JPS63144697A - Sound wave transmitter-receiver - Google Patents

Sound wave transmitter-receiver

Info

Publication number
JPS63144697A
JPS63144697A JP29313986A JP29313986A JPS63144697A JP S63144697 A JPS63144697 A JP S63144697A JP 29313986 A JP29313986 A JP 29313986A JP 29313986 A JP29313986 A JP 29313986A JP S63144697 A JPS63144697 A JP S63144697A
Authority
JP
Japan
Prior art keywords
case
watertight case
transducer
heat
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29313986A
Other languages
Japanese (ja)
Other versions
JPH0511839B2 (en
Inventor
Tetsuo Miyama
深山 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29313986A priority Critical patent/JPS63144697A/en
Publication of JPS63144697A publication Critical patent/JPS63144697A/en
Publication of JPH0511839B2 publication Critical patent/JPH0511839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce a space necessary for a transmission circuit and to eliminate a cooling device and to freely determined the beam forming characteristic by containing the transmission circuit in a water-tight case, and removing the heat produced by the transmission circuit out to the water through said case. CONSTITUTION:The transmission case 8 is contained in the water-tight case 1, and the heating part(power type EFT) 81 of the circuit 8 is mounted on the case by using a thermal conductive insulation mounting member 82 made of aluminum nitride of others. A rubber cover 2 does not coat the entire body of the case 1, but a part of the body is covered by a heat sink 9. This heat sink 9 is attached in contact with a part of the case, and further, a ceramic coating 10 covers the outer surface of the heat sink 9, and the extent thus covered by the ceramic coating is baked to the depth of approximately 10 mum. With this constitution, the heat from the part 81 is dispersed to the surrounding water through the member 82, the case 1 and the heat sink 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は送受波器に関し、特に関連送信回路の配置スペ
ースの削除と冷却設備の省略、ならびに自由なビームフ
ォーミンクの形成を図った送受波器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a wave transceiver, and in particular to a wave transmitter/receiver that eliminates the installation space of related transmitting circuits, eliminates cooling equipment, and forms a free beamforming. Concerning vessels.

〔従来の技術〕[Conventional technology]

従来、ソーナー等のセンサとして利用され水中で運用さ
れる送受波器は、耐水圧の金属製水密ケース内部に振動
子とたかだか整合トランスが収納された構造となってい
る。
Conventionally, a transducer used as a sensor for a sonar or the like and operated underwater has a structure in which an oscillator and at most a matching transformer are housed inside a watertight metal case that is resistant to water pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の送受波器は、通常内部に振動子とともに
収納するものが送信回路と振動子とを整合するための整
合トランスのみに限られ、従って送信回路等の電子回路
はこれを配置すべきスペースが別に必要であり、また特
に送信回路の如く和尚量の発熱を伴なうものは水冷、空
冷等専用の冷却設備を設けることが必要となるという問
題がある。
The above-mentioned conventional transducer usually stores only a matching transformer for matching the transmitting circuit and the vibrator together with the transducer, so electronic circuits such as the transmitting circuit must be equipped with this. There is a problem in that a separate space is required, and in particular, in the case of a transmission circuit that generates a large amount of heat, it is necessary to provide dedicated cooling equipment such as water cooling or air cooling.

また従来の送受波器においては、これを複数個利用し、
形成すべき送受波指向特性にもとづく配置構造で組合せ
利用することが多い。この場合、各送受波器を駆動する
送信回路は送受波器と同数用意されることは少なく、1
つの送信回路が複数の送受波器の駆動源となる。従って
振動子と自由に組合せ利用して任意の送信指向性を得る
いわゆるビームホーミング、が自由に出来ないという問
題がある。
In addition, in conventional transducers, multiple of these are used,
They are often used in combination in an arrangement structure based on the wave transmitting and receiving directional characteristics to be formed. In this case, the number of transmitting circuits that drive each transducer is rarely the same as the number of transducers;
One transmitting circuit serves as a driving source for multiple transducers. Therefore, there is a problem in that it is not possible to freely perform so-called beam homing to obtain an arbitrary transmission directivity by freely combining it with a vibrator.

