JPS63145662A - Production of antithrombogenic medical material - Google Patents

Production of antithrombogenic medical material

Info

Publication number
JPS63145662A
JPS63145662A JP61292246A JP29224686A JPS63145662A JP S63145662 A JPS63145662 A JP S63145662A JP 61292246 A JP61292246 A JP 61292246A JP 29224686 A JP29224686 A JP 29224686A JP S63145662 A JPS63145662 A JP S63145662A
Authority
JP
Japan
Prior art keywords
graft
antithrombotic
monomer
medical material
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61292246A
Other languages
Japanese (ja)
Other versions
JPH0657246B2 (en
Inventor
高信 須郷
次郎 岡本
田崎 誠亮
大西 忠之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Sumitomo Bakelite Co Ltd
Original Assignee
Japan Atomic Energy Research Institute
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Sumitomo Bakelite Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP61292246A priority Critical patent/JPH0657246B2/en
Priority to US07/129,319 priority patent/US4897433A/en
Priority to DE19873741342 priority patent/DE3741342A1/en
Publication of JPS63145662A publication Critical patent/JPS63145662A/en
Publication of JPH0657246B2 publication Critical patent/JPH0657246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ポリオレフィン系高分子にポリエチレングリ
コール基を有するモノマーをグラフト重合した抗血栓性
医用材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an antithrombotic medical material in which a monomer having a polyethylene glycol group is graft-polymerized to a polyolefin polymer.

[従来技術] 医用材料として、高分子材料は、成形の容易さや、延伸
性、可撓性等の理由により、各種の素材が幅広く使用さ
れている。しかし、生体内で使用される場合においては
、生体に悪影響を与ぼさず、周辺の組織との親和性が良
好であることが必要である。特番;、血液と接する部分
においては、血液自体が本来異物との接触により凝固す
る性質を有するため、血液の凝固を招かない性質である
抗血栓性を有することが、医用材料として使用される場
合に必要とされる。他の分野において一般的に使用され
ている高分子材料は、医用材料として使用する場合には
、抗血栓性が不十分であるため、十分な抗血栓性を有す
る高分子材料の開発が試みられている。
[Prior Art] Various polymeric materials are widely used as medical materials due to their ease of molding, stretchability, flexibility, and the like. However, when used in a living body, it is necessary that the material has no adverse effect on the living body and has good affinity with surrounding tissues. Special code: When used as a medical material, blood itself has the property of coagulating when it comes into contact with foreign substances, so it must have antithrombotic properties that do not cause blood coagulation in areas that come into contact with blood. required. Polymer materials commonly used in other fields have insufficient antithrombotic properties when used as medical materials, so attempts have been made to develop polymeric materials with sufficient antithrombotic properties. ing.

抗血栓性を有する高分子材料の開発としては、新たな高
分子材料を作成する試みと従来からの高分子材料に表面
処理を行う試みが行なわれている。
In the development of polymeric materials with antithrombotic properties, attempts have been made to create new polymeric materials and to perform surface treatment on conventional polymeric materials.

前者に関しては、高分子基材自体の組成を変える方法で
あり、特にポリウレタンに関して多くの試みが行なわれ
ており、各種セグメント化ポリウレタン等が市販あるい
は研究開発されている。しかしこれら新規な高分子材料
は、医用材料として使用するに際して成形性や力学的特
性等の性質も満足させる必要があり、問題は多く残され
ている。
Regarding the former, it is a method of changing the composition of the polymer base material itself, and many attempts have been made, particularly with respect to polyurethane, and various segmented polyurethanes and the like are commercially available or under research and development. However, when these new polymeric materials are used as medical materials, they must satisfy properties such as moldability and mechanical properties, and many problems remain.

一方、後者の方法では従来からの一般的な高分子材料に
表面処理を行うなめ、現在使用されている医用材料をそ
のまま利用できる等の利点が大きい。
On the other hand, the latter method has great advantages such as being able to use currently used medical materials as they are, since surface treatment is performed on conventional general polymer materials.

