JPS6314770B2 - - Google Patents

Info

Publication number
JPS6314770B2
JPS6314770B2 JP55098396A JP9839680A JPS6314770B2 JP S6314770 B2 JPS6314770 B2 JP S6314770B2 JP 55098396 A JP55098396 A JP 55098396A JP 9839680 A JP9839680 A JP 9839680A JP S6314770 B2 JPS6314770 B2 JP S6314770B2
Authority
JP
Japan
Prior art keywords
sample
measured
impurities
cryostat
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55098396A
Other languages
Japanese (ja)
Other versions
JPS5723841A (en
Inventor
Koichiro Honda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9839680A priority Critical patent/JPS5723841A/en
Publication of JPS5723841A publication Critical patent/JPS5723841A/en
Publication of JPS6314770B2 publication Critical patent/JPS6314770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Description

【発明の詳細な説明】 本発明は赤外波長領域の光を用いて半導体中の
不純物による赤外吸収スペクトルを低温で観察す
るためのクライオスタツトに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cryostat for observing infrared absorption spectra due to impurities in semiconductors at low temperatures using light in the infrared wavelength region.

IC、半導体素子等の半導体装置に用いるSi結晶
は前記装置を高歩留りで特性良く得るために結晶
中に結晶欠陥等ができるだけ少ないことが望まし
い。一般に上記Siは多結晶のSi材料を二酸化硅素
(SiO2)を主成分とする石英るつぼで溶融し、溶
融した多結晶へ単結晶の種の先端を挿入して一部
溶融したのちその種を引きあげて多結晶を単結晶
とする引き上げ法(いわゆるCz法)で形成され
ることが多い。したがつてこの石英るつぼ中の酸
素(O2)が溶融したSi材料中に入りこみ、この
酸素がSi単結晶を半導体素子形成用基板に成形し
たのち、該基板を半導体素子形成のための熱処理
する工程で、基板中に発生する結晶欠陥の原因と
なりやすい。また前記Si結晶を製造する際にO以
外にも炭素(C)等の不純物が、前記Si結晶中に混入
しやすく、これ等の不純物が基板を成形して半導
体素子を製造する過程で、結晶欠陥の原因となる
と考えられる。これ等の結晶欠陥はIC、半導体
素子等の半導体装置を形成した場合、前記装置の
特性劣化、歩留の低減等の原因となるので、でき
るだけ結晶欠陥の少ないSi基板を用いることが必
要で、そのためには結晶欠陥の発生の原因となる
O,C等の不純物の含有量のできるだけ少ないSi
基板を半導体装置の形成材料として用いることが
必要である。
It is desirable for Si crystals used in semiconductor devices such as ICs and semiconductor devices to have as few crystal defects as possible in order to obtain the devices with high yield and good characteristics. Generally, the above Si is produced by melting a polycrystalline Si material in a quartz crucible containing silicon dioxide (SiO 2 ) as the main component, inserting the tip of a single crystal seed into the melted polycrystal, partially melting it, and then removing the seed. It is often formed by a pulling method (so-called Cz method) in which polycrystals are turned into single crystals. Therefore, oxygen (O 2 ) in this quartz crucible enters into the molten Si material, and this oxygen forms the Si single crystal into a substrate for forming a semiconductor element, and then heat-treats the substrate for forming a semiconductor element. It is easy to cause crystal defects that occur in the substrate during the process. In addition, when manufacturing the Si crystal, impurities such as carbon (C) other than O are likely to be mixed into the Si crystal, and these impurities are mixed into the crystal during the process of forming the substrate and manufacturing the semiconductor element. This is considered to be the cause of defects. When forming semiconductor devices such as ICs and semiconductor elements, these crystal defects cause deterioration of the characteristics of the device and reduction in yield, so it is necessary to use a Si substrate with as few crystal defects as possible. To achieve this, it is necessary to minimize the content of impurities such as O and C that cause crystal defects in Si.
It is necessary to use the substrate as a material for forming semiconductor devices.

ここで前記Si材料中に含有されているOまたは
C等の微量の不純物を検出するには、通常赤外線
をSiに照射しSi中の不純物による吸収波長と吸収
強度を知ることで、不純物の種類と含有量を検知
する赤外吸収測定法が用いられている。
In order to detect trace amounts of impurities such as O or C contained in the Si material, the types of impurities are usually detected by irradiating Si with infrared rays and knowing the absorption wavelength and absorption intensity by the impurities in Si. Infrared absorption measurement is used to detect the content.

