JPS63146337A - Ion beam device - Google Patents

Ion beam device

Info

Publication number
JPS63146337A
JPS63146337A JP29197686A JP29197686A JPS63146337A JP S63146337 A JPS63146337 A JP S63146337A JP 29197686 A JP29197686 A JP 29197686A JP 29197686 A JP29197686 A JP 29197686A JP S63146337 A JPS63146337 A JP S63146337A
Authority
JP
Japan
Prior art keywords
terminal
plasma chamber
ion beam
voltage power
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29197686A
Other languages
Japanese (ja)
Inventor
Masayasu Furuya
降矢 正保
Makoto Koguchi
虎口 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29197686A priority Critical patent/JPS63146337A/en
Publication of JPS63146337A publication Critical patent/JPS63146337A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a simple, accurate feedback to variations in an ion beam current, by fixing sample potential, controlling only a potential difference between a plasma chamber and an ion drawing electrode, and holding the beam current to the specified value. CONSTITUTION:Electric potential 32 of a plasma chamber is determined by output voltage 27 of an iron accelerating high-tension power source 27 and another output voltage 35 of an ion drawing high-tension power source 35, while ion drawing voltage 39 is determined by the output voltage 35 of the ion drawing high-tension power source 23 and output voltage 37 of a controlling high-tension power source 29. Here, when an ion beam current value 34 is varied, the output voltage 37 of the power source 29 is controlled, making the current value constant. At the time of this control, since ground potential in the plasma chamber is always invariable, kinetic energy of an ion beam to be reached to a substrate is constant, and a potential difference between the plasma chamber and mass spectrometric magnetic pressure is also invariable, so that it is unnecessary to change the excitation of an analytic electromagnet. That is to say, the current value of the ion beam is controllable only adjusting output of a controlling high-tension source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえば半導体裏造プロセスにおいて、固
体物質に任意のイオン種を注入して固体の物性を制御す
るために用いられるもので、導入された原料ガスまたは
金属蒸気をプラズマ化するプラズマ室と、このプラズマ
室から電界の作用により特定の極性のイオンを引き出す
引出し電極と、この引出し電極によって引き出されたイ
オンの中から特定の電荷/質量比を持つイオンのみを抽
出する質量分析!、電磁石、この5i量分析電磁石によ
って抽出されたイオンが所定の運動エネルギまで電界加
速されるまでの走行行程を形成する加速管とを備え、大
地電位にある試料の表面に前記特定の電荷/質量比を有
するイオンのビームを照射するイオンビーム装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention is used to control the physical properties of a solid material by injecting arbitrary ion species into a solid material, for example in a semiconductor backing process. A plasma chamber that turns raw material gas or metal vapor into plasma, an extraction electrode that extracts ions of a specific polarity from this plasma chamber by the action of an electric field, and a specific charge/mass from among the ions extracted by this extraction electrode. Mass spectrometry that extracts only ions with specific ratios! , an electromagnet, and an acceleration tube that forms a travel path until the ions extracted by the 5i quantity analysis electromagnet are accelerated by an electric field to a predetermined kinetic energy, and the surface of the sample at ground potential is charged with the specific charge/mass. The present invention relates to an ion beam device that irradiates a beam of ions having a specific ratio.

〔従来の技術〕[Conventional technology]

半導体人造プロセスにおいて従来使用すして(・るイオ
ンビーム装置の主要構成を第7図に示す。
FIG. 7 shows the main configuration of an ion beam apparatus conventionally used in semiconductor manufacturing processes.