本発明の目的は上述した欠点を除去し、水中で運用する
送受波器において、整合トランスのほか振動子の入出力
回路中央なくとも送信回範を同一の水密ケース収納した
うえその熱放散を配慮した構造とするととKより、送信
回路の艦船内配置スペースと冷却設備の必要性を根本的
に排除し、かつビームホーミングを自由に行なうことが
出来る送受波器を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to provide a transducer for underwater operation, in which the matching transformer and at least the transmission circuit in the center of the input/output circuit of the vibrator are housed in the same watertight case, and consideration is given to heat dissipation. The purpose of this structure is to provide a transducer that fundamentally eliminates the need for a space for arranging a transmitting circuit in a ship and for cooling equipment, and allows for free beam homing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の送受波器は、水密ケースに収納し水中で運用す
る送受波器において、前記水密ケース内に振動子と整合
トランスのほか前記振動子に対する入出力回路中央なく
とも送信回路を収納したうえ前記送信回路に含まれる発
熱部品による発熱を前記水密ケースを介して水中に放散
せしめる構造を有して構成される。
The transducer of the present invention is a transducer housed in a watertight case and operated underwater, in which a transducer, a matching transformer, and at least a transmission circuit are housed in the center of the input/output circuit for the transducer in the watertight case. The transmission circuit is configured to have a structure in which heat generated by heat generating components included in the transmission circuit is dissipated into the water through the watertight case.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の送受波器の一実施例の縦断面図である
FIG. 1 is a longitudinal sectional view of an embodiment of the transducer of the present invention.

第1図について実施例の説明を行なうに先立ち、従来の
送受波器の構造について説明する。第2図は従来の送受
波器の縦断面図である。第2図に示す送受波器は、円筒
形のいわゆるランジュバンタイプの振動子を利用する場
合を例とし、かつこの送受波器はこれを複数個所定の形
状に配列して送。
Before explaining the embodiment with reference to FIG. 1, the structure of a conventional transducer will be explained. FIG. 2 is a longitudinal sectional view of a conventional transducer. The transducer shown in FIG. 2 uses cylindrical so-called Langevin type transducers as an example, and this transducer transmits data by arranging a plurality of them in a predetermined shape.

受信回路と所定の接続方式で接続し所望の送、受波ビー
ムを形成する場合のモジエラー(modular)型の
ユニット送受波器を対象としたものである。
The object is a modular type unit transducer that is connected to a receiving circuit in a predetermined connection method to form desired transmitting and receiving beams.

第2図に示す送受波器は、アルミニウム合金を利用する
耐水圧構造の水密ケース1.水密ケース1の外部を被覆
するゴムカバー2.振動子3.整合トランス4.コルク
5.水密グランド6、ケーブル7#を備えて構成される
The transducer shown in Fig. 2 consists of a watertight case with a water pressure resistant structure made of aluminum alloy. A rubber cover covering the outside of the watertight case 1 2. Vibrator 3. Matching transformer 4. Cork 5. It is configured with a watertight gland 6 and a cable 7#.

振動子3はセラミック等の振動材料を利用する多層円筒
形の振動子本体31と、これを金属ボルト等で挟持して
締付けるフロントマス(front mass )32
、およびリアマス(rear mass) 33等を備
えて構成され、フロントマスの自由端からゴムカバー2
を介して音波が放射される。このとき無用な振動が水密
ケース1に達することを抑止するのがコルク5である。
The vibrator 3 includes a multilayer cylindrical vibrator body 31 made of a vibrating material such as ceramic, and a front mass 32 that is clamped and tightened with metal bolts or the like.
, a rear mass 33, etc., and a rubber cover 2 from the free end of the front mass.
Sound waves are emitted through the At this time, the cork 5 prevents unnecessary vibrations from reaching the watertight case 1.

