JPS63148001A - Operation control method of fluidized bed boiler - Google Patents

Operation control method of fluidized bed boiler

Info

Publication number
JPS63148001A
JPS63148001A JP29554886A JP29554886A JPS63148001A JP S63148001 A JPS63148001 A JP S63148001A JP 29554886 A JP29554886 A JP 29554886A JP 29554886 A JP29554886 A JP 29554886A JP S63148001 A JPS63148001 A JP S63148001A
Authority
JP
Japan
Prior art keywords
fluidized bed
bed boiler
fluidized
combustion chamber
distribution device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29554886A
Other languages
Japanese (ja)
Inventor
折崎 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP29554886A priority Critical patent/JPS63148001A/en
Publication of JPS63148001A publication Critical patent/JPS63148001A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は石炭等の固体燃料を流動燃焼させる流動床ボイ
ラの運転管理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for operating a fluidized bed boiler for fluidized combustion of solid fuel such as coal.

[従来の技術] 固体燃料をクラッシャにて破砕し、流動燃焼させる流動
床ボイラは、移動床式などの他の形式の石炭焚ボイラに
比べ効率のよい石炭燃焼が行な、える。第2図は従来の
流動床ボイラの構成を示す系統図であって、石炭は石炭
バンカやサイロ等からホッパ10へ投入され、スクリュ
フィーダ12からエアロツタバルブ14を経てドライヤ
16に送られ乾燥される。次いでクラッシャ18に投入
され、破砕された後、分配装置(スプリッタ)20によ
って複数の配管38に分配され、流動燃焼ボイラ本体2
2へ気流搬送される。
[Prior Art] A fluidized bed boiler that crushes solid fuel in a crusher and performs fluidized combustion can burn coal more efficiently than other types of coal-fired boilers such as a moving bed type. FIG. 2 is a system diagram showing the configuration of a conventional fluidized bed boiler, in which coal is charged into a hopper 10 from a coal bunker, silo, etc., and is sent from a screw feeder 12 through an aerostat valve 14 to a dryer 16 where it is dried. Ru. Next, it is put into the crusher 18 and crushed, and then distributed to a plurality of pipes 38 by a distribution device (splitter) 20, and the fluidized combustion boiler main body 2
The airflow is conveyed to 2.

流動燃焼ボイラ本体22はボイラ炉体24を備えており
、この炉体24の内部が空気分散板26によって上下に
区画されている。下側の室28には配管30から燃焼用
1次空気が導入されている。また、この分散板26の上
方の流動燃焼室32には流動床が形成されており、燃焼
熱は水管34に伝熱され、燃焼排ガスは一部の粉塵と共
に炉体24上部の排出口36から取り出される。この分
散板26の上方の流動床燃焼室32へ燃料粒子を供給す
るために、該燃焼室32と前記スプリッタ20とが複数
の気流搬送用配管38で接続されている。
The fluidized combustion boiler main body 22 includes a boiler furnace body 24, and the inside of this furnace body 24 is divided into upper and lower sections by an air distribution plate 26. Primary air for combustion is introduced into the lower chamber 28 from a pipe 30. A fluidized bed is formed in the fluidized combustion chamber 32 above the dispersion plate 26, combustion heat is transferred to the water pipe 34, and the combustion exhaust gas is discharged from the exhaust port 36 at the top of the furnace body 24 along with some dust. taken out. In order to supply fuel particles to the fluidized bed combustion chamber 32 above the distribution plate 26, the combustion chamber 32 and the splitter 20 are connected by a plurality of air flow conveying pipes 38.