すなわちイオンビーム装置は導入された原料ガスまたは
金属蒸気をプラズマ化するプラズマ室lと、このプラズ
マ室から電界の作用により特定極性のイオンを引き出す
引出し電極2と、プラズマ室1に電界を作用させるため
プラズマ室1と引出し電極2との間に電圧を印加するた
めのイオン引出し高圧電113と、この引出し電極によ
って引き出されたイオンの中から特定の電荷/質量比を
持つイオンのみを抽出する質量分析を磁石4と、これら
4者すなわちプラズマ室、引出し電極、イオン引出し高
圧電源、JX量分析′Ks石を収納した金属容器5と、
質量分析電磁石4によって抽出されたイオンが所定の運
動エネルギまで電界加速されるまでの走行行程を形成す
る加速管6と、イオン加速高圧電源7とを主要構成要素
として構成され、この装置に配置された基板8にイオン
ビームlOヲ照射してイオンを注入する。なお、この装
置には、ここには特に図示しないが、前記主要構成要素
を包囲する真空容器や排気装置などの機器も含まれる。
In other words, the ion beam device consists of a plasma chamber 1 for turning introduced raw material gas or metal vapor into plasma, an extraction electrode 2 for extracting ions of a specific polarity from this plasma chamber by the action of an electric field, and a plasma chamber 1 for applying an electric field to the plasma chamber 1. An ion extraction high-voltage electric current 113 for applying voltage between the plasma chamber 1 and the extraction electrode 2, and a mass spectrometer for extracting only ions with a specific charge/mass ratio from among the ions extracted by the extraction electrode. A magnet 4, a metal container 5 containing these four components, namely a plasma chamber, an extraction electrode, an ion extraction high-voltage power supply, and a JX quantity analysis 'Ks stone.
The main components are an acceleration tube 6, which forms a travel path for ions extracted by a mass spectrometer electromagnet 4 to be accelerated to a predetermined kinetic energy by an electric field, and an ion acceleration high-voltage power source 7, which are arranged in this apparatus. The substrate 8 is irradiated with an ion beam 10 to implant ions. Although not particularly illustrated here, this apparatus also includes equipment such as a vacuum container and an exhaust device that surround the main components.

このように構成されたイオンビーム装置によるイオン注
入までの過程はつぎの通りである。すなわち、原料ガス
または金属蒸気をプラズマ室1に導入し、たとえば熱陰
極から放出された電子をこのプラズマ室内で電界加速し
て原料ガスまたは金属 属蒸気に衝突させてプラズマ化する。プラズマ室1には
イオン引出し電極2を基憩にしてイオン引出し高圧電源
3により正極性の数kVないし数十kVの電圧を印加し
、プラズマ室の引出し電極側に形成されたスリットから
イオンビーム群9を引き出す。このイオンビーム群には
種々のイオン種が含まれるので、質量分析電磁石の平行
に対向する磁極の間を通し、ta力の作用によって走行
路を湾曲させながら特定の電荷/質量比を有するイオン
とにより加速管6の中で所望の運動エネルギまで加速さ
れ基板8に注入される。
The process up to ion implantation using the ion beam apparatus configured as described above is as follows. That is, a raw material gas or metal vapor is introduced into the plasma chamber 1, and electrons emitted from, for example, a hot cathode are accelerated in the plasma chamber by an electric field and collide with the raw material gas or metal vapor to become plasma. A positive voltage of several kV to several tens of kV is applied to the plasma chamber 1 by an ion extraction high-voltage power supply 3 using an ion extraction electrode 2 as a base, and a group of ion beams is generated from a slit formed on the extraction electrode side of the plasma chamber. Pull out 9. Since this ion beam group contains various ion species, it is passed between the parallel opposing magnetic poles of the mass spectrometer electromagnet, and the ions with a specific charge/mass ratio are It is accelerated to a desired kinetic energy in the acceleration tube 6 and injected into the substrate 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に述べた従来装置において、発明が解決しようとす
る問題点はつぎの通りである。すなわち。
The problems to be solved by the present invention in the conventional device described above are as follows. Namely.

従来は基板上にイオンを均一に注入するため、加速管内
で加速されたイオンビームに交番電磁界を作用させ、基
板面上を左右方向に定食しながらこの走査線を上下方向
に移動させたり、基板自体を機械的に移動させたりする
操作を行なっている。
Conventionally, in order to uniformly implant ions onto a substrate, an alternating electromagnetic field was applied to the ion beam accelerated in an acceleration tube, and the scanning line was moved vertically while moving horizontally over the substrate surface. Operations such as mechanically moving the board itself are performed.