ゴムカバー2は、水密ケース1が通常軽量化を図ってア
ルミニウム合金を禾1用することが多く、これを水中、
特に海水中tc直接浸漬する場合に発生する腐蝕防止が
目的で利用されている。水密ケースlの内部には、振動
子3とケーブル7を介して接続される送信回路等とのイ
ンピーダンス整合をとるための整合トランスが必要な場
合にはこの整合トランス4も収納される。水密グランド
6はケーブル7を水密状態を保持して水密ケース1の内
部に導くための金具である。
The rubber cover 2 is often made of aluminum alloy in order to reduce the weight of the watertight case 1.
In particular, it is used for the purpose of preventing corrosion that occurs when directly immersed in seawater. If a matching transformer 4 is required for impedance matching between the vibrator 3 and a transmitting circuit connected via the cable 7, the matching transformer 4 is also housed inside the watertight case 1. The watertight gland 6 is a metal fitting for guiding the cable 7 into the watertight case 1 while keeping it in a watertight state.

ところで、このような従来構造の送受波器は、内部に振
動子とたかだか整合トランスのみが収納され、このため
前述したもろもろの問題点が発生する。そこで、送受波
器と接続する回路、特に発熱量の多い送信回路だけでも
水密ケース1の内部に収納しうる構造とし、送受波器の
運用環境としての海水等にその発熱を放散せしめること
が出来れば送信回路の配置スペースと冷却設備が不要と
なるほか送受波器が個別に動作制御でき従ってビームフ
ォーミングも自由に行なうことができるようになるわけ
である。
By the way, such a conventionally structured transducer has only a vibrator and a matching transformer housed inside, and therefore, the above-mentioned problems occur. Therefore, we designed a structure in which the circuit connected to the transducer, especially the transmission circuit that generates a large amount of heat, can be housed inside the watertight case 1, and the heat generated can be dissipated into seawater, etc., which is the operating environment of the transducer. This eliminates the need for space and cooling equipment for the transmitter circuit, and allows the transducer and receiver to operate independently, making it possible to freely perform beamforming.

しかしながら、従来の送受波器は前述した如く水密ケー
スの外部をゴムカバーで覆い、このままでは発熱放散は
不可能である。この問題を解決したものが第1図に示す
送受波器である。
However, as described above, in the conventional transducer, the outside of the watertight case is covered with a rubber cover, and heat dissipation is not possible in this state. The transducer shown in FIG. 1 solves this problem.

第1図に示す送受波器は、水密ケース1.ゴムカバー2
.振動子3.整合トランス4.コルク5゜水密グランド
6、ケーブル7のほか、送信回路8゜ヒートシンク9.
セラミックコーティング10等を備えて構成され、さら
に送信回路8に含まれ特に高発熱性の電力型FETの如
き発熱部品81は送信回路80ケースからとシ出して熱
伝導性絶縁取付部材82で水密ケース1に取付けている
。これら構成品目中、同一記号番号のものは第2図の送
受波器と同一であるので、これらに関する詳細な説明は
省略する。
The transducer shown in FIG. 1 has a watertight case 1. Rubber cover 2
.. Vibrator 3. Matching transformer 4. Cork 5° watertight gland 6, cable 7, transmission circuit 8° heat sink 9.
The transmitter circuit 8 includes a ceramic coating 10 and the like, and a heat-generating component 81 such as a particularly high-heat generating power type FET is removed from the transmitter circuit 80 case and sealed in a watertight case with a thermally conductive insulating mounting member 82. It is installed on 1. Among these components, those with the same symbol numbers are the same as those of the transducer shown in FIG. 2, so a detailed explanation thereof will be omitted.

第1図の実施例では送信回路8を水密ケース1の内部に
収納するとともに、さらに、この送信回路8に含まれる
発熱部品81、本実施例の場合は電力型PETを、窒化
アルミニウム等の熱伝導性がよくしかも絶縁性のある材
料を利用した熱伝導性絶縁取付部材82を利用して水密
ケース1に取付けた構造としている。
In the embodiment shown in FIG. 1, the transmitting circuit 8 is housed inside the watertight case 1, and the heat-generating component 81 included in the transmitting circuit 8, in this embodiment, a power-type PET, is made of aluminum nitride, etc. The structure is such that it is attached to the watertight case 1 using a thermally conductive insulating attachment member 82 made of a material with good conductivity and insulating properties.