[発明が解決しようとする問題点1 表面処理による抗血栓性の付与の方法としては、抗血栓
性を示す生理活性物質を担持させる方法や高分子材料表
面に血液凝固に対して不活性な構造を形成させる方法が
検討されている。前者の方法に関しては、抗凝固剤であ
るヘパリンを担持させた例として特開昭57−1197
56号公報、特開昭51−194号公報、プロスタグラ
ンジンを担持させた例として特開昭54−135494
号公報等各種の生理活性物質を使用した方法が開示され
ている。しかし、この方法では生理活性物質の遊離や失
活等により、効果は永続しない欠点を有している。一方
、後者である血液凝固に対して不活性な表面構造を形成
させる方法は、永続的な抗血栓性表面を作成できる可能
性を有しているが、血液と高分子材料との相互作用や、
血液凝固過程の開始amに間しては未だ未知の部分が多
く、基本的な研究が必要とされている。
[Problem to be Solved by the Invention 1] Methods for imparting antithrombotic properties through surface treatment include methods for supporting physiologically active substances exhibiting antithrombotic properties and methods for providing a structure inert against blood coagulation on the surface of a polymeric material. A method of forming a is being considered. Regarding the former method, as an example of supporting heparin, which is an anticoagulant, Japanese Patent Application Laid-Open No. 57-1197
56, JP-A-51-194, and JP-A-54-135494 as an example of supporting prostaglandin.
Methods using various physiologically active substances have been disclosed. However, this method has the disadvantage that the effect is not permanent due to release or deactivation of the physiologically active substance. On the other hand, the latter method, which forms a surface structure that is inert to blood coagulation, has the potential to create a permanent antithrombotic surface, but it also reduces the interaction between blood and polymeric materials. ,
There are still many unknowns about the initiation of the blood coagulation process, and fundamental research is required.

一方、高分子材料の表面改質の一方法としてグラフト重
合法がある。この方法は、高分子材料に他のモノマーに
よるグラフト鎖を生成させる方法であり、各種分野にお
いて応用が行なわれている。
On the other hand, a graft polymerization method is one method for surface modification of polymeric materials. This method is a method of generating graft chains using other monomers in a polymeric material, and has been applied in various fields.

抗血栓性材料への応用も試みられており、2−ヒドロキ
シメタアクリレート(HEMA)やアクリルアミド(A
Am)を始めとして各種モノマーの使用例が、特公昭5
0−32554.53−15556号公報、特開昭54
−72294.58−5320.60−242857号
公報等番こ開示されている。この方法による抗血栓性の
amに関しては、幾らによる詳細な研究が行なわれてお
り、高分子表面におけるグラフト鎖が散漫層構造を生成
し、血液との界面自由エネルギーが低下することにより
、血小板や凝固因子との相互作用が減少することによる
と報告している(W/、11人ら、 Po1yIler
 Preprint、 Japan、 Vol。
Applications to antithrombotic materials have also been attempted, including 2-hydroxymethacrylate (HEMA) and acrylamide (A
Examples of the use of various monomers including Am) are given in
Publication No. 0-32554.53-15556, Japanese Unexamined Patent Publication No. 1973
No. 72294.58-5320.60-242857, etc. are disclosed. A number of detailed studies have been conducted regarding antithrombotic am using this method, and it has been found that the graft chains on the polymer surface generate a diffuse layer structure, which lowers the interfacial free energy with blood, resulting in platelets and reported that this is due to decreased interaction with coagulation factors (W/, 11 et al., Polyller
Preprint, Japan, Vol.

29、慮7 p1461〜1464.1980年1人口
臓器 15巻1号p12〜15.1986年)、グラフ
ト重合による抗血栓性表面の作成に関しては、基礎的研
究が行なわれ動物実験における抗血栓性の向上も報告さ
れており(林 利子ら 高分子論文集 39巻p179
〜182.1982年、42巻、p77〜83.198
5年)抗血栓性表面作成のための方法として期待される
方法である。
29, Consideration 7 p1461-1464 (1980 1 Populated Organs Vol. 15 No. 1 p12-15. 1986), basic research has been conducted on the creation of antithrombotic surfaces by graft polymerization, and antithrombotic properties have been demonstrated in animal experiments. Improvement has also been reported (Toshiko Hayashi et al. Polymer Papers Vol. 39, p. 179)
~182.1982, Volume 42, p77-83.198
5 years) This is a promising method for creating antithrombotic surfaces.