しかしながら、イオンビームの電流値はたとえば原料ガ
スの圧力変動によって変化するから、計測器Mによって
試料に注入される電流を計測し、この計測結果に基づい
て走査速度を変えたり、基板の移動速度を調整したりし
なければならず、制御系の?Jfi’ll化を招いてい
た。また、イオンを均一に注入する別の方法として、第
8図のように、イオン引出し高圧電源3の出力電圧を調
整してイオンビームの電流値を一定に保つ制御も行なわ
れている。すなわち、同図において、イオンビーム電流
14が原料ガスの圧力低下によりaのように低下すると
、イオン加速高圧IKfi7の出力電圧をあげてプラズ
マ室1の対地電位すなわち対試料電位を高くシ、イオン
ビーム10の走行速度を増してイオンビーム電流をもと
の値に回復させる。しかしイオンビームを形成する個々
のイオンは速度を増しているから、イオンビーム電流が
もとの値に回復した時点t2においてこんどはイオン加
速高圧電源7の出力電圧をもとの電圧よりも下げるとと
もにイオン引出し高圧電源3の出力電圧をあげてプラズ
マ室1と引出し電極2との間に印加される電圧を増し、
プラズマ室の対試料電圧をもとに復するとともにイオン
ビーム電流を一定に維持する。このような運転状態でこ
んどは原料ガスの圧力が上昇し、bのようにイオンビー
ム電流が増えようとすると、イオン加速高圧電源7の出
力電圧を下げてプラズマ室1の対地電圧すなわち対試料
電位を低(シ、イオンビーム10の走行速度を低下させ
てイオンビーム電流をもとの値に戻す。イオンビーム電
流がもとの値に戻った時点t5において前記イオン加速
高圧電源7の出力電圧をもとの電圧よりもあげるととも
にイオン引出し高圧電源3の出力電圧を下げてプラズマ
室1の対試料電位をもとに復するとともにプラズマ室1
と引出し電極2との間に印加される電圧を小さくし、イ
オンビーム電流を一定に維持する。すなわちこの方法に
よればイオン加速高圧電源の出力電圧とイオン引出し高
圧電源の出力電圧とを相互に関連させながら制御して均
一なイオン注入を行なう必要があり、また、プラズマ室
と質量分析電磁石との間の電位差がイオン引出し高圧電
源の出力電圧とともに変動し、電荷/質量比、が特定の
イオンの抽出精度に支障を来たすことから、tMi石の
励S電流も制御する必要を生じ、miな制御を必要とし
ていC0本発明の目的は前記従来の装置において必要と
した複雑な制御系を必要とせず、イオンビーム電流の変
動に対し、単純、的確なフィードバック制御が可能なイ
オンビーム装置を提供することである。
However, since the current value of the ion beam changes, for example, due to pressure fluctuations in the source gas, the current injected into the sample is measured by the measuring device M, and based on this measurement result, the scanning speed can be changed or the moving speed of the substrate can be changed. Do you have to adjust the control system? It was inviting Jfi'll. As another method for uniformly implanting ions, as shown in FIG. 8, control is also performed to keep the current value of the ion beam constant by adjusting the output voltage of the ion extraction high-voltage power supply 3. That is, in the same figure, when the ion beam current 14 decreases as shown in a due to a decrease in the pressure of the source gas, the output voltage of the ion acceleration high voltage IKfi 7 is increased to raise the ground potential of the plasma chamber 1, that is, the potential to the sample, and the ion beam is increased. 10 to restore the ion beam current to its original value. However, since the individual ions forming the ion beam are increasing in speed, at time t2 when the ion beam current has recovered to its original value, the output voltage of the ion accelerating high voltage power supply 7 is lowered from the original voltage, and Increase the output voltage of the ion extraction high voltage power supply 3 to increase the voltage applied between the plasma chamber 1 and the extraction electrode 2,
The voltage to the sample in the plasma chamber is restored based on the voltage and the ion beam current is maintained constant. In this operating state, when the pressure of the source gas increases and the ion beam current attempts to increase as shown in b, the output voltage of the ion accelerating high-voltage power supply 7 is lowered to lower the ground voltage of the plasma chamber 1, that is, the potential with respect to the sample. The traveling speed of the ion beam 10 is reduced to return the ion beam current to its original value. At the time t5 when the ion beam current returns to its original value, the output voltage of the ion accelerating high voltage power supply 7 is reduced. The voltage is raised higher than the original voltage, and the output voltage of the ion extraction high-voltage power supply 3 is lowered to restore the potential of the plasma chamber 1 to the sample to the original level.