また、ゴムカバー2は水密ケース1の全外部を被覆する
ことなく、一部はヒートシンク9で覆ったものとしてい
る。
Further, the rubber cover 2 does not cover the entire exterior of the watertight case 1, but a portion is covered with the heat sink 9.

このヒートシンク9は水密ケース1の一部と密着した状
態で取付けられており、さらにセラミックコーティング
10がこのヒートシンク9の外側を含み第1図に示すセ
ラミックコーティング範囲にわたって約10μm程度の
厚みの焼付処理を施されている。
The heat sink 9 is attached in close contact with a part of the watertight case 1, and the ceramic coating 10 is baked to a thickness of about 10 μm over the ceramic coating range shown in FIG. 1, including the outside of the heat sink 9. It has been subjected.

このような構造とすることによシ、電力型FETの如き
発熱部品81による発熱は、熱伝導性絶縁取付部材82
.水密ケース1ならびにヒートシンク9を介して水中に
放散せしめられる。
With such a structure, the heat generated by the heat generating component 81 such as a power type FET is transferred to the heat conductive insulating mounting member 82.
.. It is dissipated into the water via the watertight case 1 and the heat sink 9.

この場合、セラミックコーティング1oはヒートシンク
9と水密ケースIK対する耐蝕構造を形成し、かつ熱放
散性を殆んど損なわない。
In this case, the ceramic coating 1o forms a corrosion-resistant structure for the heat sink 9 and the watertight case IK, and hardly impairs heat dissipation performance.

こうして、送信回路を水密クース内圧収納し、かつ熱放
散も各易な送受波器が簡素な構成で実現出来る。
In this way, it is possible to realize a transducer with a simple structure, in which the transmitting circuit is housed in a watertight coos internal pressure, and the heat dissipation is easy.

上述した第1図の送受波器は、本発明の一実施例を示す
ものに過ぎず、この変形も種種考えられる。
The transducer shown in FIG. 1 described above merely shows one embodiment of the present invention, and various modifications thereof are possible.

たとえば、水密ケース1を爆着工法による複合金属とし
てもよい。ただし、この場合、外面はステンレスもしく
は銅合金等の耐蝕金属とし、内面はアルミニウム合金等
の熱伝導性の良い金属を利用するものとする。なお、爆
着工法は異種の金属を所定の間隙で対向せしめた状態で
爆発物の爆発力を利用して結合せしめる工法で近時よく
知られている。
For example, the watertight case 1 may be made of composite metal using an explosive bonding method. However, in this case, the outer surface is made of a corrosion-resistant metal such as stainless steel or a copper alloy, and the inner surface is made of a metal with good thermal conductivity such as an aluminum alloy. Incidentally, the explosive bonding method is recently well known as a construction method in which dissimilar metals are placed facing each other with a predetermined gap and bonded together using the explosive force of explosives.

また、水密ケースlの内部もしくは収納する送信回路等
を対象としてこれにシリコンオイル等の絶縁油を充填し
その熱伝導性と絶縁性とを利用するようにしてもよい。
Alternatively, the inside of the watertight case 1 or the transmission circuit housed therein may be filled with insulating oil such as silicone oil to take advantage of its thermal conductivity and insulation properties.

また、水密ケース1に充填すべきものを水素もしくはヘ
リウム等の高熱伝纏性気体としてもほぼ同様に実施しう
ろことは明らかである。
Furthermore, it is obvious that the present invention can be carried out in almost the same way even if the material to be filled into the watertight case 1 is a highly heat conductive gas such as hydrogen or helium.