このように構成された流動床ボイラにおいては、流動床
ボイラ本体へ所定量の石炭を供給するよう管理する必要
があるが、スプリッタ20よりも上流側の破砕装置、乾
燥装置等の乾燥、破砕設備或いはそれよりも上流側のホ
ッパ等の受入設備、スプリッタ20よりも下流側の配管
38などにおいて閉塞が生じ、流動床ボイラ本体22へ
の石炭供給量が設定量から逸脱することがある。
In a fluidized bed boiler configured in this way, it is necessary to manage the supply of a predetermined amount of coal to the fluidized bed boiler main body, but drying and crushing equipment such as a crushing device and a drying device upstream of the splitter 20 must be controlled. Alternatively, blockage may occur in receiving equipment such as a hopper on the upstream side, or in the piping 38 on the downstream side of the splitter 20, and the amount of coal supplied to the fluidized bed boiler body 22 may deviate from the set amount.

従来、このような石炭供給量が設定値から逸脱する現象
は、流動床ボイラ本体22の燃焼温度や燃焼排ガス中の
02などで検知するようにしている。
Conventionally, such a phenomenon in which the amount of coal supplied deviates from a set value is detected by checking the combustion temperature of the fluidized bed boiler main body 22, 02 in the combustion exhaust gas, or the like.

[発明が解決しようとする問題点] ところが、流動床ボイラ本体における燃焼温度や燃焼排
ガス中の02濃度などによって燃料供給系統における閉
塞現象を検出する場合には、該閉塞が生じてから燃焼温
度、02濃度等の変動が表われるのに比較的長時間を要
し、閉塞検知が遅くなるという問題があった。また、そ
のため、的確なボイラ制御を行ないがたいという問題も
生じていた。
[Problems to be Solved by the Invention] However, when detecting a blockage phenomenon in the fuel supply system based on the combustion temperature in the fluidized bed boiler body, the 02 concentration in the combustion exhaust gas, etc., it is difficult to detect the combustion temperature, There was a problem in that it took a relatively long time for fluctuations in the 02 concentration etc. to appear, resulting in delayed blockage detection. Further, this also caused the problem that it was difficult to perform accurate boiler control.

[問題点を解決するための手段] 本発明の流動床ボイラの運転管理方法は、破砕された石
炭等の固体燃料を受け入れて複数本の気流搬送用分岐配
管に分配するための分配装置を有する流動床ボイラにお
いて、この分配装置内の圧力と流動燃焼室内の圧力との
差圧を検出し、この差圧が所定範囲よりも低いことを検
出することにより、分配装置への固体燃料導入量が設定
量以下であること、即ち該分配装置の入口部分或いはそ
れよりも上流側の部分にて閉塞が生じていることを検知
するものである。
[Means for Solving the Problems] The fluidized bed boiler operation management method of the present invention includes a distribution device for receiving solid fuel such as crushed coal and distributing it to a plurality of air flow conveying branch pipes. In a fluidized bed boiler, the pressure difference between the pressure inside the distribution device and the pressure inside the fluidized combustion chamber is detected, and by detecting that this pressure difference is lower than a predetermined range, the amount of solid fuel introduced into the distribution device can be adjusted. This is to detect that the amount is below a set amount, that is, that a blockage has occurred at the inlet portion of the distribution device or a portion upstream thereof.

また、本発明の流動床ボイラの運転管理方法は、この差
圧が所定範囲よりも高いことを検出することにより、分
岐配管に閉塞が生じていることを検知するものである。
Furthermore, the fluidized bed boiler operation management method of the present invention detects that the branch pipe is clogged by detecting that this differential pressure is higher than a predetermined range.

[作用] 流動床ボイラにおいては、乾燥設備や、破砕設備にて乾
燥及び破砕処理を受けた石炭等の固体燃料は、分配装置
から流動床ボイラ本体に分岐配管中を気流搬送されて供
給されるのであるが、分配装置の導入口や或いはそれよ
りも上流側の受入設備、乾燥破砕設備等で閉塞が生じた
場合には、分岐配管内を固体燃料が気流搬送されないよ
うになる。そうすると、分配装置内と流動燃焼室内との
差圧が著しく小さくなる。本発明ではこの差圧が所定範
囲よりも低くなることを検出することによって、分配装
置の導入部もしくはそれよりも上流側における閉塞現象
を検知する。
[Operation] In a fluidized bed boiler, solid fuel such as coal that has been dried and crushed in a drying facility or a crushing facility is supplied from a distribution device to the fluidized bed boiler main body by air flow through a branch pipe. However, if a blockage occurs at the inlet of the distribution device, or at the upstream receiving facility, drying and crushing facility, etc., the solid fuel will not be transported by airflow within the branch pipe. Then, the differential pressure between the distribution device and the fluidized combustion chamber becomes significantly smaller. In the present invention, by detecting that this differential pressure becomes lower than a predetermined range, a blockage phenomenon at the introduction section of the distribution device or on the upstream side thereof is detected.