and the extraction electrode 2 to keep the ion beam current constant. In other words, according to this method, it is necessary to control the output voltage of the ion accelerating high-voltage power supply and the output voltage of the ion extraction high-voltage power supply in relation to each other to perform uniform ion implantation. The potential difference between the tMi stones fluctuates with the output voltage of the ion extraction high-voltage power supply, and the charge/mass ratio impedes the extraction accuracy of specific ions, making it necessary to control the excitation S current of the tMi stones as well. An object of the present invention is to provide an ion beam apparatus that does not require the complicated control system required in the conventional apparatus and is capable of simple and accurate feedback control of fluctuations in the ion beam current. It is to be.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、この発明によれば、尋人
された原料ガスまたは金属蒸″気をプラズマ化するプラ
ズマ室と、このプラズマ室から電界の作用により特定の
極性のイオンを引き出す引出し電極と、この引出し電極
によって引き出されたイオンの中から特定の電荷/質量
比を持つイオンのみを抽出する質量分析電磁石と、この
質量分析電磁石によって抽出されたイオンが所定の運動
エネルギまで電界加速されるまでの走行行程を形成する
加速管とを備え、大地電位にある試料の表面に前記特定
の電荷/質量比を有するイオンのビームを照射するイオ
ンビーム装置においで、前記プラズマ室の対地電位が所
定電位に固定されるとともに、前記試料表面に照射され
たイオンと一ム量の所定値からの変化に対応して前記プ
ラズマ室に電界を作用させる引出し電極と該プラズマ室
との間に印加される電圧が前記イオンビーム量を所定値
に保持するように変化せしめられるものとする、〔作用
〕 以上のように、イオンビーム量を所定値に保持するのに
、イオン加速高圧電源の出力電圧を固定したままプラズ
マ室と引出し電極との間にイオン引出し電圧を印加する
イオン引出し高圧電源の出力電圧のみを、イオンビーム
量の所定値からの変動と関連させて制御するようにした
ので制御系が著しく単純になり、従って精度の高い的確
な制御が容易になる。
In order to achieve the above object, the present invention provides a plasma chamber for converting raw material gas or metal vapor into plasma, and a drawer for extracting ions of a specific polarity from the plasma chamber by the action of an electric field. An electrode, a mass analysis electromagnet that extracts only ions with a specific charge/mass ratio from the ions extracted by the extraction electrode, and an electric field that accelerates the ions extracted by the mass analysis electromagnet to a predetermined kinetic energy. In the ion beam apparatus, which is equipped with an acceleration tube that forms a traveling path until the plasma chamber reaches the ground potential, and irradiates a beam of ions having the specific charge/mass ratio onto the surface of a sample at ground potential, the ground potential of the plasma chamber is An electric field is applied between the extraction electrode and the plasma chamber, which is fixed at a predetermined potential and applies an electric field to the plasma chamber in response to a change from a predetermined value in the amount of ions and ions irradiated onto the sample surface. [Function] As described above, in order to maintain the ion beam amount at a predetermined value, the output voltage of the ion accelerating high voltage power supply is changed to maintain the ion beam amount at a predetermined value. Since only the output voltage of the ion extraction high-voltage power supply, which applies the ion extraction voltage between the plasma chamber and the extraction electrode while being fixed, is controlled in relation to the fluctuation of the ion beam amount from a predetermined value, the control system is It is significantly simpler and thus facilitates precise and precise control.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例を示す。この実施例では
、装置はプラズマ室21.イオン引出し電極n、出力電
圧が一定のイオン引出し高圧電源器。
FIG. 1 shows a first embodiment of the present invention. In this embodiment, the apparatus includes a plasma chamber 21. Ion extraction high voltage power supply with ion extraction electrode n and constant output voltage.