さらに、本実施例では、水密ケース内に送信回路のみを
収納するものとしているが、これは他に受信回路等所望
の電子回路を追加収納するものとしてもよく、以上はす
べて本発明の主旨を損うことなく容易に実施しうる。
Furthermore, in this embodiment, only the transmitting circuit is housed in the watertight case, but it is also possible to additionally house a desired electronic circuit such as a receiving circuit. It can be easily implemented without any damage.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、送受波器の水密ケー
ス内にこれと結合使用する電子回路中食なくとも送信回
路を収納し、かつその発熱を水密ケースを介して水中に
放散せしめるという構造を備えることによシ、少なくと
も送信回路の配置スペースと冷却設備を削減しうるとと
もに送受波器の複数利用によって形成する際のビームフ
ォーミング特性を自由に決定しうる送受波器が実現でき
るという効果がある。
As explained above, according to the present invention, the transmitting circuit is housed in the watertight case of the transducer, even if the electronic circuit used in connection with the transducer is not exposed, and the heat generated by the transmission circuit is dissipated into the water through the watertight case. By providing this, it is possible to at least reduce the installation space and cooling equipment for the transmitting circuit, and also to realize a transducer that can freely determine the beam forming characteristics when forming the beam by using multiple transducers. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は従来の
送受波器の縦断面図である。 1・・・・・・水密ケース、2・・・・・・ゴムカバー
、3・・・・・・振動子、4・・・・・・整合トランス
、5・・・・・・コルク、6・・・・・・水密グランド
、7・・・・・・ケーブル、8・・・・・・送信回路、
9・・・・・・ヒートシンク、10・・・・・・セラミ
ックコーティング、31・・・・・・振動子本体、32
・・・・・・フロントマス、33・・・・・・リアマス
、81・・・・・・発熱部品、82・・・・・・熱伝導
性絶縁取付部材。 代理人 弁理士  内 原   晋  9・  l氷t
ケース 81−一一発#!、部品 82−m−を÷f云−イ寸部、オキ 箭  1  ト」
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional transducer. 1... Watertight case, 2... Rubber cover, 3... Vibrator, 4... Matching transformer, 5... Cork, 6 ...Watertight ground, 7...Cable, 8...Transmission circuit,
9... Heat sink, 10... Ceramic coating, 31... Vibrator body, 32
...Front mass, 33 ... Rear mass, 81 ... Heat generating component, 82 ... Heat conductive insulation mounting member. Agent Patent Attorney Susumu Uchihara 9.
Case 81-11 shots #! , parts 82-m-÷f-i-dimensions, 1 t.

Claims (7)

【特許請求の範囲】[Claims] (1)水密ケースに収納し水中で運用する送受波器にお
いて、前記水密ケース内に振動子と整合トランスのほか
前記振動子に対する入出力回路中少なくとも送信回路を
収納したうえ前記送信回路に含まれる発熱部品による発
熱を前記水密ケースを介して水中に放散せしめる構造を
有して成ることを特徴とする送受波器。
(1) In a transducer housed in a watertight case and operated underwater, the watertight case houses a vibrator, a matching transformer, and at least a transmitting circuit among the input/output circuits for the vibrator, and the transmitting circuit includes A transducer characterized in that it has a structure in which heat generated by heat-generating components is dissipated into water through the watertight case.
(2)前記発熱部品を熱伝導性絶縁取付部材を介して前
記水密ケースに取付けたことを特徴とする第(1)項記
載の送受波器。
(2) The transducer according to item (1), wherein the heat generating component is attached to the watertight case via a thermally conductive insulating attachment member.
(3)前記水密ケースの材料がアルミニウム合金であり
かつその外部にセラミックコーティングをあらかじめ設
定する所定の範囲にわたって施したものであることを特
徴とする第(1)項記載の送受波器。
(3) The transducer according to item (1), wherein the material of the watertight case is an aluminum alloy, and a ceramic coating is applied to the outside over a predetermined range.
(4)前記水密ケースの材料が爆着工法による複合金属
であることを特徴とする第(1)項記載の送受波器。
(4) The transducer according to item (1), wherein the material of the watertight case is a composite metal made by an explosive bonding method.
(5)前記水密ケースの外部にあらかじめ設定する範囲
にわたってヒートシンクを装着したことを特徴とする第
(1)項記載の送受波器。
(5) The transducer according to item (1), characterized in that a heat sink is mounted outside the watertight case over a preset range.
(6)前記水密ケース内部に絶縁性液体を充填したこと
を特徴とする第(1)項記載の送受波器。
(6) The transducer according to item (1), wherein the inside of the watertight case is filled with an insulating liquid.
(7)前記水密ケース内部に高熱伝導性気体を充填した
ことを特徴とする第(1)項記載の送受波器。
(7) The transducer according to item (1), wherein the inside of the watertight case is filled with a highly thermally conductive gas.
JP29313986A 1986-12-08 1986-12-08 Sound wave transmitter-receiver Granted JPS63144697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29313986A JPS63144697A (en) 1986-12-08 1986-12-08 Sound wave transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29313986A JPS63144697A (en) 1986-12-08 1986-12-08 Sound wave transmitter-receiver