また、この分岐配管内において閉塞が生じた場合には、
それだけ分配装置内と流動燃焼室内との差圧が増大する
。従って、この差圧が所定範囲よりも高くなったことを
検出することにより、該分岐配管内における閉塞現象を
検知することができる。
In addition, if a blockage occurs in this branch pipe,
The differential pressure between the distribution device and the fluidized combustion chamber increases accordingly. Therefore, by detecting that this differential pressure has become higher than a predetermined range, it is possible to detect a blockage phenomenon in the branch pipe.

しかして、このような差圧の変動は、閉塞現象の発生と
ほぼ同時に生じるものであるから、本発明によれば閉塞
の発生を迅速に検知することができる。
Since such a change in differential pressure occurs almost simultaneously with the occurrence of a blockage phenomenon, according to the present invention, the occurrence of a blockage can be quickly detected.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明を実施するに好適な装置の構成を示す系
統図である。符号40は受入設備であり、石炭等の固体
燃料(本実施例では石炭)を受け入れるためのホッパ、
このホッパから石炭を取り出すスクリュフィーダ等の供
給装置を備えている(いずれも図示せず)。符号42は
石炭の乾燥及び破砕設備であり、乾燥装置及びクラッシ
ャ等の破砕装置(図示せず)を備えて構成されている。
FIG. 1 is a system diagram showing the configuration of an apparatus suitable for carrying out the present invention. Reference numeral 40 is receiving equipment, which includes a hopper for receiving solid fuel such as coal (in this example, coal);
A feeding device such as a screw feeder for taking out coal from this hopper is provided (none of these are shown). Reference numeral 42 denotes coal drying and crushing equipment, which includes a drying device and a crushing device (not shown) such as a crusher.

符号20は前述のスプリッタであり、乾燥破砕設備42
からの破砕石炭を分岐配管38に分配供給している。こ
の分岐配管38は流動燃焼炉本体22の流動燃焼室32
に接続され、石炭粒子を気流搬送している。なお流動床
ボイラ本体22の構成は前記第2図と同様であるので、
同一部分に同一符号を付してその説明を省略する。
The reference numeral 20 is the aforementioned splitter, and the dry crushing equipment 42
The crushed coal is distributed and supplied to the branch pipe 38. This branch pipe 38 is connected to the fluidized combustion chamber 32 of the fluidized combustion furnace main body 22.
The coal particles are transported by air flow. Note that the configuration of the fluidized bed boiler main body 22 is the same as that shown in FIG. 2 above, so
Identical parts are given the same reference numerals and their explanations will be omitted.

しかして、本実施例においてスプリッタ20内の圧力と
流動燃焼室32内との差圧を検出するために差圧計44
が設置され、それぞれ配管46.48を介してスプリッ
タ20及び流動燃焼室32に接続されている。またこの
差圧計44の検出信号は信号線50を介して判定回路5
2へ出力されている。
Therefore, in this embodiment, a differential pressure gauge 44 is used to detect the differential pressure between the pressure inside the splitter 20 and the inside of the flow combustion chamber 32.
are installed and connected to the splitter 20 and the fluidized combustion chamber 32 via pipes 46 and 48, respectively. Further, the detection signal of this differential pressure gauge 44 is sent to the determination circuit 5 via a signal line 50.
It is output to 2.

