JPS63146851A - Production of myristylglycine and oligopeptide derivative thereof - Google Patents

Production of myristylglycine and oligopeptide derivative thereof

Info

Publication number
JPS63146851A
JPS63146851A JP61257823A JP25782386A JPS63146851A JP S63146851 A JPS63146851 A JP S63146851A JP 61257823 A JP61257823 A JP 61257823A JP 25782386 A JP25782386 A JP 25782386A JP S63146851 A JPS63146851 A JP S63146851A
Authority
JP
Japan
Prior art keywords
myristylglycine
polar solvent
oligopeptide
glycine
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257823A
Other languages
Japanese (ja)
Inventor
Shozo Shoji
省三 庄司
Yukio Kubota
久保田 幸穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61257823A priority Critical patent/JPS63146851A/en
Publication of JPS63146851A publication Critical patent/JPS63146851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain the titled high-purity compound useful as a transformation inhibitor for cells, etc., by reacting myristic acid chloride with glycine, etc., in the presence of an alkali in an inert polar solvent or an aqueous solution containing the inert polar solvent. CONSTITUTION:Myristic acid chloride is reacted with glycine or NH2-end glycine oligopeptide in the presence of an alkali (e.g. NaHCO3, Na2CO3, NaOH, Na3PO4, etc.) in an inert polar solvent (e.g. scetonitrile, acetone, methyl ethyl ketone, etc.) or an aqueous solution containing the solvent to give myristylglycine or an oligopeptide derivative thereof. Existence of the polar solvent in the reaction system provides the aimed effective substance. The amount of the polar solvent added is preferably about 10-70wt%, more preferably 20-50wt% based on water.

Description

【発明の詳細な説明】 本発明はミリスチルグリシンまたはそのペプチド誘導体
の製造方法に間する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing myristylglycine or a peptide derivative thereof.

一般に、タンパク質のアミノ末端はアセチル基、ピログ
ルタミル基およびホルミル基によってブロックされてい
ることは知られているが、さらに圧切(本発明者の1人
)等は、cAMP−依存性プロチインキナーゼの触媒サ
ブユニットにおいてそのアミノ末端に共有結合している
ミリスチン酸(長鎖脂肪酸)を見い出している(Pro
c、 Natl、 Acad、 Sci、 MSA、 
VOl、79.8123−6131.1982)、  
このミリスチル末端タンパク質はそのアミノ酸配列が 
       0 CHs−(CHa)+a−C−NH−Gly−Asn−
Ala−Ala−Ala−Ala−−Lys−Lys− であるとされ、その後、次の如き各種タンパク質におい
ても末端ミリスチル基の存在が相次いで報告されている
It is generally known that the amino terminus of proteins is blocked by acetyl, pyroglutamyl, and formyl groups; found that myristic acid (a long-chain fatty acid) is covalently bound to the amino terminus of the catalytic subunit (Pro
c, Natl, Acad, Sci, MSA,
VOl, 79.8123-6131.1982),
The amino acid sequence of this myristyl terminal protein is
0 CHs-(CHa)+a-C-NH-Gly-Asn-
Ala-Ala-Ala-Ala--Lys-Lys- Since then, the presence of terminal myristyl groups has been successively reported in the following various proteins.