Publications (2)

Publication Number Publication Date
JPS63144697A true JPS63144697A (en) 1988-06-16
JPH0511839B2 JPH0511839B2 (en) 1993-02-16

Family

ID=17790924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29313986A Granted JPS63144697A (en) 1986-12-08 1986-12-08 Sound wave transmitter-receiver

Country Status (1)

Country Link
JP (1) JPS63144697A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140973A (en) * 1994-11-25 1996-06-04 Toshiba Ceramics Co Ltd Ultrasonic wave generator
US7440280B2 (en) * 2006-03-31 2008-10-21 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US7593229B2 (en) * 2006-03-31 2009-09-22 Hong Kong Applied Science & Technology Research Institute Co. Ltd Heat exchange enhancement
JP2012513718A (en) * 2008-12-23 2012-06-14 イクスブルー Sonic transducer and sonar antenna with improved directivity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140973A (en) * 1994-11-25 1996-06-04 Toshiba Ceramics Co Ltd Ultrasonic wave generator
US7440280B2 (en) * 2006-03-31 2008-10-21 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US7593229B2 (en) * 2006-03-31 2009-09-22 Hong Kong Applied Science & Technology Research Institute Co. Ltd Heat exchange enhancement
US7651253B2 (en) 2006-03-31 2010-01-26 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US7800898B2 (en) 2006-03-31 2010-09-21 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Heat exchange enhancement
US7826214B2 (en) 2006-03-31 2010-11-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Heat exchange enhancement
JP2012513718A (en) * 2008-12-23 2012-06-14 イクスブルー Sonic transducer and sonar antenna with improved directivity
US8780674B2 (en) 2008-12-23 2014-07-15 Ixblue Acoustic wave transducer and sonar antenna with improved directivity

Also Published As

Publication number Publication date
JPH0511839B2 (en) 1993-02-16

Similar Documents

Publication Publication Date Title
US5712447A (en) Vibrationally and acoustically insulated structure
CN102371243A (en) Thermal transfer and acoustic matching layers for ultrasound transducer
WO2014076973A1 (en) Ultrasonic probe
EP0311663B1 (en) Transducer for arranging in a fluid, particularly for the measurement of the flow-velocity of a fluid in a pipe, by transmitting/receiving sonic pulses
US4364117A (en) Shock-hardened, high pressure ceramic sonar transducer
JP2000184497A (en) Ultrasonic probe
CA2042623C (en) Acoustic transducer
US5339292A (en) Acoustic transducer
US3210724A (en) Vibratory energy radiating system
JPS63144697A (en) Sound wave transmitter-receiver
JPH1094540A (en) Ultrasonic probe
Hueter Twenty years in underwater acoustics: Generation and reception
US3185868A (en) Acoustic absorber pad
US3263209A (en) Pressure compensated hydrophone
US3718897A (en) High fidelity underwater misic projector
EP2735380A1 (en) A transducer for a locator beacon and an underwater locator beacon
US3281770A (en) Cavity loaded piston resonator
US3118125A (en) Underwater sound transducer with sealed liquid coupling chamber
RU44547U1 (en) ELECTRO-ACOUSTIC TRANSMITTER AND ULTRASONIC RADIATOR (OPTIONS)
US4982386A (en) Underwater acoustic waveguide transducer for deep ocean depths
CA2226276A1 (en) Ultrasonic transducers method for fixing ultrasonic transducers and high output power ultrasonic transducers
US3351903A (en) Transducer with pressure release means
RU2267866C1 (en) Hydro-acoustic rod-type transformer
JP2728048B2 (en) Cylindrical transducer and assembling method thereof
JP3075275B2 (en) Underwater acoustic equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term