このように構成された流動床ボイラにおいて、受入設備
40や乾燥破砕設備42に閉塞が生じると、スプリッタ
20から配管38を介して流動燃焼室32内へ供給され
る石炭供給が停止する。
In the fluidized bed boiler configured in this manner, if a blockage occurs in the receiving equipment 40 or the drying and crushing equipment 42, the supply of coal from the splitter 20 to the fluidized combustion chamber 32 via the pipe 38 is stopped.

そうすると、スプリッタ20内の圧力と流動燃焼室32
内の差圧が所定範囲よりも少なくなる。例えば、これを
計算値にて示すと、次の通りとなる。いま断面積21.
98crn”(呼び径50A)、長さ10mの配管内に
流速17m/seeで空気が流れているとすると、圧損
ΔPは、 ΔP= (4fpu2L)/ (2gD)= (4X 
O,005x 1.27x 172x 10)/ (2
X 9.8 X 52.9X 1O−3)=70.8m
mAq となる。一方、この配管内を固気比m=2で石炭粒子が
流れているとすると、摩擦による圧損はΔPm = (
1+am)xΔP (但し、aは輸送物の物理的性質、輸送管の内径、輸送
空気速度などによって決まる定数)にて表わされる。従
って、この配管内を石炭粒子が流れなくなると、このΔ
Pmがなくなるので、差圧はΔPのみになり、著しく減
少する。
Then, the pressure inside the splitter 20 and the flow combustion chamber 32
The differential pressure within becomes less than the predetermined range. For example, if this is expressed as a calculated value, it will be as follows. Now cross-sectional area 21.
Assuming that air is flowing at a flow rate of 17 m/see in a pipe with a diameter of 98 crn" (nominal diameter 50 A) and a length of 10 m, the pressure drop ΔP is as follows: ΔP = (4fpu2L) / (2gD) = (4X
O,005x 1.27x 172x 10)/ (2
X 9.8 X 52.9X 1O-3) = 70.8m
mAq. On the other hand, if coal particles are flowing in this pipe with a solid-air ratio m = 2, the pressure loss due to friction is ΔPm = (
1+am)xΔP (where a is a constant determined by the physical properties of the transported object, the inner diameter of the transport pipe, the transport air velocity, etc.). Therefore, when coal particles stop flowing in this pipe, this Δ
Since Pm disappears, the differential pressure becomes only ΔP, which decreases significantly.

従って、第1図の装置においてスプリッタ20の導入口
もしくはそれよりも上流側の部位にて閉塞が生じた場合
には、分岐配管38内を石炭粒子が流れなくなり、スプ
リッタ20内と流動燃焼室32内との差圧が所定範囲よ
りも低くなる。
Therefore, in the apparatus shown in FIG. 1, if a blockage occurs at the inlet of the splitter 20 or a portion upstream thereof, coal particles will no longer flow within the branch pipe 38, and the flow between the inside of the splitter 20 and the fluidized combustion chamber 32 will be reduced. The differential pressure between the inside and outside becomes lower than the predetermined range.

そして、判定回路52は、差圧計44の差圧が所定範囲
よりも低くなったことに対応して、スプリッタ導入口部
分もしくはそれよりも上流側の部位において閉塞が生じ
ていることを警報信号等として出力するのである。
Then, in response to the differential pressure of the differential pressure gauge 44 being lower than a predetermined range, the determination circuit 52 sends an alarm signal, etc. to indicate that a blockage has occurred at the splitter inlet portion or a portion upstream thereof. It is output as .

