only the oxygen is selectively removed while copper oxide is formed. The sample flowing into the procolumn 9 flows into a main column 6 when the selector valve 5 is changed over to the 2nd position in the stage when the measurement in a 1st analysis flow passage ends. Since the sample does not flow through the reaction furnace 1, the 2nd analysis flow passage accepts the inflow of the sample contg. the oxygen. The peak common to argon and oxygen and the peak of nitrogen are then detected. The 1st and 2nd chromatographs obtd. in such a manner are compared and the content of the oxygen in the gaseous argon is easily known.

Description

【発明の詳細な説明】 (技術分野) 本発明は、アルゴンガス中の不純成分を検出するのに適
したガスクロマトグラフ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a gas chromatograph apparatus suitable for detecting impurity components in argon gas.

(従来技術) 例えば、半導体製造工程において使用されるアルゴンガ
スの品質管理は、これに含まれている徴jlな酸素や窒
素の有無を検出することにより行なわれているが、通常
のカラムではアルゴンと酸素を分離することが不可能で
あるため、モレキュラーシーブカラムをマイナス100
℃程度に冷却したガスクロマトグラフを使用する必要が
ある。
(Prior art) For example, quality control of argon gas used in semiconductor manufacturing processes is performed by detecting the presence or absence of characteristic oxygen and nitrogen contained in the gas. Because it is impossible to separate oxygen from
It is necessary to use a gas chromatograph cooled to about ℃.

このため、カラムを低温に保持するための冷却製雪や冷
媒を必要として分析製雪の構造が複雑化や、冷媒の補給
を必要として保守に手間を要するという問題があった。
For this reason, there have been problems in that the structure of analytical snow making is complicated because it requires cooling snow making and a refrigerant to keep the column at a low temperature, and it requires replenishment of refrigerant, which requires time and effort for maintenance.

(目的) 本発明はこのような問題に鏡でなされたものであって、
その目的とするところは簡単な構造で、しかも冷媒を不
要とした新規なアルゴンガス管理装置を提供すること(
こある。
(Purpose) The present invention has been made to solve these problems,
The purpose is to provide a new argon gas management device that has a simple structure and does not require a refrigerant.
There it is.

(発明の概要) すなわち、本発明が特徴とするところは、試料自体のク
ロマトグラムと酸化反応炉を通過させたときのクロマト
グラムを得るようにした点にある。
(Summary of the Invention) That is, the present invention is characterized in that a chromatogram of the sample itself and a chromatogram of the sample when it passes through an oxidation reactor are obtained.

(実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は、本発明の一実施例を示すものであって、図中
符号1は、酸化反応炉で、ヒータ1aにより加熱を受け
る容器]bに還元銅粒子1cを収容して構成され、一端
は分岐管2を介して試料注入口3に、他端はダミーカラ
ム4を介して切換弁5に接続されでいる。6は、モレキ
ュラシーブ力ラムからなるメインカラムで、一端は切換
弁5に、他端は検出器8に接続されでいる。一方、試料
注入口3側の分岐管2の他方の排出口にはプレカラム9
を介して切換弁5に、ざらに抵抗管10を経由して大気
開放口1]に接続されている。この切換弁5は、第1の
位置に設定されたとき、反応炉1− ダミーカラム4−
 メインカラム6に至る第1分析流路と、プレカラム9
− 抵抗管10に至る排気流路を形成し、また第2の位
置に設定されたときには反応炉] −抵抗管10に至る
排気流路と、プレカラム9− メインカラム6に至る第
2分析流路を形成するよう(こ管路接続されている。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 denotes an oxidation reactor, which is constructed by accommodating reduced copper particles 1c in a container]b which is heated by a heater 1a. One end is connected to a sample injection port 3 via a branch pipe 2, and the other end is connected to a switching valve 5 via a dummy column 4. 6 is a main column consisting of a molecular sieve force ram, one end of which is connected to the switching valve 5, and the other end connected to the detector 8. On the other hand, the other outlet of the branch pipe 2 on the side of the sample injection port 3 has a precolumn 9.
It is connected to the switching valve 5 via the directional control valve 5, and to the atmosphere opening 1 via the resistance pipe 10. When this switching valve 5 is set to the first position, the reactor 1 - dummy column 4 -
The first analysis channel leading to the main column 6 and the pre-column 9
- Forming an exhaust flow path leading to the resistance tube 10 and, when set in the second position, the reactor] - An exhaust flow path leading to the resistance tube 10 and the pre-column 9 - A second analysis flow path leading to the main column 6 (This conduit is connected to form a