質量分析電磁石U、出力電圧が可変の制御用高圧電源器
、これらを収納した金属容器5.加速管が。
Mass spectrometry electromagnet U, control high-voltage power supply with variable output voltage, and a metal container housing these 5. Accelerator tube.

出力電圧が一定のイオン加速用高圧電源rを主要構成要
素として構成される。導入された原料ガスや金属蒸気を
プラズマ室でプラズマ化し、プラズマ室ことイオン引出
し電極nとの電位差すなわちイオン引出し高圧電源nと
制御用高圧電源器との出力によってイオンビーム群9が
引き出される。
The main component is a high-voltage power supply r for ion acceleration with a constant output voltage. The introduced raw material gas and metal vapor are turned into plasma in the plasma chamber, and the ion beam group 9 is extracted by the potential difference between the plasma chamber and the ion extraction electrode n, that is, the output of the ion extraction high voltage power supply n and the control high voltage power supply.

このイオンビーム群を質量分析電磁石別により質量分析
し、さらに所定の運動エネルギまで加速するのは従来の
第7図の場合と同様である。
This ion beam group is subjected to mass analysis using separate mass analysis electromagnets and further accelerated to a predetermined kinetic energy, as in the conventional case shown in FIG.

このような構成の場合、第2図に示すように、プラズマ
室の電位32は、イオン加速用高圧電源nの出力電圧間
とイオン引出し高圧電源器の出力電圧あとで決定され、
イオン引出しに作用するイオン引出し電圧39は、イオ
ン引出し高圧電源器の出力電圧あと制御用高圧電源器の
出力電圧37とで決定される。ここで、各種原因でイオ
ンビーム電流値あが変化した場合、たとえばCのように
低下したときには制御用高圧電源器の出力電圧37が大
きくなるように制御し、dのように増えた時には逆の制
御を行ない、電流値が一定になるようにする。
In such a configuration, as shown in FIG. 2, the potential 32 of the plasma chamber is determined between the output voltage of the ion acceleration high voltage power supply n and the output voltage of the ion extraction high voltage power supply,
The ion extraction voltage 39 that acts on ion extraction is determined by the output voltage of the ion extraction high voltage power supply and the output voltage 37 of the control high voltage power supply. Here, if the ion beam current value a changes due to various reasons, for example, when it decreases as shown in C, the output voltage 37 of the control high voltage power supply is controlled to increase, and when it increases as shown in d, the reverse is done. Control is performed to keep the current value constant.

この制御のときには、プラズマ室の対地電位すなわち対
基板電位が常に不変であるから、基板に到達するイオン
ビームの運動エネルギが一定であり。
During this control, the ground potential of the plasma chamber, that is, the potential to the substrate, remains constant, so the kinetic energy of the ion beam reaching the substrate remains constant.

また、プラズマ室と質量分析電磁石の電位差も不変なの
で、質量分析電磁石の励$を変える必要もなくなる。す
なわち、制御用高圧電源の出力を調整するだけで、他の
条件を変えることなくイオンビームの電流値が制御でき
る。
Furthermore, since the potential difference between the plasma chamber and the mass spectrometer electromagnet remains unchanged, there is no need to change the excitation of the mass spectrometer electromagnet. In other words, the current value of the ion beam can be controlled by simply adjusting the output of the control high-voltage power supply without changing other conditions.

第3図に本発明の第2の実施例を示す。この実施例では
、出力電圧が一定のイオン加速高圧電源γを用い、大地
を基漁にしてプラズマ室21に正極性高電圧を印加する
とともに、出力電圧が可変のイオン引出し高圧電源nを
用いてプラズマ室21を基活にしてイオン引出し電極乙
に負極性′iE′fL圧を印加している。装置をこのよ
うに構成すれば、第4図に示すように、イオンビーム電
流値あが変化したとき、イオン引出し高圧電源の出力電
圧間のみを変えて定電流制御を行なうことができ、かつ
プラズマ室の電位32は常に一定であるから、基板へ到
達するイオンビームのエネルギは不変である。
FIG. 3 shows a second embodiment of the invention. In this embodiment, an ion accelerating high voltage power source γ with a constant output voltage is used to apply a positive high voltage to the plasma chamber 21 using the earth as a base, and an ion extraction high voltage power source n with a variable output voltage is used. A negative polarity 'iE'fL pressure is applied to the ion extraction electrode B using the plasma chamber 21 as a base. If the apparatus is configured in this way, as shown in Fig. 4, when the ion beam current value changes, constant current control can be performed by changing only the output voltage range of the ion extraction high voltage power supply, and the plasma Since the chamber potential 32 is always constant, the energy of the ion beam reaching the substrate remains unchanged.