また、分岐配管38に閉塞が生じると、スプリッタ20
内の圧力と流動燃焼室32内との差圧が上昇することに
なる。例えば、配管38が15本あり、その内の1本に
閉塞が生じた場合には、スプリッタ20内の圧力と流動
燃焼室32内との圧力との差圧は、(15/14) 2
即ち約1.15倍になる。(それまでの差圧が70.8
mmAqである場合には81.3mmAqとなる)。こ
のように、少なくとも1本の配管に閉塞が生じるとそれ
だけ大きな差圧上昇がもたらされるから、この差圧上昇
を検知することにより配管38における閉塞を検出する
ことができる。(この場合、判定回路52は、差圧計4
4の検出差圧が所定範囲よりも高くなっていることを判
定すると、配管38における閉塞の警報信号を出力する
。) このように、本発明によればスプリッタ20の導入口部
分もしくはそれよりも上流側或いは分岐配管38におけ
る閉塞を検出することができる。
Furthermore, if a blockage occurs in the branch pipe 38, the splitter 20
The pressure difference between the internal pressure and the internal pressure of the fluidized combustion chamber 32 will increase. For example, if there are 15 pipes 38 and one of them becomes clogged, the pressure difference between the pressure inside the splitter 20 and the pressure inside the flow combustion chamber 32 will be (15/14) 2
That is, it becomes about 1.15 times. (The differential pressure up until then was 70.8
mmAq, it becomes 81.3 mmAq). In this way, when at least one pipe is clogged, a large differential pressure rise occurs, so by detecting this differential pressure rise, blockage in the pipe 38 can be detected. (In this case, the determination circuit 52
When it is determined that the detected differential pressure of No. 4 is higher than a predetermined range, an alarm signal indicating a blockage in the pipe 38 is output. As described above, according to the present invention, a blockage in the inlet portion of the splitter 20, the upstream side thereof, or the branch pipe 38 can be detected.

而して、前記差圧計44の差圧の変動は、上記閉塞が生
じると直ちに発生するものであるから、本発明によれば
閉塞現象を迅速に検知することが可能とされる。
Since the variation in the differential pressure of the differential pressure gauge 44 occurs immediately when the blockage occurs, according to the present invention, it is possible to quickly detect the blockage phenomenon.

なお上記実施例装置における受入設備や乾燥破砕設備は
、従来より使用されている各種設備を用いることができ
る。また、流動床ボイラ本体22の構成も従来より用い
られている種々の構成とできる。
Note that various types of conventionally used equipment can be used as the receiving equipment and drying and crushing equipment in the apparatus of the above embodiment. Furthermore, the configuration of the fluidized bed boiler main body 22 can be various configurations that have been conventionally used.

また、判定回路52としては例えば公知のマイクロコン
ピュータ等を使用できる。
Further, as the determination circuit 52, for example, a known microcomputer or the like can be used.

[発明の効果] 以上の通り、本発明によれば流動床ボイラ本体への燃料
供給系統における閉塞現象を極めて迅速に検知できる。
[Effects of the Invention] As described above, according to the present invention, a blockage phenomenon in the fuel supply system to the fluidized bed boiler main body can be detected extremely quickly.