この実施例においで、切換弁5を第1の位置(図中 実
線)に設定して試料を注入すると、試料は、キャリアガ
スによつ分岐管2に運ばれ、ここで等分に分流して反応
炉1とプレカラム9に流入する0反応炉1に流入した試
料は、ここに収容されでいる還元銅粉粒体1cに接触し
て、還元銅1cを酸化鋼としつつ酸素だけを選択的に除
去され、ついで切換弁5を通ってメインカラム6に流入
する。言うまでもなく、モレキュラシーブ力ラム6は、
常温においてもアルゴンと窒素を確実に分離するから、
検出器8はアルゴンと窒素をそれぞれ独立のビークとし
て検出することになる。
In this example, when the switching valve 5 is set to the first position (solid line in the figure) and the sample is injected, the sample is carried by the carrier gas to the branch pipe 2, where it is divided into equal parts. The sample that has flowed into the reactor 1 and the pre-column 9 comes into contact with the reduced copper powder 1c housed here, and selectively removes only oxygen while converting the reduced copper 1c into oxidized steel. It then flows into the main column 6 through the switching valve 5. Needless to say, Molecular Sieve Power Ram 6,
Because it reliably separates argon and nitrogen even at room temperature,
The detector 8 detects argon and nitrogen as independent beaks.

一方、プレカラム9側に流入した試料は、抵抗管10を
通って大気開放口]1がら大気中に排気される。
On the other hand, the sample that has flowed into the pre-column 9 side passes through the resistance tube 10 and is exhausted into the atmosphere through the atmosphere opening port]1.

このようにして第1分析流路での測定か終了した段階で
切換弁5を第2の位置に切換えると、プレカラム9に流
入している試料は、切換弁5を介してメインカラム6に
流入する。なお、この切換弁5の操作時においでは、第
1分析流路、及び第2分析流路、つまり反応炉1− ダ
ミーカラム4− メインカラム6に至る流路と、プレカ
ラム9− メインカラム6に至る流路は、その流路抵抗
が同一となるように構成されているから、分析に対象と
なる試料量が同一となるばかりでなく、検出器8に対す
る圧力衝撃が小さくなる。
When the switching valve 5 is switched to the second position when the measurement in the first analysis channel is completed in this way, the sample flowing into the pre-column 9 flows into the main column 6 via the switching valve 5. do. In addition, when operating this switching valve 5, the first analysis flow path and the second analysis flow path, that is, the flow path leading from the reactor 1 to the dummy column 4 to the main column 6, and from the precolumn 9 to the main column 6. Since the flow paths leading to the detector 8 are configured to have the same flow path resistance, not only the amount of sample to be analyzed becomes the same, but also the pressure impact on the detector 8 is reduced.

この第2分析流路においでは、試料が反応炉1を経由し
ていないため、メインカラム6は、酸素を含んだ試料の
流入を受け、アルゴンと酸素とを未分離成分として排出
することになり、このため検出器8は、アルゴンと酸素
とを共通とするビー−りと、窒素のビークを検出するこ
とになる。
In this second analysis channel, since the sample does not pass through the reactor 1, the main column 6 receives the inflow of the sample containing oxygen and discharges argon and oxygen as unseparated components. Therefore, the detector 8 detects a beak that contains argon and oxygen in common, and a beak that contains nitrogen.

このようにして得た第1のクロマトグラムと第2のクロ
マトグラムとを比較し、アルゴンのリテンションタイム
に一敗するビークの差分を求めることにより、アルゴン
ガスに含まれている酸素の量を知ることができる。
By comparing the first chromatogram and the second chromatogram obtained in this way and finding the difference in the peak that completely exceeds the retention time of argon, the amount of oxygen contained in the argon gas can be determined. be able to.

[実 施 例] 酸素、アルゴン、及び窒素をそれぞれ体積比で16.6
%、16.7%、66.7%ずつ混合してなる試料を用
い、まず切換弁5を第1の位置(第1図中における実線
)においで分析したところ、第2図工に示すようなアル
ゴンのリテンションタイムにおけるビークP□と、窒素
のリテンションタイムにおけるビークP2のクロマトグ
ラムを得た。ついで切換弁5を第2の位置(第1図中に
おける点線)に切換えて分析したところ第2図IIに示
すようなアルゴンのリテンションタイムにおけるビーク
P3と、窒素のリテンションタイムにおけるビークP4
のクロマトグラムを得た。 この結果、メインカラム6
により分離可能な窒素のビークP2とビークP4は、そ
の高さび弁5の切換え前後で変化がなく、これにより等
量ずつ試料が注入されていることが判明した。また反応
炉1を通過きせる前のビークP□と、反応炉)を通過さ
せた後のビークP3との差は、酸素濃度に一敗していた
[Example] Oxygen, argon, and nitrogen each at a volume ratio of 16.6
%, 16.7%, and 66.7% were analyzed with the switching valve 5 in the first position (solid line in Figure 1), and the result was as shown in Figure 2. Chromatograms of peak P□ at the argon retention time and peak P2 at the nitrogen retention time were obtained. Then, when the switching valve 5 was switched to the second position (dotted line in FIG. 1) and analyzed, a peak P3 at the argon retention time and a peak P4 at the nitrogen retention time were found as shown in FIG. 2 II.
A chromatogram was obtained. As a result, main column 6
It was found that the height of the nitrogen beaks P2 and P4 that can be separated by this method does not change before and after switching the valve 5, and that the same amount of the sample is injected. Moreover, the difference between the beak P□ before passing through the reactor 1 and the beak P3 after passing through the reactor 1 was determined by the oxygen concentration.