カルシニューリン B: C)13−(CH2)+2−C−NH−Gly−Asn
−Glu−Ala−(A、 Aitkan et at
、 FEBS LETTERS、 Vol、150゜N
o、2.314−318.1982)NADH−シトク
ロムb5レダクターゼ:CHa−(CH2)+2−C−
NH−Gly−Ala−Gln−Leu−(J、 Dz
ols et al、 The Journal of
Biological Cheg+1stry、 Vo
l、259. No、21゜13349−13354.
1984) プロティンキナーゼp60src: ■ C)I3−(CH2)+2−C−NH−Gly−5er
−5er−Lys−5er−−Lys−Pro−Lys
− (A、M、5chultz  et  al、5cie
nce、Vol、227゜427 − 429.198
5) これらの報告において、ミリスチル基、即ち、CHa−
(CH2)+2−CO−NH−基は、上記各アミノ酸配
列からも明らかな如く、アミノ末端グリシン残基に結合
していることを明らかにし、また、アミノ末端グリシン
残基のミリスチル化は細胞の形質転換および増殖制御に
間するある種の機序に極めて重要であることを示唆して
いる。
Calcineurin B: C) 13-(CH2)+2-C-NH-Gly-Asn
-Glu-Ala-(A, Aitkan et at
, FEBS LETTERS, Vol, 150°N
o, 2.314-318.1982) NADH-cytochrome b5 reductase: CHa-(CH2)+2-C-
NH-Gly-Ala-Gln-Leu-(J, Dz
ols et al, The Journal of
Biological Cheg+1try, Vo
l, 259. No, 21°13349-13354.
1984) Protein kinase p60src: ■ C) I3-(CH2)+2-C-NH-Gly-5er
-5er-Lys-5er--Lys-Pro-Lys
- (A, M, 5chultz et al, 5cie
nce, Vol, 227°427-429.198
5) In these reports, myristyl group, i.e. CHa-
The (CH2)+2-CO-NH- group is bonded to the amino-terminal glycine residue, as is clear from the above amino acid sequences, and the myristylation of the amino-terminal glycine residue is This suggests that it is crucial for certain mechanisms involved in transformation and growth control.

さらにまた、上記末端ミリスチル化タンパク質の酵素に
よる消化あるいは化学合成手法により最小単位としての
ミリスチルグリシンまたはミリスチル化オリゴペプチド
が得られることも開示されている0例えば、AlM、5
chu l tz等は上記p 60 srcがNH2−
ミリスチル化タンパク質であることを同定するため、こ
のタンパク質をトリプシン消化により My−Gly−
5er−5er−Lys、門y−c+y−Gln−Th
rおよびMy−Gly  (式中、Myはミリスチル基
を示す、以下同じ)を得ており、またこれらミリスチル
化オリゴペプチドの同定のため、他から得た合成My−
Gly (合成法は明かでない)およびこの合成My−
c+yから固相法により化学合成した門y−Gly−5
er−5er−LysおよびMy−Gly−Gln4h
rを用いている。また、圧切等は、” Journal
 of Chromatography、−356,1
79−185,(1986)” において、ミリスチン
酸と各々対応するペプチドからジシクロへキシルカルボ
ジイミドを用いる5heehan  &  He5s法
により My−c+y−c+y−’ryr−Arg、 
My−Gly−Phe−NH2,My−Gly−NH2
およびMy−c+y−c+y−Gly−N)12等のミ
リスチルオリゴペプチドを合成し、その同定を行ってい
る。
Furthermore, it is also disclosed that myristylglycine or myristylated oligopeptide can be obtained as a minimum unit by enzymatic digestion or chemical synthesis of the terminal myristylated protein. For example, AlM, 5
Chu l tz etc., the above p 60 src is NH2-
To identify it as a myristylated protein, this protein was digested with trypsin to My-Gly-
5er-5er-Lys, phylum y-c+y-Gln-Th
r and My-Gly (in the formula, My represents a myristyl group, the same applies hereinafter), and in order to identify these myristylated oligopeptides, synthetic My-Gly obtained from others was used.
Gly (synthesis method is unclear) and this synthesis My-
y-Gly-5 chemically synthesized from c+y by solid phase method
er-5er-Lys and My-Gly-Gln4h
r is used. In addition, for pressure cutting, etc., please refer to “Journal
of Chromatography, -356,1
79-185, (1986)'', My-c+y-c+y-'ryr-Arg,
My-Gly-Phe-NH2, My-Gly-NH2
and Myristyl oligopeptides such as My-c+y-c+y-Gly-N) 12 have been synthesized and identified.