[問題点を解決するための手段] 本発明は、グラフト重合法の応用による抗血栓性材料の
製造方法に関して種々検討を重ねた結果、ポリエチレン
グリコール基を有するモノマーを電離性放射線を使用し
た前照射法によりグラフト重合することにより抗血栓性
に優れた医用材料の作成に成功したものである。その目
的とするところは、従来より一般的に使用されている高
分子材料に本発明を適用することにより、抗血栓性に優
れた医用材料の製造方法を提供することにある。
[Means for Solving the Problems] As a result of various studies regarding the production method of antithrombotic materials by applying graft polymerization, the present invention has been developed by pre-irradiating a monomer having a polyethylene glycol group with ionizing radiation. By graft polymerization using this method, we succeeded in creating a medical material with excellent antithrombotic properties. The purpose is to provide a method for producing medical materials with excellent antithrombotic properties by applying the present invention to polymeric materials that have been commonly used.

即ち本発明はポリオレフィン系高分子に予め、電離性放
射線を照射した後、これを次の一般式で示されるモノマ
ーの溶液中は浸漬して、グラフト重合鎖を生成させるこ
とを特徴とする抗血栓性医用材料の製造方法である。
That is, the present invention provides an antithrombotic method in which a polyolefin polymer is irradiated with ionizing radiation in advance and then immersed in a solution of a monomer represented by the following general formula to generate graft polymer chains. This is a method for producing medical materials.

一般式 式中R1はHまたはCH3基 R2はCH3またはC2Hs基でnは 2以上20以下の整数 [作  用] 本発明において使用されるモノマーは、一般式に示され
る様に、末端をメチルまたはエチル化された、ポリエチ
レングリコール基を有するアクリレートまたはメタクリ
レート誘導体であり、グラフト重合法により、基材にグ
ラフト鎖を生成して導入される。基材に導入されたグラ
フト鎖が抗血栓性表面を形成するためには、表面散漫層
を棺成し界面自由エネルギーを低下させる必要がある。
In the general formula, R1 is H or a CH3 group, R2 is a CH3 or C2Hs group, and n is an integer of 2 to 20 [Function] As shown in the general formula, the monomer used in the present invention has a methyl or It is an ethylated acrylate or methacrylate derivative having a polyethylene glycol group, and is introduced into a base material by generating graft chains by a graft polymerization method. In order for the graft chains introduced into the base material to form an antithrombotic surface, it is necessary to form a surface diffuser layer to lower the interfacial free energy.

本モノマーは、ポリエチレングリコール基が非イオン型
の親水性基であり、末端の水酸基がアルキル化されてい
るため、血液とイオン的相互作用がなく、また水分子と
の水素結合の形成も少なく、水分子との親水−疎水性相
互作用を主とした緩やかな結合状態を保持できる。また
、本モノマーは、架橋反応性の少ないモノマーであり、
他の例で使用されている、ヒドロキシエチルメタクリレ
ートやアクリルアミド等と異なり、ポツプコーン重合等
の架橋反応体の生成はほとんど見られない。本モノマー
は以上の様な特性を有することにより、表面散漫層の形
成に最も適したモノマーである。
The polyethylene glycol group of this monomer is a nonionic hydrophilic group, and the terminal hydroxyl group is alkylated, so there is no ionic interaction with blood, and there is little hydrogen bond formation with water molecules. A loose bonding state based mainly on hydrophilic-hydrophobic interactions with water molecules can be maintained. In addition, this monomer is a monomer with low crosslinking reactivity,
Unlike hydroxyethyl methacrylate, acrylamide, etc. used in other examples, formation of crosslinking reactants such as popcorn polymerization is hardly observed. This monomer has the above-mentioned properties and is therefore the most suitable monomer for forming a surface diffusion layer.