従って、本発明によれば流動床ボイラの的確な制御を行
なうことも可能とされる。
Therefore, according to the present invention, it is also possible to accurately control a fluidized bed boiler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するに好適な装置の構成を示す系
統図、第2図は従来の流動床ボイラの構成を示す系統図
である。 10・・・ホッパ、     18・・・クラッシャ、
20・・・スプリッタ、 22・・・流動床ボイラ本体、 32・・・流動燃焼室、  38・・・分岐配管、44
・・・差圧計。 特許出願人   宇部興産株式会社 代理人   弁理士   重 野  剛第2図
FIG. 1 is a system diagram showing the configuration of an apparatus suitable for carrying out the present invention, and FIG. 2 is a system diagram showing the configuration of a conventional fluidized bed boiler. 10...Hopper, 18...Crusher,
20... Splitter, 22... Fluidized bed boiler main body, 32... Fluidized combustion chamber, 38... Branch piping, 44
...Differential pressure gauge. Patent applicant: Ube Industries Co., Ltd. Agent: Patent attorney Tsuyoshi Shigeno Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)破砕された固体燃料を受け入れて複数本の気流搬
送用の分岐配管に分配する分配装置と、これら分岐配管
が流動燃焼室に接続された流動床ボイラ本体とを有する
流動床ボイラにおいて、該分配装置内の圧力と流動燃焼
室内の圧力との差圧を検出し、この差圧が所定範囲より
も低いことを検出することにより分配装置への固体燃料
破砕物の導入量が設定量以下であることを検出する流動
床ボイラの運転管理方法。
(1) In a fluidized bed boiler that includes a distribution device that receives crushed solid fuel and distributes it to a plurality of branch pipes for airflow conveyance, and a fluidized bed boiler main body to which these branch pipes are connected to a fluidized combustion chamber, By detecting the pressure difference between the pressure in the distribution device and the pressure in the fluidized combustion chamber, and by detecting that this pressure difference is lower than a predetermined range, the amount of crushed solid fuel introduced into the distribution device is lower than the set amount. A fluidized bed boiler operation management method that detects that
(2)破砕された固体燃料を受け入れて複数本の気流搬
送用の分岐配管に分配する分配装置と、これら分岐配管
が流動燃焼室に接続された流動床ボイラ本体とを有する
流動床ボイラにおいて、該分配装置内の圧力と流動燃焼
室内の圧力との差圧を検出し、この差圧が所定範囲より
も高いことを検出することにより、前記分岐配管に閉塞
が生じていることを検出する流動床ボイラの運転管理方
法。
(2) In a fluidized bed boiler having a distribution device that receives crushed solid fuel and distributes it to a plurality of branch pipes for airflow conveyance, and a fluidized bed boiler main body to which these branch pipes are connected to a fluidized combustion chamber, The flow control system detects the pressure difference between the pressure in the distribution device and the pressure in the flow combustion chamber, and detects that the branch pipe is clogged by detecting that the pressure difference is higher than a predetermined range. How to manage the operation of a floor boiler.
JP29554886A 1986-12-11 1986-12-11 Operation control method of fluidized bed boiler Pending JPS63148001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29554886A JPS63148001A (en) 1986-12-11 1986-12-11 Operation control method of fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29554886A JPS63148001A (en) 1986-12-11 1986-12-11 Operation control method of fluidized bed boiler

Publications (1)

Publication Number Publication Date
JPS63148001A true JPS63148001A (en) 1988-06-20

Family

ID=17822071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29554886A Pending JPS63148001A (en) 1986-12-11 1986-12-11 Operation control method of fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPS63148001A (en)

Similar Documents

Publication Publication Date Title
EP0988243B1 (en) A method and a device for transporting bulk material, granular material or powdery material
EP0060135B1 (en) Conveying apparatus
RU2010123979A (en) SOLID PARTICULAR INJECTION SYSTEM
US4048757A (en) System for metering abrasive materials
US4662798A (en) Method and a device for measuring and/or regulating the mass flow of solid particles
CA1285180C (en) Pulverized coal flow control system
JPH0748611A (en) Method for preventing clogging of piping for carrying powder
JPS63148001A (en) Operation control method of fluidized bed boiler
US4932594A (en) Pulverized coal flow control system
SE455471B (en) DEVICE FOR PREVENTING RISK OF FIRE BECAUSE OF BURNING OR GLASSING PARTICLES IN A PIPE PIPE
JPS60106720A (en) Method of detecting clogging in pulverized material gas-stream conveyor device
JPH07158837A (en) Powder transporting apparatus
JPH08258980A (en) Transporting condition determining method for powder and granular material inside hopper and device thereof
JPH048337B2 (en)
JPS596691B2 (en) Foreign matter removal method
TOMITA et al. Pneumatic transport of solids by a blow tank system
JP2778426B2 (en) Abnormality detection method for blast furnace injection transport piping
JPH09323822A (en) Clogging purging for powder and granular material transporting pipe and device thereof
JPS61231324A (en) Method of detecting and restoring fuel carrier tube
JPS6370008A (en) Growing fluid medium discharge system
JPS60196515A (en) Detecting method for blocking of coal feed pipe in fluidized-bed boiler
JPS6191293A (en) Stabilized dust coal feeder
SU984963A2 (en) Apparatus for feeding loose materials into conveying pipeline of pressure-head installation
JP2909296B2 (en) Fluidized bed height control device for combustion furnace
JPS63226510A (en) Method and device for controlling fluidized medium in fluidized-bed combustion furnace