しかしながら、これらタンパク質またはオリゴペプチド
のミリスチル基の細胞に対する生物学的作用については
、まだ研究が行われ始めたばかりであり、いかなる作用
あるいは影響を与えるのか具体的にされていない、また
、ミリスチルグリシンまたはミリスチルグリシンオリゴ
ペプチドを得るに当たっても、従来の酵素消化による方
法では一般にミリスチルグリシンと各種鎖長のミリスチ
ルグリシンとの混合物の形で得られ目的のミリスチル化
物の分離精製が煩雑であり、また上記のジシクロヘキシ
ルカルボンジイミドを用いる如き従来の合成方法では、
目的物は得られるもののその収率が極めて低く実際的で
なかった。
However, research on the biological effects of myristyl groups in these proteins or oligopeptides on cells has just begun, and the specific effects or effects of myristyl glycine or myristyl groups have not yet been clarified. When obtaining glycine oligopeptides, conventional enzymatic digestion methods are generally obtained in the form of a mixture of myristylglycine and myristylglycine of various chain lengths, making separation and purification of the desired myristyl compound complicated. Conventional synthetic methods, such as using diimide,
Although the desired product was obtained, the yield was extremely low and was not practical.

本発明者等は、タンパク質の7ミノ末端ミリスチル基の
生物学的解析に有用と思われるミリスチルグリシンまた
はそのペプチド誘導体(即ミリスチルグリシンオリゴペ
プチド)の新規かつ有効な合成方法を開発すると共に1
.さらにこれら合成したミリスチルグリシンまたはその
オリゴペプチド誘導体がある種の細胞においてその形質
転換に対し抑制効果のあることを見い出した。
The present inventors have developed a new and effective method for synthesizing myristylglycine or its peptide derivative (i.e., myristylglycine oligopeptide), which is thought to be useful for biological analysis of the 7-minoterminal myristyl group of proteins.
.. Furthermore, we have found that these synthesized myristylglycine or its oligopeptide derivatives have an inhibitory effect on the transformation of certain types of cells.

本発明によれば、ミリスチン酸クロリドとグリシンまた
はNH2−末端グリシンオリゴペプチドとを、アルカリ
の存在下、不活性極性溶媒または不活性極性溶媒を含む
水性溶媒中で反応させることからなるミリスチルグリシ
ンまたはそのオリゴペプチド誘導体の製造方法が提供さ
れる。なお、ミリスチルグリシンオリゴペプチド誘導体
の製造方法の変法としては先にミリスチルグリシンを上
記方法で合成しておき、その後通常のペプチド合成法を
用いて所定のアミノ酸単位をつなぎ合わせ所望配列のミ
リスチル化オリゴペプチドとすることもできる。
According to the present invention, myristic acid chloride and glycine or NH2-terminated glycine oligopeptide are reacted in the presence of an alkali in an inert polar solvent or an aqueous medium containing an inert polar solvent. A method for producing an oligopeptide derivative is provided. In addition, as a modification of the method for producing myristylglycine oligopeptide derivatives, myristylglycine is first synthesized by the above method, and then predetermined amino acid units are connected using a normal peptide synthesis method to produce a myristylglycine oligopeptide with the desired sequence. It can also be a peptide.

上記本発明方法は、希アルカリの存在下酸クロリドによ
ってアミンがアシル化されるいわゆるショツテン−バウ
マンの反応原理を応用するものであるが、本発明におけ
るような長鎖の脂肪酸であるミリスチン酸においては通
常のショツテン−バウマン反応条件を適用しても目的物
が実質上得られず、反応系に後述するような極性溶媒を
存在させることによって初めて有効な目的生成物が得ら
れたことに基づく。
The above method of the present invention applies the so-called Schotten-Baumann reaction principle in which an amine is acylated with acid chloride in the presence of a dilute alkali. This is based on the fact that the target product could not be obtained substantially even if ordinary Schotten-Baumann reaction conditions were applied, and that an effective target product could only be obtained by the presence of a polar solvent as described below in the reaction system.

本発明で使用するミリスチン酸クロリドは市販のミリス
チン酸から通常の方法で調製したものを用いることがで
きる。また、本発明のもう一つの出発物質であるグリシ
ンまたはNHa−グリシン末端オリゴペプチドはいずれ
も市販のものを使用できるが、後者は通常のペプチド合
成法により所望のアミノ配列順序とすることによっても
得ることができる0本発明でミリスチン酸クロリドと反
応させるオリゴペプチドの好ましい例を挙げれば次の如
くである。
The myristic acid chloride used in the present invention can be prepared from commercially available myristic acid by a conventional method. Furthermore, commercially available glycine- or NHa-glycine-terminated oligopeptides, which are another starting material of the present invention, can be used, but the latter can also be obtained by adjusting the desired amino acid sequence using conventional peptide synthesis methods. Preferred examples of oligopeptides to be reacted with myristic acid chloride in the present invention are as follows.