また、ポリエチレングリコール基自体が重合体であるた
め、親水基の鎖長を長くすることが可能であり、長鎖の
場合においては界面におけるグラフト鎖の易動性が増大
し、血餅の付着を防止する効果が期待される。しかし、
長楚の場合は、モノマー自体の分子量が増大するためグ
ラフト重合に寄与するビニル基の濃度が低下するため、
グラフト重合の効率が低下し、好ましくない、逆に雉鎖
の場合は、グラフト重合の効率は高いが、親水性におい
て劣るため、ポリエチレングリコールの鎖長は一般式に
おいて、2≦n≦20の範囲が好ましく、4≦n≦10
の範囲が更に好ましい。
In addition, since the polyethylene glycol group itself is a polymer, it is possible to increase the chain length of the hydrophilic group, and in the case of a long chain, the mobility of the graft chain at the interface increases, which prevents the attachment of blood clots. It is expected to have the effect of preventing but,
In the case of Changchu, the molecular weight of the monomer itself increases and the concentration of vinyl groups that contribute to graft polymerization decreases.
In the case of pheasant chains, the efficiency of graft polymerization decreases, which is undesirable.On the other hand, in the case of pheasant chains, the efficiency of graft polymerization is high, but the hydrophilicity is poor, so the chain length of polyethylene glycol is in the range of 2≦n≦20 in the general formula. is preferable, and 4≦n≦10
The range is more preferable.

本発明において用いられるポリオレフィン系高分子はグ
ラフト重合の基材となるものであり、機械的強度と形状
の保持に寄与する。本発明を適用するためにはグラフト
重合性に優れ、また毒性がない等医用材料としての適性
を有する必要があり、ポリオレフィン系高分子が望まし
い。ポリオレフィン系高分子としては、炭素−炭素不飽
和結合を有するモノマーの重合により生成された高分子
材料である。ポリエチレン、ポリプロピレン、ポリブタ
ジェン等が挙げられる。
The polyolefin polymer used in the present invention serves as a base material for graft polymerization and contributes to mechanical strength and shape retention. In order to apply the present invention, it is necessary to have excellent graft polymerizability and suitability as a medical material such as non-toxicity, and polyolefin polymers are desirable. The polyolefin polymer is a polymer material produced by polymerizing monomers having carbon-carbon unsaturated bonds. Examples include polyethylene, polypropylene, polybutadiene, and the like.

本発明において用いられるグラフト重合法は、基材とな
る高分子材料に対してグラフト鎖を生成させる方法であ
り、かつ、電離性放射線を使用した前照射法により行な
う方法である。グラフト重合法としては、多種類の方法
が行なわれているが、電離性放射線を使用する方法は、
透過性、ラジカル生成効率に優れ、グラフト重合効率の
高い方法である。また、前照射法は、基材を予しめ、電
離性放射線により照射を行い、ラジカルを生成させた後
にモノマーの水またはアルコール溶液に浸漬し、グラフ
ト鎖を生成させる方法である0本方法は反応性の点より
モノマー濃度60〜90%の高モノマー濃度を必要とす
るがモノマー溶液と共に照射を行う同時照射法に比べて
、反応溶液中におけるラジカル生成が起こらないため、
架橋や分岐の少ないより直鎖に近いグラフト鎖の生成が
可能であり、生成したグラフト鎖の易動性が高く、本発
明の目的に好適な方法である。電離性放射線としては、
基材である高分子材料に対して直接的または間接的に電
離作用を及ぼす放射線であれば、使用可能であり、具体
的には、アルファ線、ベータ線、ガンマ線、エックス線
あるいは、加速電子線等の加速粒子線が挙げられる。
The graft polymerization method used in the present invention is a method of generating graft chains on a polymer material serving as a base material, and is a method of performing pre-irradiation using ionizing radiation. There are many types of graft polymerization methods, but the method using ionizing radiation is
This method has excellent permeability, radical generation efficiency, and high graft polymerization efficiency. In addition, the pre-irradiation method is a method in which the base material is irradiated with ionizing radiation in advance to generate radicals, and then immersed in a monomer water or alcohol solution to generate graft chains. Although a high monomer concentration of 60 to 90% is required from the viewpoint of performance, radical generation does not occur in the reaction solution compared to the simultaneous irradiation method in which irradiation is performed together with the monomer solution.
This method is suitable for the purpose of the present invention because it is possible to generate graft chains that are more linear with less crosslinking and branching, and the resulting graft chains have high mobility. As ionizing radiation,
Any radiation that has an ionizing effect directly or indirectly on the base polymer material can be used; specifically, alpha rays, beta rays, gamma rays, X-rays, accelerated electron beams, etc. Examples include accelerated particle beams.