第5図に前記茶会の実施例を示す。この例では、出力電
圧が一定のイオン加速高圧電源γを用い°、大地を基単
にしてプラズマ室21に正極性高電圧を印加するととも
に、出力電圧が可変のイオン引出し高圧電源nを用いて
大地を基急にしてイオン引出し電極nに正極性高電圧を
印加している。装置をこのように構成すれば、第6図に
示すように、イオンビーム電流値あが変化したとき、イ
オン引出°し高圧電源るの出力電圧おのみを変えて定電
流制御を行なうことができる。第2の実施例と異なる点
は、イオンビームを流が減少したときにイオン引出し高
圧電源の出力電圧を下げる点にある。
FIG. 5 shows an example of the tea ceremony. In this example, an ion accelerating high voltage power source γ with a constant output voltage is used to apply a positive high voltage to the plasma chamber 21 using the ground as a base, and an ion extraction high voltage power source n with a variable output voltage is used. A positive high voltage is applied to the ion extraction electrode n with the ground as its base. If the device is configured in this way, as shown in Figure 6, when the ion beam current value changes, constant current control can be performed by changing the output voltage of the high-voltage power supply for extracting ions. . The difference from the second embodiment is that the output voltage of the ion extraction high voltage power supply is lowered when the flow of the ion beam is reduced.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、プラズマ室の対
地電位すなわち対試料電位を固定して不変に維持し、プ
ラズマ室とイオン引出し電極との電位差のみを制御して
ビーム電流を所定値に保持するようにしたので、イオン
ビーム電流を所定値に保持するための制御が著しく単純
となり、従ってイオンビーム電流を精度高く所定値に保
持する操作が容易となりかつ試料に入射するイオンビー
ムのエネルギが不変に保たれるから高度に均一なイオン
注入が可能となる。
As described above, according to the present invention, the potential to the ground of the plasma chamber, that is, the potential to the sample is fixed and maintained unchanged, and only the potential difference between the plasma chamber and the ion extraction electrode is controlled to control the beam current to a predetermined value. Since the ion beam current is maintained at a predetermined value, the control for maintaining the ion beam current at a predetermined value is extremely simple. Therefore, it is easy to maintain the ion beam current at a predetermined value with high accuracy, and the energy of the ion beam incident on the sample is reduced. is kept unchanged, making it possible to perform highly uniform ion implantation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による装[構成図、第2
図は第1図の装置各部の対地電位、電位差もしくは電圧
とイオンビーム電流との関係を示す線図、第3図は本発
明の第2の実施例による装置構成図、第4図は第3図の
装置各部の対地電位。 チ棄牟鼻による装置構成図、第6図は第5図の装置各部
の対地電位、電位差もしくは電圧とイオンビーム電流と
の関係を示す線図、第7図は従来の装置の例を示す装置
構成図、第8図は第7図の装置における装置各部の対地
電位、電位差もしくは電圧とイオンビーム電流との関係
を示す線図である。 1.21・・・プラズマ室、2.22・・・イオン引出
し電極、3.23・・・イオン引出し高圧電源、4.2
4・・・質量分析室$石、6,26・・・加速、管、7
.27・・・イオン加速高圧電源、8,28・・・基板
(試料)、10・・・イオンビーム、11 、31・・
・大地電位、12.32・・・プラズマ室の対地電位、
4トー裏=を中“伽唾塙唯II舛四・・・制御用高圧電
源。 M1図 第2区 第3因 時間→ 槙4億 第6図
FIG. 1 shows a configuration diagram of a device according to a first embodiment of the present invention;
The figure is a diagram showing the relationship between the ground potential, potential difference, or voltage of each part of the device in FIG. 1 and the ion beam current, FIG. Ground potential of each part of the device shown in the figure. Figure 6 is a diagram showing the relationship between the ground potential, potential difference or voltage and ion beam current of each part of the apparatus shown in Figure 5, and Figure 7 is an example of a conventional apparatus. The configuration diagram, FIG. 8, is a diagram showing the relationship between the ground potential, potential difference, or voltage of each part of the device in the device shown in FIG. 7, and the ion beam current. 1.21... Plasma chamber, 2.22... Ion extraction electrode, 3.23... Ion extraction high voltage power supply, 4.2
4...Mass spectrometry room $stone, 6,26...acceleration, tube, 7
.. 27... Ion accelerating high voltage power supply, 8, 28... Substrate (sample), 10... Ion beam, 11, 31...
・Earth potential, 12.32... Ground potential of the plasma chamber,
4 toe back = middle "Gayaihan Yui II Masu 4... High voltage power supply for control. M1 diagram 2nd section 3rd factor time → Maki 400 million diagram 6

Claims (1)