NHa−Gly−Gly−COOII NH2−Gly−Ala−COOH NHa−Gly−Gly−Tyr−Arg−COOHN
Hz−Gly−Ala−Ala−Ala−Ala−CO
OHNHa−Gly−Phe−COOH NHa−Gly−5er−COOH 本発明で触媒として使用するアルカリには、任意の適当
なアルカリ、例えばNaHCO3、Na2COa、Na
OH,Na5pQ4等があり、これらは反応溶媒中にお
いて約0.1〜1.0モル濃度好ましくは0.3〜0.
6モル濃度で使用する。
NHa-Gly-Gly-COOII NH2-Gly-Ala-COOH NHa-Gly-Gly-Tyr-Arg-COOHN
Hz-Gly-Ala-Ala-Ala-Ala-CO
OHNHa-Gly-Phe-COOH NHa-Gly-5er-COOH The alkali used as a catalyst in the present invention may include any suitable alkali, such as NaHCO3, Na2COa, Na
OH, Na5pQ4, etc., and these have a molar concentration of about 0.1 to 1.0 molar concentration in the reaction solvent, preferably 0.3 to 0.0 molar concentration.
Used at 6 molar concentration.

本発明において目的のミリスチルグリシンまたはミリス
チルグリシンオリゴペプチドを得るための重要なファク
ターである極性溶媒としては、アセトニトリル、プロピ
オニトリル等のニトリル系溶媒; アセトン、メチルエ
チルケトン、メチルイソブチルケトン等のケトン類等が
使用できる。ただし、アルコール類は同じ極性溶媒であ
るが、ミリスチン酸クロリドに対し活性であるので本発
明においては使用しない。即ち、本発明で使用する極性
溶媒は各出発反応物質に対して不活性であることが条件
である。好ましい極性溶媒にはニトリル系溶媒特にアセ
トニトリルである。使用する極性溶媒は100%の形で
も反応溶媒として使用できるが、好ましいのは、水と混
合した水性溶媒の形であり、水に対し極性溶媒を約10
〜70重量%好ましくは20〜50重量%存在させた形
で使用する。
In the present invention, the polar solvent which is an important factor for obtaining the target myristylglycine or myristylglycine oligopeptide includes nitrile solvents such as acetonitrile and propionitrile; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Can be used. However, although alcohols are the same polar solvents, they are not used in the present invention because they are active against myristic acid chloride. That is, the polar solvent used in the present invention must be inert to each starting reactant. Preferred polar solvents include nitrile solvents, particularly acetonitrile. Although the polar solvent used can be used as a reaction solvent in 100% form, it is preferably in the form of an aqueous solvent mixed with water, with a ratio of about 10% of the polar solvent to water.
It is used in the presence of ~70% by weight, preferably 20-50% by weight.

本発明の反応は一般に攪拌条件下室温またはそれ以下の
温度で行い得る0反応時閏は約6〜20時閉である。反
応終了後得られた生成物はpHを酸性にしたのちエーテ
ル等による抽出、アルコール等による再結晶等通常の*
a処理を施すことによって高純度品として得ることがで
きる。
The reactions of the present invention can generally be carried out under stirring conditions at room temperature or below, and the reaction time is about 6 to 20 hours. After the reaction is complete, the resulting product is subjected to the usual methods such as acidic pH, extraction with ether, recrystallization with alcohol, etc.
A highly purified product can be obtained by subjecting it to a treatment.