抗血栓性を改良するに必要なグラフト率は、抗血栓性が
表面のみに依存する性質であるため、基材の形式により
興なり、グラフト率で厳密に特定することはできないが
、例えば、厚さ50μmのフィルムの場合では、グラフ
ト率で12〜50%好ましくは15〜45%が望ましい
The grafting rate required to improve antithrombotic properties depends on the type of substrate, as antithrombotic properties depend only on the surface, and cannot be determined strictly by the grafting rate, but for example, the grafting rate depends on the thickness. In the case of a film with a diameter of 50 μm, a graft ratio of 12 to 50%, preferably 15 to 45% is desirable.

[発明の効果] 本発明は、日常一般的に使用されている高分子材料であ
るポリオレフィンの表面を改質することにより、高い抗
血栓性を有する医用材料を提供する方法であり血液に接
触する部分に使用されるチューブ、シート、カテーテル
、カニューラ、生体埋入材料、人工血管、人工臓器等に
おいて有用な医用材料を提供する。
[Effects of the Invention] The present invention is a method for providing a medical material with high antithrombotic properties by modifying the surface of polyolefin, which is a polymeric material commonly used in daily life, and is a method for providing a medical material with high antithrombotic properties. We provide medical materials that are useful in tubes, sheets, catheters, cannulas, biological implant materials, artificial blood vessels, artificial organs, etc.

〔実 施 例] 以下、本発明を実施例に基いて説明する。〔Example] The present invention will be explained below based on examples.

実施例 低密度ポリエチレンフィルム(厚さ50μm)に電子線
を窒素雰囲気下にて30M raclの前照射を行った
後ガラス容器中で、窒素雰囲気下にて、モツマ−A、B
、Cの溶液に浸漬し、45℃恒温水槽中でグラフト重合
反応を行った。所定時間経過後ガラス容器を開封し、フ
ィルムを取り出し、水洗後減圧乾燥を行い、フィルムの
反応前後の重量差よりグラフト率を測定した。
Example A low-density polyethylene film (thickness: 50 μm) was pre-irradiated with an electron beam at 30M RACL under a nitrogen atmosphere, and then Motsuma-A and B were irradiated in a glass container under a nitrogen atmosphere.
, C, and a graft polymerization reaction was carried out in a constant temperature water bath at 45°C. After a predetermined period of time had elapsed, the glass container was opened, the film was taken out, washed with water and dried under reduced pressure, and the grafting rate was measured from the difference in weight of the film before and after the reaction.

結果を第1表に示す。The results are shown in Table 1.

生成したフィルムはいづれも透明で平滑であった。All of the films produced were transparent and smooth.

比較例 低密度ポリエチレンフィルム(厚さ50μm)に電子線
を窒素雰囲気下にて20M radの前照射を行った後
、ガラス容器中で窒素雰囲気下にて、2−ヒドロキシエ
チルメタアクリレート(HEMA)およびアクリルアミ
ド(AAm)の溶液に浸漬し、それぞれ25℃、40℃
の恒温水槽中でグラフト重合反応を行った。所定時間経
過後、ガラス容器を開封し、フィルムを取り出し水洗後
、減圧乾燥を行いフィルムの反応前後の重量差よりグラ
フト率を測定した。
Comparative Example A low-density polyethylene film (thickness: 50 μm) was pre-irradiated with an electron beam at 20 Mrad in a nitrogen atmosphere, and then 2-hydroxyethyl methacrylate (HEMA) and Immersed in acrylamide (AAm) solution at 25°C and 40°C, respectively.
The graft polymerization reaction was carried out in a constant temperature water bath. After a predetermined period of time had elapsed, the glass container was opened, the film was taken out, washed with water, dried under reduced pressure, and the grafting rate was measured from the difference in weight of the film before and after the reaction.