このような赤外吸収法を用いて、Si結晶中の微
量な不純物濃度を測定するには、一般に一つの光
源より出射した赤外線を二つの光束に分割し、前
記二つの光束に分れた赤外線を、不純物の含有量
の少ない標準試料となる一方のSi基板に照射し、
分割されたもう一方の赤外線を測定しようとする
Si結晶に照射して、両者の試料を透過してくる赤
外線の吸収波長及び強度を赤外分光光度計で比較
検知する方法(いわゆるDifferential法―デイフ
アレンシヤル法)がとられている。
In order to measure the trace impurity concentration in Si crystal using such infrared absorption method, generally the infrared rays emitted from one light source are divided into two beams, and the infrared rays divided into the two beams are is irradiated onto one Si substrate, which serves as a standard sample with low impurity content, and
Trying to measure the other split infrared light
The method used is to compare and detect the absorption wavelength and intensity of infrared rays that are irradiated onto a Si crystal and transmitted through both samples using an infrared spectrophotometer (the so-called Differential method).

また前記Si中に含有されている微量な不純物を
測定するには、赤外線をSi中に照射する際、Siの
結晶格子が、前記赤外線の照射によつて振動を生
じ、この格子振動によつて赤外吸収スペクトルの
強さが影響を受けるため、この測定しようとする
Si結晶を液体窒素温度(77゜)の低温度に保つて
格子振動をできるだけ抑制して、不純物の測定精
度を向上させるような方法がとられている。
Furthermore, in order to measure the trace amount of impurities contained in the Si, when infrared rays are irradiated into the Si, the crystal lattice of the Si vibrates due to the irradiation of the infrared rays, and this lattice vibration causes Trying to measure this because the intensity of the infrared absorption spectrum is affected
Methods are being used to improve impurity measurement accuracy by keeping the Si crystal at a low temperature of liquid nitrogen temperature (77°) to suppress lattice vibrations as much as possible.

このようにSi結晶を低温に保つためクライオス
タツトを用いる。
A cryostat is used to keep the Si crystal at a low temperature.

従来上記したデイフアレンシヤル法でSi結晶中
の不純物を測定する場合、不純物含有量の少ない
Si基板の標準試料を一方のクライオスタツトに、
また被測定用のSi基板をもう一方のクライオスタ
ツト内に保持し、同時に赤外線を同一強度の二つ
の光束に分割して、前記標準試料および被測定用
試料のそれぞれに照射し、透過してくる赤外光の
吸収スペクトルの状態を赤外分光光度計で比較検
知して、測定すべき試料中に含有されている不純
物の種類、および不純物の量を検知していた。
Conventionally, when measuring impurities in Si crystals using the differential method described above,
A standard sample of Si substrate was placed in one cryostat.
In addition, the Si substrate to be measured is held in the other cryostat, and at the same time, the infrared rays are split into two beams of the same intensity and irradiated to each of the standard sample and the sample to be measured, and then transmitted. The state of the absorption spectrum of infrared light is comparatively detected using an infrared spectrophotometer to detect the type and amount of impurities contained in the sample to be measured.

しかし上記のような測定方法では、それぞれ別
個のクライオスタツト中に設置されている標準試
料および被測定用試料は、試料の大きさ、クライ
オスタツト内の真空排気の度合い等によつて全く
同一条件となるのは困難で、このような状態で、
被測定用試料中の不純物の種類、不純物量を測定
しても高精度で検知することは困難であつた。
However, in the above measurement method, the standard sample and the sample to be measured, which are placed in separate cryostats, may not be under exactly the same conditions due to the size of the sample, the degree of evacuation inside the cryostat, etc. It is difficult to become
Even when measuring the type and amount of impurities in a sample to be measured, it has been difficult to detect them with high precision.

本発明は上記した欠点を除去し、前記したSiの
標準試料、および被測定用試料を両者ともに全く
同一の条件で測定し、もつて検知される不純物の
種類、不純物量を高精度で測定しうるようなクラ
イオスタツトの提供を目的とするものである。
The present invention eliminates the above-mentioned drawbacks, measures both the standard Si sample and the sample to be measured under exactly the same conditions, and measures the type and amount of impurities detected with high precision. The purpose of this project is to provide a cryostat with a high level of water.