かくして得られた本発明のミリスチルグリシンまたはミ
リスチルグリシンオリゴペプチドは細胞の形質転換抑制
剤として有用である0本発明者等は、実験により、温度
によって著しく形態の変わるラウス肉腫ウィルス(RS
Vの温度変異株tsNY68)感染線維芽細胞を用いて
、本発明により合成したミリスチルグリシンまたはミリ
スチルグリシンオリゴペプチドの形質転換に与える影響
を調べた。即ち、tsNY68rE%染ニワトリ線維芽
纏胞は41’Cで正常細胞、37℃でがん細胞に形質転
換し、41’Cで再び正常細胞に戻る機能を備えている
0本発明によれば、この形質転換性細胞にミリスチルグ
リシンまたはミリスチルグリシンオリゴペプチドを加え
ることにより37℃での形質転換が著しく抑制されるこ
とが判った。その添加量は感染細胞(5x 10’個)
に対し10〜50μM程度で十分である。
The thus obtained myristylglycine or myristylglycine oligopeptide of the present invention is useful as a cell transformation inhibitor. Through experiments, the present inventors have found that the Rous sarcoma virus (RS), whose morphology changes significantly depending on temperature,
The effect of myristylglycine or myristylglycine oligopeptide synthesized according to the present invention on transformation was investigated using fibroblasts infected with the temperature mutant strain V tsNY68). That is, tsNY68rE%-stained chicken fibroblasts have the ability to transform into normal cells at 41'C, into cancer cells at 37°C, and return to normal cells again at 41'C.According to the present invention, It was found that addition of myristylglycine or myristylglycine oligopeptide to these transformed cells significantly inhibited transformation at 37°C. The amount added is infected cells (5 x 10')
10 to 50 μM is sufficient.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 11.4gのグリシンを20重量%のアセトニトリルを
含む0.5MNaHCO3水溶液150m lに溶解し
、激しく攪拌しながら12.5gのミリスチルクロリド
をゆっくり適下して加え、攪拌を続けながら室温(約2
0℃前後)で−夜装置した0反応液を濃塩酸で酸性(p
 H2,0)としたのち、生成物をエーテルで抽出した
。次に、抽出物を、熱エタノールで再結晶させて、白色
板状結晶的8.2g (収率71.9%)を得た。この
結晶の融点はマイクロメルティングポイントメーター(
柳本制作所!りで測定したとき、約106〜108℃で
あった。また、このもののKBr法による赤外線吸収ス
ペクトルは、第1図に示すように、波長1640cm−
付近に酸アミドカルボニル基の吸収が見られミリスチル
グリシン(My−Gly−COOH)の特徴を明らかに
示していた。
Example 1 11.4g of glycine was dissolved in 150ml of 0.5M NaHCO3 aqueous solution containing 20% by weight of acetonitrile, 12.5g of myristyl chloride was slowly added dropwise with vigorous stirring, and the solution was heated to room temperature (with continued stirring). Approximately 2
The 0 reaction solution, which had been incubated overnight (around 0°C), was acidified with concentrated hydrochloric acid (p
H2,0) and the product was extracted with ether. The extract was then recrystallized with hot ethanol to obtain 8.2 g (71.9% yield) of white plate crystals. The melting point of this crystal is measured using a micro melting point meter (
Yanagimoto Seisakusho! The temperature was about 106-108°C when measured by In addition, the infrared absorption spectrum of this product measured by the KBr method has a wavelength of 1640 cm-1, as shown in Figure 1.
Absorption of an acid amide carbonyl group was observed in the vicinity, clearly showing the characteristics of myristylglycine (My-Gly-COOH).

実施例2 20gのジグリシーン〔(財)ペプチド研究所(大阪)
より市販品として入手〕を30重量%のアセトニトリル
を含む0.5MNaHCO3水溶液150m lに溶解
し、激しく攪拌しながら12.5gのミリスチルクロリ
ドをゆっくり適下して加え、攪拌を続けながら室温(約
20℃)で−夜装置した。以下、実施例1と同様にして
融点185℃を有する白色針状結晶7.5g (収率3
8%)を得た。このもののKBr法による赤外線吸収ス
ペクトルは、第2図に示すように、ミリスチルジグリシ
ン(My−Gly−Gly−COOH)の特徴を明らか
に示している。
Example 2 20g of Diglycine [Peptide Research Institute (Osaka)
] was dissolved in 150 ml of a 0.5 M NaHCO3 aqueous solution containing 30 wt% acetonitrile, and 12.5 g of myristyl chloride was slowly added dropwise while stirring vigorously. The apparatus was incubated overnight at 10°C. Hereinafter, in the same manner as in Example 1, 7.5 g of white needle-like crystals having a melting point of 185°C (yield 3
8%). The infrared absorption spectrum of this product by the KBr method clearly shows the characteristics of myristyldiglycine (My-Gly-Gly-COOH), as shown in FIG.