結果を第2表に示す。The results are shown in Table 2.

生成したフィルムは、HEMAに関しては白色化し、数
ミクロンの球状構造が生成したA A mに関しては、
透明であるが、表面に凸凹が生成した。
The produced film was white for HEMA, and for A m, a spherical structure of several microns was produced.
Although it was transparent, unevenness was formed on the surface.

抗血栓性の測定 全弁法により、作成したフィルムの血餅生成率の測定を
行った。新鮮ウサギACD血250μmに0.8%Ca
Cj2液25μmを液加5た後、2枚のフィルムの間に
保持し37℃の恒温槽上にて血液凝固を進行させた。各
測定毎に標準試料として医療用塩ビシートについて同時
に行い、標準試料の血餅の生成率が完全凝固の50〜8
0%になるように血液凝固の時間を設定し、測定試料に
おいて生成した血餅重量を標準試料において生成した血
餅重量で除して、相対血餅生成率を求め、各測定時にお
ける血液の凝固能の相違を消去した。
Measurement of antithrombotic properties The clot formation rate of the prepared film was measured by the full valve method. 0.8% Ca in fresh rabbit ACD blood 250μm
After adding 25 μm of Cj2 liquid, it was held between two films and blood coagulation was allowed to proceed on a constant temperature bath at 37°C. For each measurement, a medical PVC sheet was used as a standard sample.
Set the blood coagulation time so that the blood coagulation rate is 0%, divide the clot weight generated in the measurement sample by the clot weight generated in the standard sample to obtain the relative clot production rate, and calculate the blood clot production rate at each measurement time. The difference in coagulation ability was eliminated.

結果を第3表に示す。The results are shown in Table 3.

第  3  表 血小板粘着性の測定 新鮮ウサギ血よりPRP C多血小板血漿)を作成し、
測定試料を37℃にて10分間接触させた。終了後試料
を生理食塩水を洗浄し、グルタルアルデヒド固定、エタ
ノール洗浄の後、ギムザ染色を行い、光学顕微鏡(10
00倍)にて試料表面に粘着した血小板数を計数した。
Table 3 Measurement of platelet adhesion PRP platelet-rich plasma was prepared from fresh rabbit blood,
The measurement sample was brought into contact with the sample at 37°C for 10 minutes. After completion, the sample was washed with physiological saline, fixed with glutaraldehyde, washed with ethanol, stained with Giemsa, and subjected to light microscopy (10
The number of platelets adhering to the sample surface was counted at a magnification of 0.00 times.

また、粘着血小板数はグラフト反応前の基材である低密
度ポリエチレンフィルムとの比を計算した。
In addition, the number of adherent platelets was calculated by calculating the ratio to the low density polyethylene film that was the base material before the graft reaction.

結果を第4表に示す。The results are shown in Table 4.

第  4  表Table 4

Claims (1)