かかる目的を達成するためのクライオスタツト
の構造は、内筒体と外筒体よりなる二重構造、少
なくとも1対の平行な側壁と、該側壁の対応する
部分に所定の距離を隔てて設けられ、所定の波長
を持つ光に対して透明な材質の板がはめ込まれて
いるそれぞれ1対の光導入窓および導出窓と、液
体窒素タンク、該タンクに取りつけられ、該光導
入窓と導出窓の中間に位置する試料保持部を有す
ることを特徴とするものである。
The structure of the cryostat to achieve this purpose is a double structure consisting of an inner cylinder and an outer cylinder, at least one pair of parallel side walls, and corresponding parts of the side walls are provided at a predetermined distance. , a pair of light introduction windows and a pair of light outlet windows each fitted with a plate made of a material transparent to light having a predetermined wavelength, a liquid nitrogen tank, and a pair of light introduction windows and a light outlet window attached to the tank; It is characterized by having a sample holding part located in the middle.

以下図面を用いて本発明の一実施例につき詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係るクライオスタツトの断面
図で、第2図は第1図のA―A′断面図である。
図示するように本発明のクライオスタツトの構造
は、ステンレスよりなる上部に液体窒素挿入孔1
を有する円筒状の内筒体2と、途中までは円筒体
の形状で、下部の方は直方体の形状からなる外筒
体3より構成されている。前記内筒体には、該内
筒体を貫通するように、かつその下方の先端部で
標準試料4および被測定試料5を保持する保持具
6A,6Bに連なる保持棒7が設置されており、
その保持棒7の上部先端は、前記外筒体3を密閉
する上蓋8とボルトBおよびパツキング等を用い
てシールされ、かつ上下に微動調整できる構造に
なつている。前記支持棒の途中には、発泡スチロ
ールのような熱伝導性の悪い部材9が設置され、
外部からの熱の侵入を防止するようになつてい
る。また支持棒の下方の先端部の試料保持具は、
中央に孔10が開けられた薄い銅板で形成され、
前記試料保持具上に標準試料4、および被測定用
試料5を貼りつけるようになつている。
FIG. 1 is a sectional view of a cryostat according to the present invention, and FIG. 2 is a sectional view taken along line AA' in FIG.
As shown in the figure, the structure of the cryostat of the present invention has a liquid nitrogen insertion hole 1 in the upper part made of stainless steel.
It is composed of an inner cylinder 2 having a cylindrical shape, and an outer cylinder 3 having a cylindrical shape up to the middle and a rectangular parallelepiped shape at the lower part. A holding rod 7 is installed in the inner cylindrical body so as to pass through the inner cylindrical body, and the holding rod 7 is connected to holders 6A and 6B that hold the standard sample 4 and the sample to be measured 5 at the lower tip thereof. ,
The upper end of the holding rod 7 is sealed with an upper cover 8 that seals the outer cylindrical body 3 using bolts B, packing, etc., and has a structure that allows fine vertical adjustment. A member 9 with poor thermal conductivity, such as styrofoam, is installed in the middle of the support rod,
It is designed to prevent heat from entering from outside. In addition, the sample holder at the lower tip of the support rod is
It is formed of a thin copper plate with a hole 10 in the center,
A standard sample 4 and a sample to be measured 5 are pasted onto the sample holder.

また前記外筒体3には外筒体内を排気するため
の真空ポンプと連結するための排気用バルブ11
が設置してあり、また外筒体と上蓋とはシリコン
パツキング12を介してボルト13を用いて締め
つけ密閉構造となるようにされ、更に上蓋8には
標準試料および被測定試料温度が測定するための
熱電対の挿入孔14が設けられている。
Further, the outer cylinder 3 has an exhaust valve 11 connected to a vacuum pump for evacuating the inside of the outer cylinder.
is installed, and the outer cylinder and the upper lid are tightened using bolts 13 via silicone packing 12 to form a hermetically sealed structure, and the upper lid 8 is provided with a device for measuring the temperature of the standard sample and the sample to be measured. A thermocouple insertion hole 14 is provided for this purpose.

また前記外筒体の下部の直方体形状の部分には
第2図に示すように前記標準試料および被測定試
料の裏側と表側の対向配置する位置に赤外線を透
過する臭化カリ(KBr)の薄板16が設置して
あり、1対ずつの赤外線透過窓を構成している。
In addition, in the rectangular parallelepiped-shaped portion at the bottom of the outer cylinder, thin plates of potassium bromide (KBr) that transmit infrared rays are placed oppositely on the back and front sides of the standard sample and the sample to be measured, as shown in Figure 2. 16 are installed, each forming a pair of infrared transmitting windows.