実施例3 実施例2においてジグリシンの代わりにグリシン−アラ
ニン(NO3−Gly−Ala−COOH)、グリシン
−グリシン−チロシン−アルギニン(NO3−Gly−
Gly−Ty+”ArH−C00H)およびグリシン−
セリン(N)12−Gly−5er−COOH)を用い
、実施例2と同様にしてそれぞれ次の3種の結晶生成物
を得た。使用したオリゴペプチドはいずれも(財)ペプ
チド研究所(大阪)より市販品として入手した。
Example 3 In Example 2, instead of diglycine, glycine-alanine (NO3-Gly-Ala-COOH), glycine-glycine-tyrosine-arginine (NO3-Gly-
Gly-Ty+”ArH-C00H) and glycine-
The following three types of crystal products were obtained in the same manner as in Example 2 using serine (N) 12-Gly-5er-COOH). All oligopeptides used were obtained as commercial products from Peptide Research Institute (Osaka).

LL!!i            艦−ムMy−Gl
y−Ala−COOH119℃My−Gly−Gly−
Tyr−Ar8−COOH144℃My−Gly−5e
r−COOH116℃実施例4 1O日令発育鶏卵線維芽細胞を常法により調製した。調
製した細胞を先ず41℃で48時間培養し、次いで37
℃で48時間培養したのち、温度を41’Cに戻し、さ
らに48時間培養した。それぞれの培養段階での細胞の
形態学的変化を倒立顕微鏡を用いて観察すると、第3a
−c図のとおりである(対@1)、即ち、正常細胞にお
いては、3つの培養段階ともに細胞の分裂、増殖が観察
されると共に方向性(オリエンテーション)および足場
依存性(アンカーレイジブペンデンス)が十分に観察さ
れている。また、RSV (AsNY60株・・・・・
・・束大医科学研究所により人手)で細胞(5x 10
’個)当り1mlの量で感染させた細胞を上記と全く同
様にして3段階の培養を行い倒立顕微鏡による観察にお
いて、第4a−c図の結果を得た(対照2)。これらの
結果から明らかな如く、41”C148時間の培養では
両段階(第4a図および第4c図)ともに正常細胞にお
ける第3a図および第3c図と同様の方向性が見られる
ものに対し、37°Cの培養では細胞の分裂、増殖が激
しく、方向性が失われはっきりと形質転換が起こってい
ることが判る。
LL! ! i Ship My-Gl
y-Ala-COOH119℃My-Gly-Gly-
Tyr-Ar8-COOH144℃My-Gly-5e
r-COOH 116°C Example 4 10 day old embryonated chicken egg fibroblasts were prepared by a conventional method. The prepared cells were first cultured at 41°C for 48 hours, then incubated at 37°C.
After culturing at ℃ for 48 hours, the temperature was returned to 41'C and culture was continued for an additional 48 hours. When observing the morphological changes of cells at each culture stage using an inverted microscope, the 3rd a.
- As shown in figure c (vs. 1), in normal cells, cell division and proliferation are observed in all three culture stages, as well as directionality and anchorage dependence (anchorage pendence). ) have been well observed. Also, RSV (AsNY60 stock...
... Cells (5x 10
Cells infected at a volume of 1 ml per cell were cultured in three stages in exactly the same manner as described above, and the results shown in Figures 4a-c were obtained when observed using an inverted microscope (Control 2). As is clear from these results, in both stages (Figs. 4a and 4c), the same directionality as in Figs. 3a and 3c is observed in normal cells, whereas in 41"C 148-hour culture, 37 When cultured at °C, cell division and proliferation were rapid, directionality was lost, and transformation was clearly occurring.