【特許請求の範囲】 1)導入された原料ガスまたは金属蒸気をプラズマ化す
るプラズマ室と、このプラズマ室から電界の作用により
特定の極性のイオンを引き出す引出し電極と、この引出
し電極によって引き出されたイオンの中から特定の電荷
/質量比を持つイオンのみを抽出する質量分析電磁石と
、この質量分析電磁石によって抽出されたイオンが所定
の運動エネルギまで電界加速されるまでの走行行程を形
成する加速管とを備え、大地電位にある試料の表面に前
記特定の電荷/質量比を有するビームを照射するイオン
ビーム装置において、前記プラズマ室の対地電位が所定
電位に固定されるとともに、前記試料表面に照射された
イオンビーム量の所定値からの変化に対応して前記プラ
ズマ室に電界を作用させる引出し電極と該プラズマ室と
の間に印加される電圧が前記イオンビーム量を所定値に
保持するように変化せしめられることを特徴とするイオ
ンビーム装置。 2)特許請求の範囲第1項記載の装置において、プラズ
マ室の対地電位の所定電位への固定は、一方の端子が大
地電位に接続され他方の端子に前記一方の端子に対して
一定の正極性高電圧を発生する第1の高圧電源と、一方
の端子が前記第一の高圧電源の正極性高電圧端子に接続
され他方の端子がプラズマ室に接続されたときに該プラ
ズマ室の対地電位が前記所定の対地電位となる電圧を端
子間に発生する第2の高圧電源とにより行なわれ、前記
プラズマ室と引出し電極との間に印加されイオンビーム
量を所定値に保持するように変化せしめられる電圧は、
一方の端子が前記第1の高圧電源の正極性高電圧端子に
接続され他方の端子に可変の正極性または負極性電圧を
発生して前記引出し電極に接続される第3の高圧電源と
前記第2の高圧電源との間で得られることを特徴とする
イオンビーム装置。 3)特許請求の範囲第1項記載の装置において、プラズ
マ室の対地電位の所定電位への固定は、一方の端子が大
地電位に接続され他方の端子に前記一方の端子に対して
前記所定電位の値に等しい正極性高電圧を発生する第1
の高圧電源の前記他方の端子をプラズマ室に接続するこ
とにより行なわれ、前記プラズマ室と引出し電極との間
に印加されイオンビーム量を所定値に保持するように変
化せしめられる電圧は、一方の端子が前記第1の高圧電
源のプラズマ室側端子に接続され他方の端子に可変の負
極性電圧を発生して前記引出し電極に接続される第2の
高圧電源により与えられることを特徴とするイオンビー
ム装置。 4)特許請求の範囲第1項記載の装置において、プラズ
マ室の対地電位の所定電位への固定は、一方の端子が大
地電位に接続され他方の端子に前記一方の端子に対して
前記所定電位の値に等しい正極性高電圧を発生する第1
の高圧電源の前記他方の端子をプラズマ室に接続するこ
とにより行なわれ、前記プラズマ室と引出し電極との間
に印加されイオンビーム量を所定値に保持するように変
化せしめられる電圧は、一方の端子が大地電位に接続さ
れ他方の端子に前記一方の端子に対して可変の正極性高
電圧を発生して前記引出し電極に接続される第2の高圧
電源と前記第1の高圧電源との間で得られることを特徴
とするイオンビーム装置。
[Claims] 1) A plasma chamber that turns introduced raw material gas or metal vapor into plasma, an extraction electrode that extracts ions of a specific polarity from this plasma chamber by the action of an electric field, and ions extracted by this extraction electrode. A mass spectrometry electromagnet that extracts only ions with a specific charge/mass ratio from among the ions, and an acceleration tube that forms a travel path for the ions extracted by the mass spectrometer electromagnet to be accelerated by an electric field to a predetermined kinetic energy. In an ion beam apparatus that irradiates the surface of a sample at ground potential with a beam having the specific charge/mass ratio, the ground potential of the plasma chamber is fixed at a predetermined potential, and the surface of the sample is irradiated with a beam having the specific charge/mass ratio. A voltage applied between the plasma chamber and an extraction electrode that applies an electric field to the plasma chamber in response to a change in the ion beam amount from a predetermined value maintains the ion beam amount at a predetermined value. An ion beam device characterized in that it can be changed. 2) In the apparatus according to claim 1, the ground potential of the plasma chamber is fixed to a predetermined potential by connecting one terminal to the ground potential and the other terminal having a constant positive electrode with respect to the one terminal. a first high voltage power supply that generates a positive high voltage; and a ground potential of the plasma chamber when one terminal is connected to the positive high voltage terminal of the first high voltage power supply and the other terminal is connected to the plasma chamber. is applied between the plasma chamber and the extraction electrode, and the ion beam amount is varied to maintain the ion beam amount at a predetermined value. The voltage applied is
a third high voltage power source, one terminal of which is connected to the positive high voltage terminal of the first high voltage power source, the other terminal of which generates a variable positive or negative polarity voltage, and which is connected to the extraction electrode; An ion beam device characterized in that it can be obtained between the high voltage power source of No. 2. 3) In the apparatus according to claim 1, the ground potential of the plasma chamber is fixed to a predetermined potential by having one terminal connected to the ground potential and the other terminal being connected to the predetermined potential with respect to the one terminal. The first one generates a positive high voltage equal to the value of
This is done by connecting the other terminal of the high-voltage power supply to the plasma chamber, and the voltage applied between the plasma chamber and the extraction electrode and changed to maintain the ion beam amount at a predetermined value is controlled by one terminal. Ions characterized in that a terminal is connected to the plasma chamber side terminal of the first high-voltage power source and generates a variable negative polarity voltage at the other terminal, which is supplied by a second high-voltage power source connected to the extraction electrode. Beam device. 4) In the apparatus according to claim 1, the ground potential of the plasma chamber is fixed to a predetermined potential by connecting one terminal to the ground potential and the other terminal to the predetermined potential with respect to the one terminal. The first one generates a positive high voltage equal to the value of
This is done by connecting the other terminal of the high-voltage power supply to the plasma chamber, and the voltage applied between the plasma chamber and the extraction electrode and changed to maintain the ion beam amount at a predetermined value is controlled by one terminal. between the first high-voltage power source and a second high-voltage power source whose terminal is connected to ground potential and whose other terminal generates a variable positive high voltage with respect to the one terminal and is connected to the extraction electrode; An ion beam device characterized by being obtained by:
JP29197686A 1986-12-08 1986-12-08 Ion beam device Pending JPS63146337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29197686A JPS63146337A (en) 1986-12-08 1986-12-08 Ion beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29197686A JPS63146337A (en) 1986-12-08 1986-12-08 Ion beam device