【特許請求の範囲】 ポリオレフィン系高分子に予め、電離性放射線を照射し
た後、これを下記の一般式で示されるモノマーの溶液中
に浸漬して、グラフト重合鎖を生成させることを特徴と
する抗血栓性医用材料の製造方法。 一般式 ▲数式、化学式、表等があります▼ 式中R_1はHまたはCH_3基 R_2はCH_3またはC_2H_5基でnは2以上2
0以下の整数
[Claims] The method is characterized in that a polyolefin polymer is irradiated with ionizing radiation in advance and then immersed in a solution of a monomer represented by the following general formula to generate graft polymer chains. Method for producing antithrombotic medical material. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In the formula, R_1 is H or CH_3 group R_2 is CH_3 or C_2H_5 group, and n is 2 or more 2
integer less than or equal to 0
JP61292246A 1986-12-08 1986-12-08 Method for producing antithrombogenic medical material Expired - Lifetime JPH0657246B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61292246A JPH0657246B2 (en) 1986-12-08 1986-12-08 Method for producing antithrombogenic medical material
US07/129,319 US4897433A (en) 1986-12-08 1987-12-03 Process for producing an anti-thrombogenic material by graft polymerization
DE19873741342 DE3741342A1 (en) 1986-12-08 1987-12-07 METHOD FOR PRODUCING AN ANTITHROMBOW MATERIAL BY GRAFT POLYMERIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292246A JPH0657246B2 (en) 1986-12-08 1986-12-08 Method for producing antithrombogenic medical material

Publications (2)

Publication Number Publication Date
JPS63145662A true JPS63145662A (en) 1988-06-17
JPH0657246B2 JPH0657246B2 (en) 1994-08-03

Family

ID=17779342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292246A Expired - Lifetime JPH0657246B2 (en) 1986-12-08 1986-12-08 Method for producing antithrombogenic medical material

Country Status (1)

Country Link
JP (1) JPH0657246B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000878A1 (en) * 1987-08-06 1989-02-09 Terumo Kabushiki Kaisha Hydrophilic porous membrane, process for its production and plasma-separating apparatus
WO1989002303A1 (en) * 1987-09-11 1989-03-23 Japan As Represented By Director General, Agency O Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
JP2020055944A (en) * 2018-10-02 2020-04-09 日本製紙株式会社 Resin composition and its application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000878A1 (en) * 1987-08-06 1989-02-09 Terumo Kabushiki Kaisha Hydrophilic porous membrane, process for its production and plasma-separating apparatus
WO1989002303A1 (en) * 1987-09-11 1989-03-23 Japan As Represented By Director General, Agency O Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
JP2020055944A (en) * 2018-10-02 2020-04-09 日本製紙株式会社 Resin composition and its application
WO2020071214A1 (en) * 2018-10-02 2020-04-09 日本製紙株式会社 Resin composition and applications thereof
US11939463B2 (en) 2018-10-02 2024-03-26 Nippon Paper Industries Co., Ltd. Resin composition and uses thereof

Also Published As

Publication number Publication date
JPH0657246B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
US4897433A (en) Process for producing an anti-thrombogenic material by graft polymerization
US4743258A (en) Polymer materials for vascular prostheses
US4424311A (en) Antithrombogenic biomedical material
Fujimoto et al. Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion
Ko et al. Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation
Desai et al. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials
US5278200A (en) Thromboresistant material and articles
Fujimoto et al. Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy‐poly (ethylene glycol) methacrylate by plasma technique
Lee et al. Plasma protein adsorption and platelet adhesion onto comb‐like PEO gradient surfaces
US5100689A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
JPS63502405A (en) implantable material
Nho et al. Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film
Ging-Ho et al. Plasma-induced graft copolymerization of HEMA onto silicone rubber and TPX film improving rabbit corneal epithelial cell attachment and growth
Chen et al. Grafting copolymerization of acrylamides onto preirradiated PP films
JPS63145662A (en) Production of antithrombogenic medical material
JPH0311787B2 (en)
Nho et al. Introduction of phosphoric acid group to polypropylene film by radiation grafting and its blood compatibility
JP3495802B2 (en) Medical materials and polyvinyl alcohol polymers having phosphorylcholine groups
JP3233677B2 (en) Medical devices surface modified by surface polymerization
JPS6039688B2 (en) Blood neophilic medical materials
Kabanov Preparation of polymeric biomaterials with the aid of radiation-chemical methods
WO2022021363A1 (en) Coating composition, hydrogel coating and preparation method therefor, and coated product
JPS591744B2 (en) self-reinforcing hydrogel
JPS62109575A (en) Antithrombotic medical material graft-polymerized with macromonomer
US20010007063A1 (en) Antithrombotic medical material