さらに、対照2のAsNY68株で感染させた細胞に実
施例1で調製したミリスチルグリシンを感染細胞(5x
 10’個)当り50gMの量で添加したものを48℃
および37℃で培養させたものの形質学的変化を観察し
たところそれぞれ第5a図および第5b図の結果を得た
。37℃の培!I(第5b図)においても、48℃培養
(第5a図)と実質的に同様な形質状態が観察され、方
向性および足場依存性が十分に見られ細胞の分裂、増殖
が抑制されていることが判る。
Furthermore, myristylglycine prepared in Example 1 was added to cells infected with AsNY68 strain of control 2 (5x
50 gM per 10' pieces) was added at 48°C.
When the phenotypic changes were observed after culturing at 37° C., the results shown in FIGS. 5a and 5b were obtained, respectively. Culture at 37℃! In I (Figure 5b), substantially the same phenotypic state as in the 48°C culture (Figure 5a) was observed, with sufficient directionality and anchorage dependence being observed, and cell division and proliferation being suppressed. I understand that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で調製したミリスチルグリシンの赤外
線吸収スペクトル図である。 第2図は実施例2で調製したミリスチルジグリシンの赤
外線吸収スペクトル図である。 第3図a −−C図は、正常発育鶏卵線維芽細胞の41
”C(前段)、37℃および41”C(後段)の各培養
条件での細胞の形態学的変化を示す倒立顕微鏡写真であ
る(倍率=150倍)。 第4a−c図は、R3V感染発育鶏卵芽細胞の41℃(
前段)、37℃および41’C(後段)の各培養条件で
の細胞の形態学的変化を示す倒立顕微鏡写真である(倍
率:150倍)。 第5a−b図は、本発明のミリスチルグリシンを添加し
たときのR5V感染細胞の41’Cおよび37℃培養で
の細胞の形態学的変化を示す倒立顕微鏡写真である(倍
率:150倍)。 ■ 1 図 りギ剖 舅 2 図 ― 城廻 第3a図    第3F〕図 41”C1413R1’′:Il          
    37℃、48時間第3c図 41℃、4E1M閏
FIG. 1 is an infrared absorption spectrum diagram of myristylglycine prepared in Example 1. FIG. 2 is an infrared absorption spectrum diagram of myristyl diglycine prepared in Example 2. Figure 3a--C shows 41 cells of normally developed chicken egg fibroblasts.
These are inverted micrographs (magnification = 150 times) showing morphological changes in cells under each culture condition of "C (first stage), 37"C and 41"C (second stage). Figures 4a-c show R3V-infected embryonated chicken egg blast cells at 41°C (
These are inverted micrographs (magnification: 150x) showing morphological changes in cells under culture conditions of (first part), 37°C, and 41'C (second part). Figures 5a-b are inverted micrographs showing the morphological changes of R5V-infected cells cultured at 41'C and 37C when myristylglycine of the present invention was added (magnification: 150x). ■ 1 Figure 41 "C1413R1'': Il
37℃, 48 hours Fig. 3c 41℃, 4E1M leap

Claims (3)

【特許請求の範囲】[Claims] (1)ミリスチン酸クロリドとグリシンまたはNH_2
−末端グリシンオリゴペプチドとを、アルカリの存在下
、不活性極性溶媒または不活性極性溶媒を含む水性溶媒
中で反応させることからなるミリスチルグリシンまたは
そのオリゴペプチド誘導体の製造方法。
(1) Myristic acid chloride and glycine or NH_2
- A method for producing myristylglycine or an oligopeptide derivative thereof, which comprises reacting a terminal glycine oligopeptide in an inert polar solvent or an aqueous solvent containing an inert polar solvent in the presence of an alkali.
(2)ミリスチン酸クロリドとグリシンを、アルカリの
存在下、不活性極性溶媒または不活性極性溶媒を含む水
性溶媒中で反応させてミリスチルグリシンを得、このミ
リスチルグリシンを通常のペプチド合成法によりアミノ
酸またはオリゴペプチドと反応させることにより所望の
ミリスチルグリシンオリゴペプチド誘導体を得ることか
らなるミリスチルグリシンオリゴペプチド誘導体の製造
方法。
(2) Myristylglycine is obtained by reacting myristic acid chloride and glycine in the presence of an alkali in an inert polar solvent or an aqueous solvent containing an inert polar solvent, and this myristylglycine is converted into an amino acid or A method for producing a myristylglycine oligopeptide derivative, which comprises obtaining a desired myristylglycine oligopeptide derivative by reacting with an oligopeptide.
(3)ミリスチルグリシンまたはそのオリゴペプチド誘
導体からなる細胞の形質転換または増殖抑制剤。
(3) A cell transformation or growth inhibitor consisting of myristylglycine or an oligopeptide derivative thereof.
JP61257823A 1986-10-27 1986-10-27 Production of myristylglycine and oligopeptide derivative thereof Pending JPS63146851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257823A JPS63146851A (en) 1986-10-27 1986-10-27 Production of myristylglycine and oligopeptide derivative thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257823A JPS63146851A (en) 1986-10-27 1986-10-27 Production of myristylglycine and oligopeptide derivative thereof