このようなクライオスタツトを用いて前記標準
試料となるSi基板、および被測定用Si基板を用い
て、標準試料および被測定用試料に一つの光源か
らの赤外線を同時に照射して被測定用試料中の不
純物の種類および含有量を測定する方法について
述べる。
Using such a cryostat, the standard sample and the sample to be measured are simultaneously irradiated with infrared rays from a single light source using the Si substrate serving as the standard sample and the Si substrate to be measured. This section describes methods for measuring the types and contents of impurities.

まず最初に第1図の標準試料保持具6Aに不純
物の含有量の少ない標準となるSi基板4を貼付す
る。同様に被測定用試料保持具6Bにも被測定用
試料となるSi基板5を貼付する。
First, a standard Si substrate 4 with a low content of impurities is attached to the standard sample holder 6A shown in FIG. Similarly, the Si substrate 5 serving as the sample to be measured is attached to the sample holder 6B.

その後上記支持具上の支持棒7の上部端部を上
蓋8に気密構造となるようにネジ等を用いて設置
する。また上蓋8と外筒体3とをボルト13を用
いて外筒内が気密構造となるように締めつける。
その後排気バルブ11を開いて、排気バルブに連
なる真空ポンプを用いて、外筒内を10-3Torr程
度の真空度になるまで排気する。その後内筒体内
の液体窒素導入孔1より液体窒素を導入する。
Thereafter, the upper end of the support rod 7 on the support is installed on the upper lid 8 using screws or the like so as to form an airtight structure. Further, the upper cover 8 and the outer cylinder body 3 are tightened using bolts 13 so that the inside of the outer cylinder has an airtight structure.
Thereafter, the exhaust valve 11 is opened, and the inside of the outer cylinder is evacuated to a degree of vacuum of about 10 -3 Torr using a vacuum pump connected to the exhaust valve. Thereafter, liquid nitrogen is introduced from the liquid nitrogen introduction hole 1 in the inner cylinder.

このようにしてしばらく放置すると支持具にと
りつけられた標準試料および被測定用試料が液体
窒素の冷媒によつて充分冷却されるようになる。
When left in this manner for a while, the standard sample and the sample to be measured attached to the support are sufficiently cooled by the liquid nitrogen refrigerant.

その後第2図に示すように矢印の方向より1つ
の赤外光の光源より分割された赤外光をKBrの
薄板を透過させて標準試料および被測定用試料へ
照射する。上記照射された赤外光の一部は標準試
料および被測定用試料を透過して、試料の後にあ
るKBrの薄板を透過して赤外分光光度計に入射
するようになる。そこで標準試料および被測定用
試料に含有される不純物の種類および不純物量の
差によつて赤外線の吸収される波長、および吸収
強度が異なるので、その吸収波長および吸収強度
を測定して被測定用試料中の不純物の種類および
含有量が決定される。
Thereafter, as shown in FIG. 2, split infrared light from one infrared light source is transmitted through the KBr thin plate and irradiated onto the standard sample and the sample to be measured in the direction of the arrow. A portion of the irradiated infrared light passes through the standard sample and the sample to be measured, passes through a thin KBr plate located behind the sample, and enters the infrared spectrophotometer. Therefore, the absorption wavelength and absorption intensity of infrared rays differ depending on the type and amount of impurities contained in the standard sample and the sample to be measured. The type and content of impurities in the sample are determined.

以上のように本発明のクライオスタツトを用い
れば被測定用のSi基板中の不純物が標準試料のSi
基板と全く同一条件で測定されるので、測定精度
が大幅に向上し、また信頼度の高い測定値が得ら
れる利点を生じ、このように不純物を高精度で測
定して不純物量の含有量の少ない試料を用いて半
導体装置を製造すれば、高歩留りで高信頼度の半
導体装置が得られる利点を生じる。
As described above, by using the cryostat of the present invention, impurities in the Si substrate to be measured can be removed from the Si of the standard sample.
Since the measurement is performed under exactly the same conditions as the substrate, the measurement accuracy is greatly improved and highly reliable measurement values can be obtained. Manufacturing a semiconductor device using a small number of samples has the advantage that a semiconductor device with high yield and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクライオスタツトの縦断面
図、第2図は前記クライオスタツトのA―A′断
面図である。 1:液体窒素挿入孔、2:内筒体、3:外筒
体、4:標準試料、5:被測定用試料、6A,6
B:試料保持具、7:保持棒、8:上蓋、9:部
材、10:孔、11:排気バルブ、12:パツキ
ング、13:ボルト、14:熱電対挿入孔。
FIG. 1 is a longitudinal sectional view of the cryostat of the present invention, and FIG. 2 is a sectional view taken along line AA' of the cryostat. 1: Liquid nitrogen insertion hole, 2: Inner cylinder, 3: Outer cylinder, 4: Standard sample, 5: Sample to be measured, 6A, 6
B: sample holder, 7: holding rod, 8: upper lid, 9: member, 10: hole, 11: exhaust valve, 12: packing, 13: bolt, 14: thermocouple insertion hole.