Publications (1)

Publication Number Publication Date
JPS63146337A true JPS63146337A (en) 1988-06-18

Family

ID=17775899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29197686A Pending JPS63146337A (en) 1986-12-08 1986-12-08 Ion beam device

Country Status (1)

Country Link
JP (1) JPS63146337A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525263A (en) * 1975-06-30 1977-01-14 Ibm Ion implanting apparatus
JPS57130358A (en) * 1981-02-05 1982-08-12 Nippon Telegr & Teleph Corp <Ntt> Full automatic ion implantation device
JPS58165238A (en) * 1982-03-26 1983-09-30 Jeol Ltd Ion beam apparatus
JPS6139356A (en) * 1984-07-30 1986-02-25 Hitachi Ltd Ion implanting equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525263A (en) * 1975-06-30 1977-01-14 Ibm Ion implanting apparatus
JPS57130358A (en) * 1981-02-05 1982-08-12 Nippon Telegr & Teleph Corp <Ntt> Full automatic ion implantation device
JPS58165238A (en) * 1982-03-26 1983-09-30 Jeol Ltd Ion beam apparatus
JPS6139356A (en) * 1984-07-30 1986-02-25 Hitachi Ltd Ion implanting equipment

Similar Documents

Publication Publication Date Title
US6020592A (en) Dose monitor for plasma doping system
CN1998062B (en) Methods for stable and repeatable plasma ion implantation
WO2005086204A2 (en) Modulating ion beam current
US5300891A (en) Ion accelerator
JPH07101602B2 (en) Device for scanning a high current ion beam with a constant incident angle
US3845312A (en) Particle accelerator producing a uniformly expanded particle beam of uniform cross-sectioned density
JPH0567450A (en) Ion implantation apparatus
KR101650244B1 (en) Medium current ribbon beam for ion implantation
US3013154A (en) Method of and apparatus for irradiating matter with high energy electrons
US3909305A (en) Ion implantation process
US4881010A (en) Ion implantation method and apparatus
JPS62108438A (en) High current mass spectrometer employing space charge lens
CA2129403C (en) Ion implanting apparatus and ion implanting method
JPS63146337A (en) Ion beam device
JP2644958B2 (en) Ion source device and ion implantation device provided with the ion source device
JP2654004B2 (en) Ion implantation apparatus and method
JPS6412061B2 (en)
KR100289668B1 (en) Ion Injection Device
Lossy et al. Characterization of a reactive broad beam radio‐frequency ion source
EP0066175B1 (en) Ion implanter
JP3244883B2 (en) Ion implantation method
Satoh et al. Optima XE single wafer high energy ion implanter
JP2569812B2 (en) High energy ion implanter
KR20010054277A (en) Ion Counting Device
Gottdang et al. A dual source low-energy ion implantation system for use in silicon molecular beam epitaxy