Publications (1)

Publication Number Publication Date
JPS63146851A true JPS63146851A (en) 1988-06-18

Family

ID=17311618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257823A Pending JPS63146851A (en) 1986-10-27 1986-10-27 Production of myristylglycine and oligopeptide derivative thereof

Country Status (1)

Country Link
JP (1) JPS63146851A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479113A (en) * 1987-05-21 1989-03-24 Shozo Shoji Virus multiplication inhibitor comprising myristyl compound
EP0432039A2 (en) * 1989-12-05 1991-06-12 NIPPON OILS & FATS CO., LTD. Antipsychotic drug comprising an acylaminoacid
FR2672598A1 (en) * 1991-02-11 1992-08-14 Adir NOVEL N-MYRISTOYLTRANSFERASE INHIBITORS, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479113A (en) * 1987-05-21 1989-03-24 Shozo Shoji Virus multiplication inhibitor comprising myristyl compound
EP0432039A2 (en) * 1989-12-05 1991-06-12 NIPPON OILS & FATS CO., LTD. Antipsychotic drug comprising an acylaminoacid
FR2672598A1 (en) * 1991-02-11 1992-08-14 Adir NOVEL N-MYRISTOYLTRANSFERASE INHIBITORS, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

Similar Documents

Publication Publication Date Title
EP0191335A2 (en) Preparation process of (6R)-tetrahydro-l-biopterin
EP0215335A2 (en) Process for preparing N-/1(S)-ethoxycarbonyl-3-phenylpropyl/-L-alanyl-L-proline
EP0311057B1 (en) Process for the production of glutamine derivatives
JPS62228097A (en) Hydroxamic acid compound, its production and remedy of disease based on metal protease action containing said compound
JPS63146851A (en) Production of myristylglycine and oligopeptide derivative thereof
US3467667A (en) Tetrahydropyranyl tyrosine n-carboxy (and thiocarboxy)anhydrides
Yu et al. Synthesis, characteristics and biological activity of pentacoordinated spirophosphoranes derived from amino acids
Beyerman et al. Stereospecific synthesis and optical resolution of 5‐hydroxypipecolic acid
CA1228858A (en) Amino acids through catalytic reaction of co and a hydroxyl compound with enamides
EP0190687B1 (en) Process for preparing ethyl-alpha-(1-carboxyethyl)-amino-gamma-oxo-gamma-phenylbutyrate
JP2627896B2 (en) Myristyl compounds, their preparation and use
Balenović et al. CONTRIBUTION TO THE KNOWLEDGE OF γ-AMINOCROTONIC ACID. VINYLOGS OF α-AMINO ACIDS. I
US3882097A (en) {60 -Methyl glutathione, analogs thereof, intermediates therefore and processes for their preparation
KR20200054903A (en) Method for preparing N-acetyl dipeptide and N-acetyl amino acid
HUT55345A (en) Process for producing vinyl gaba
Tomassy et al. Stereoselective Routes to E and Z Straight-Chain Primary Allylic Amines
US2753347A (en) Dihydroqrotic acid
CN115364238B (en) Atuzumab-MMAD conjugate and preparation method and application thereof
SU446506A1 (en) Method for preparing 4-aminoquinazoline derivatives
UA73108C2 (en) Method of synthesis of 1-(aminomethyl)cyclohexyl-acetic acid and intermedier compounds
SU937451A1 (en) Process for producing 6-azauracyl-5-n-glycine
CN116621755A (en) Synthesis method of piracetam related substances
SU999968A3 (en) Process for producing 2-methyl-4-aminopyrimidine
JPH06279489A (en) New okadaic acid derivative
SU1564992A1 (en) Method of producing 1-amino-2h-5,6-dioxo-1,2,3-triazine