なあ、図中符号P5は、切換弁5の操作に伴なう外乱ピ
ークを示す。
Incidentally, the symbol P5 in the figure indicates a disturbance peak accompanying the operation of the switching valve 5.

これらのことから、反応炉を通過ぎせる前後のビークp
、 、P、の差を測定することによりアルボンガス中の
酸素濃度を正確に検出できることが判明した。
From these facts, the beak p before and after passing through the reactor
It has been found that the oxygen concentration in arbon gas can be accurately detected by measuring the difference between , , and P.

第3図は、本発明の第2の実施例を示すものであって、
試料注入口3側に切換弁20を介して酸化反応炉1と、
これと同一の流路抵抗mt有する抵抗管21を接続する
一方、これら反応炉1と抵抗管2]の流出口にメインカ
ラム6を接続して流路を形成し、切換弁20を交互に切
換えて反応炉1を通過させた試料と、酸化反応工程に関
与していない試料をメインカラム6に流入させて、それ
ぞれの流路からの試料を検出器8により検出して、第2
図に示したような2つのクロマトグラムを得るようにし
たもので、この実施例によれば流路構成を簡素化するこ
とが可能となる。
FIG. 3 shows a second embodiment of the present invention,
An oxidation reactor 1 via a switching valve 20 on the sample injection port 3 side,
A resistance tube 21 having the same flow path resistance mt is connected to this, while a main column 6 is connected to the outlet of these reactor 1 and resistance tube 2 to form a flow path, and the switching valve 20 is alternately switched. The sample passed through the reactor 1 and the sample not involved in the oxidation reaction process are flowed into the main column 6, and the sample from each flow path is detected by the detector 8, and the second
Two chromatograms as shown in the figure are obtained, and according to this embodiment, it is possible to simplify the channel configuration.

第4図は、本発明の第3実施例を示すもので、試料注入
口3に直接モレキュラシーブ力ラムからなるメインカラ
ム6を接続し、これの流出口には切換弁30を介して酸
化反応炉]と、これと同一の流体抵抗を有する抵抗管2
1を接続し、ざらに切換弁318介して選択的に検出器
8に接続するように構成されている。
FIG. 4 shows a third embodiment of the present invention, in which a main column 6 consisting of a molecular sieve force ram is directly connected to the sample injection port 3, and an oxidation reactor is connected to the outlet of the main column 6 through a switching valve 30. ] and a resistance tube 2 having the same fluid resistance as this.
1 and is configured to be selectively connected to the detector 8 via a switching valve 318.

この実施例において、切換弁30.31を一方の位置、
例えば図中実線側に接続した状態で一定量の試料を注入
すると、酸素とアルゴンが未分離な状態のクロマトグラ
ムが、また切換弁を他方の位置(図中 点線)に設定し
て同量の試料を注入すると、メインカラム6では未分離
状態であった酸素とアルゴンを含む試料は、反応炉]に
おいて酸素を除去されてアルゴン単一成分としてのピー
クを持つロマトグラムを示すから、両者のクロマトグラ
ムを比較することによりアルゴン中の酸素や窒素の量を
知ることができる。
In this embodiment, the switching valve 30.31 is placed in one position.
For example, if a fixed amount of sample is injected with the connection connected to the solid line in the figure, the chromatogram will show that oxygen and argon are not separated, and if the switching valve is set to the other position (dotted line in the figure), the same amount of sample will be injected. When the sample is injected, the sample containing oxygen and argon, which were unseparated in the main column 6, has oxygen removed in the reactor and shows a chromatogram with a peak as a single component of argon, so the chromatogram of both By comparing , you can find out the amount of oxygen and nitrogen in argon.

なお、上述の実施例においては、酸化反応炉に還元銅を
、またメインカラムとしてモレキュラシーブ力ラムを使
用しているが、酸素吸着剤や、常温以上においてもアル
ゴンと窒素を分離することのできるカラムを使用すれば
同様の作用を奏することは明らかである。
In the above example, reduced copper is used in the oxidation reactor and a molecular sieve ram is used as the main column. It is clear that the same effect can be achieved by using .