Claims (1)

【特許請求の範囲】 1 下部が略直方体形状の外筒体と、液体窒素を
入れる内筒体と、該内筒体を貫通して下部にそれ
ぞれ試料保持部を有する2本の保持棒と、 前記外筒体下部側壁に所定波長の光に対し透明
な材質の光導入窓と光導出窓を、前記2つの試料
保持部に対応してそれぞれ1対ずつ設けた事を特
徴とするクライオスタツト。
[Scope of Claims] 1. An outer cylinder whose lower part has a substantially rectangular parallelepiped shape, an inner cylinder for storing liquid nitrogen, and two holding rods that penetrate the inner cylinder and each have a sample holding part at the lower part, A cryostat characterized in that a pair of light introduction windows and a light output window made of a material transparent to light of a predetermined wavelength are provided on the lower side wall of the outer cylinder body, one pair each corresponding to the two sample holders.
JP9839680A 1980-07-18 1980-07-18 Cryostat Granted JPS5723841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9839680A JPS5723841A (en) 1980-07-18 1980-07-18 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9839680A JPS5723841A (en) 1980-07-18 1980-07-18 Cryostat

Publications (2)

Publication Number Publication Date
JPS5723841A JPS5723841A (en) 1982-02-08
JPS6314770B2 true JPS6314770B2 (en) 1988-04-01

Family

ID=14218669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9839680A Granted JPS5723841A (en) 1980-07-18 1980-07-18 Cryostat

Country Status (1)

Country Link
JP (1) JPS5723841A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494842A (en) * 1972-05-02 1974-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494842A (en) * 1972-05-02 1974-01-17

Also Published As

Publication number Publication date
JPS5723841A (en) 1982-02-08

Similar Documents

Publication Publication Date Title
Hass et al. Infrared absorption in low‐loss KCl single crystals near 10.6 μm
Hall et al. High purity germanium for detector fabrication
US4134785A (en) Real-time analysis and control of melt-chemistry in crystal growing operations
EP0191111B1 (en) Improvements to pulling processes and equipment for growing silicon crystals having high and controlled carbon content
Brown et al. Photolytic darkening and electronic range in AgCl
US4429047A (en) Method for determining oxygen content in semiconductor material
Briggs Hydroxyl impurity and the formation and distribution of cavities in melt-grown MgO crystals
Scott et al. Solution growth of indium-doped silicon
Bilgram et al. Perfection of zone refined ice single crystals
Coquille et al. Synthesis, crystal growth and characterization of InP
JPS6314770B2 (en)
Mullin et al. The melt-growth and characterization of cadmium telluride
GB803830A (en) Semiconductor comprising silicon and method of making it
JPS6312533B2 (en)
Gross Zone purification of alkali iodides
Capelle et al. Radiative Lifetimes of BeO
SU1458448A1 (en) Method and apparatus for producing cryocrystals
Perner The growth of CuCl single crystals by the travelling heater method
Krausz et al. An efficient helium flow tube for low-temperature experiments
Matsuura et al. Temperature dependence of photoacoustic spectra of C60 and C70 crystals
Clegg et al. Determination of carbon, oxygen, and nitrogen in semiconductors by spark-source mass spectrography
Lindsey Material and Process Engineering for Bulk Single Crystal Growth of High Performance Scintillator Potassium Calcium Iodide
Edwards The distribution coefficient of boron in germanium
EP4194841B1 (en) Dewar flask, photoluminescence measurement device, concentration measurement method, and silicon manufacturing method
CN110199057A (en) Concentration of carbon measurement method in monocrystalline silicon