(効果) 以上、説明したように本発明によれば、試料自体のクロ
マトグラムと、酸化反応炉を通過させたときのクロマト
グラムを得るようにしたので、カラムの冷却を不要とし
て構造と、保守の簡素化を図ったアルゴンガス管理装置
lを実現することができる。
(Effects) As explained above, according to the present invention, the chromatogram of the sample itself and the chromatogram of the sample when it passes through the oxidation reactor are obtained, so there is no need to cool the column and the structure and maintenance can be improved. It is possible to realize an argon gas management device l that is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置の構成図、第2図
は同上製雪による分析結果を示すクロマトグラム、第3
.4図は、それぞれ本発明の他の実施例を示す装置の構
成図である。
FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a chromatogram showing the analysis results obtained by the same snowmaking process, and FIG.
.. FIG. 4 is a block diagram of an apparatus showing other embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 試料ガス中の酸素を選択的に除去する第1の手段、少な
くともアルゴンをガスクロマトグラフ的に分離する第2
の手段、検出手段、及び前記第1の手段と第2の手段を
通過した試料を前記検出器に導く流路と、第1の手段だ
けを通過した試料を前記検出器に導く流路とを切換える
手段を備えてなるアルゴンガス管理装置。
a first means for selectively removing oxygen in the sample gas; a second means for gas chromatographically separating at least argon;
means, a detection means, a flow path for guiding the sample that has passed through the first means and the second means to the detector, and a flow path for guiding the sample that has passed only the first means to the detector. An argon gas management device comprising means for switching.
JP29541386A 1986-12-10 1986-12-10 Gaseous argon control device Pending JPS63148162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29541386A JPS63148162A (en) 1986-12-10 1986-12-10 Gaseous argon control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29541386A JPS63148162A (en) 1986-12-10 1986-12-10 Gaseous argon control device

Publications (1)

Publication Number Publication Date
JPS63148162A true JPS63148162A (en) 1988-06-21

Family

ID=17820282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29541386A Pending JPS63148162A (en) 1986-12-10 1986-12-10 Gaseous argon control device

Country Status (1)

Country Link
JP (1) JPS63148162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688815A (en) * 1992-09-07 1994-03-29 Taiyo Sanso Co Ltd Method and instrument for analyzing oxygen gas for impurity with high sensitivity
JP2000009734A (en) * 1998-06-29 2000-01-14 Hitachi Ltd Analytical equipment and analysis method using the same and reagent vessel and deoxygenation mechanism used for the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688815A (en) * 1992-09-07 1994-03-29 Taiyo Sanso Co Ltd Method and instrument for analyzing oxygen gas for impurity with high sensitivity
JP2000009734A (en) * 1998-06-29 2000-01-14 Hitachi Ltd Analytical equipment and analysis method using the same and reagent vessel and deoxygenation mechanism used for the method

Similar Documents

Publication Publication Date Title
EP0306333B1 (en) Method and apparatus for the determination of isotopic composition
EP0306332B1 (en) Method and apparatus for the determination of isotopic composition
EP0024566B1 (en) An apparatus for the analysis of oxygen, nitrogen and hydrogen contained in metals
CN104931615A (en) Device and method for analyzing trace impurities in gas
US10067100B2 (en) Method and apparatus for preconcentrating a gaseous sample
CN108414633A (en) A kind of determining instrument of micro nitrogen isotope and its application
KR100381996B1 (en) A method and an apparatus for analyzing trace impurities in gases
US4040789A (en) Use of the continuous blast furnace gas analysis for supervision and regulation of the blast furnace operation
JPS61213655A (en) Thermal analyzing instrument provided with gas chromatograph and mass spectrometer
JPS63148162A (en) Gaseous argon control device
JP3103985B2 (en) Concentration analysis method and equipment
JPH11118763A (en) Measurement of ultra-high purity gas utilizing atmospheric pressure ionization mass spectrometry
JP3097031B2 (en) Method and apparatus for analyzing impurities in gas
JPH0634616A (en) Analysis of a trace of impurities
CN114034795B (en) Method and device for separating and analyzing argon krypton-xenon full-component gas chromatography in atmosphere based on multidimensional chromatography, center cutting and reverse purging
JP4118745B2 (en) Concentration analyzer and method
CN113219108A (en) Gas chromatograph
JPH0755780A (en) High sensitivity measuring apparatus for ultra-trace ingredient in various gas by gas chromatograph
GB2370517A (en) Gas chromatography-mass spectrometer having different length chromatography columns
JP2528723B2 (en) Analyzer for hydrogen in samples
JP2800621B2 (en) Gas chromatograph
SU935784A1 (en) Gas chromatograph
CN118707011A (en) Multichannel chromatographic enrichment system and analysis method
JPH0432981B2 (en)
JPH04359149A (en) Method and device for analyzing thermal decomposition product